植物生态学报 ›› 2023, Vol. 47 ›› Issue (10): 1422-1431.DOI: 10.17521/cjpe.2022.0317
所属专题: 光合作用
张志山1, 韩高玲1,2, 霍建强1,2,*(), 黄日辉3, 薛书文3
收稿日期:
2022-07-27
接受日期:
2023-02-15
出版日期:
2023-10-20
发布日期:
2023-03-01
通讯作者:
* (基金资助:
ZHANG Zhi-Shan1, HAN Gao-Ling1,2, HUO Jian-Qiang1,2,*(), HUANG Ri-Hui3, XUE Shu-Wen3
Received:
2022-07-27
Accepted:
2023-02-15
Online:
2023-10-20
Published:
2023-03-01
Contact:
* (Supported by:
摘要:
水分是干旱沙区植被重建和恢复的主要限制性因子, 土壤有效水分含量直接影响植物木质部水分运输能力。但是不同水分条件下不同物种、不同年龄木质部水力特性和叶片气体交换的差异以及土壤水分含量对其影响的相关研究目前尚不明确。因此, 该研究以10年和30年树龄人工固沙区的柠条锦鸡儿(Caragana korshinskii)和中间锦鸡儿(C. liouana)为实验材料, 研究它们在旱季和雨季下水力特性和光合特性的差异及其关系。研究结果表明, 树龄对柠条锦鸡儿和中间锦鸡儿木质部导水率、导水率损失百分比、叶片水势和相对含水量等无显著的影响, 而土壤水分含量对其功能性状的影响较显著。树龄和土壤水分含量均对灌木叶片光合作用有显著影响, 但在土壤水分条件良好的情况下树龄对其影响不显著。此外, 土壤含水量与叶片水分含量和木质部茎比导水率之间呈显著的正相关关系; 木质部导水率与叶片水分状态和气孔导度也存在显著的正相关关系, 而光合速率与木质部导水率和叶片水分含量存在显著正相关关系, 这表明土壤水分含量通过影响木质部导水率和栓塞程度而直接影响了叶片水分状况和光合碳同化能力。总而言之, 柠条锦鸡儿和中间锦鸡儿的木质部导水能力和叶片光合碳同化能力显著地响应了土壤水分含量的变化。
张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应. 植物生态学报, 2023, 47(10): 1422-1431. DOI: 10.17521/cjpe.2022.0317
ZHANG Zhi-Shan, HAN Gao-Ling, HUO Jian-Qiang, HUANG Ri-Hui, XUE Shu-Wen. Response of xylem hydraulic conductivity and leaf photosynthetic capacity of sand-binding shrubs Caragana korshinskii and C. liouana to soil water. Chinese Journal of Plant Ecology, 2023, 47(10): 1422-1431. DOI: 10.17521/cjpe.2022.0317
物种 Species | 年龄 Ages (a) | 编号 No. | 株高 Height (m) | 冠幅 Crown (m) | 叶面积指数 Leaf area index |
---|---|---|---|---|---|
中间锦鸡儿 C. intermedia | 10 | Ci-10 | 1.356 ± 0.103b | 1.195 ± 0.055ab | 0.954 ± 0.153a |
30 | Ci-30 | 2.103 ± 0.214a | 1.893 ± 0.308a | 1.632 ± 0.257a | |
柠条锦鸡儿 C. korshinskii | 10 | Ck-10 | 1.386 ± 0.091b | 1.020 ± 0.048b | 1.130 ± 0.127a |
30 | Ck-30 | 1.656 ± 0.046ab | 1.792 ± 0.125a | 1.792 ± 0.342a |
表1 用于实验的柠条锦鸡儿和中间锦鸡儿的基本情况(平均值±标准误)
Table 1 Basic information on Caragana korshinskii and C. liouana selected for the experiment (mean ± SE)
物种 Species | 年龄 Ages (a) | 编号 No. | 株高 Height (m) | 冠幅 Crown (m) | 叶面积指数 Leaf area index |
---|---|---|---|---|---|
中间锦鸡儿 C. intermedia | 10 | Ci-10 | 1.356 ± 0.103b | 1.195 ± 0.055ab | 0.954 ± 0.153a |
30 | Ci-30 | 2.103 ± 0.214a | 1.893 ± 0.308a | 1.632 ± 0.257a | |
柠条锦鸡儿 C. korshinskii | 10 | Ck-10 | 1.386 ± 0.091b | 1.020 ± 0.048b | 1.130 ± 0.127a |
30 | Ck-30 | 1.656 ± 0.046ab | 1.792 ± 0.125a | 1.792 ± 0.342a |
图1 实验区降水量和样地土壤含水量。B和C中数值均为0-3 m土层平均加权后的平均值±标准误, 不同小写字母表示不同树龄和不同物种间差异显著(p < 0.05), 星号(*)为旱季和雨季间的显著差异(p < 0.05)。Ci-10、Ci-30、Ck-10、Ck-30同表1。
Fig. 1 Precipitation and soil water content in the sample plot. The values are all mean ± SE after the weighting average of the 0-3 m soil layer in B and C, different lowercase letters indicate significant differences between different ages and different species (p < 0.05), and asterisks (*) indicates significant differences between dry and rainy seasons (p < 0.05). Ci-10, Ci-30, Ck-10, Ck-30 see Table 1.
图2 不同树龄柠条锦鸡儿和中间锦鸡儿的木质部茎比导水率(A)和木质部导水率损失百分比(B) (平均值±标准误)。不同小写字母表示不同树龄和不同物种间显著差异(p < 0.05), 星号(*)为旱季和雨季间的显著差异(p < 0.05)。Ci-10、Ci-30、Ck-10、Ck-30同表1。
Fig. 2 Xylem stem specific hydraulic conductivity (A) and the percent loss of xylem hydraulic conductivity (B) of Caragana korshinskii and C. liouana at different ages (mean ± SE). Different lowercase letters indicate significant differences between different ages and different species (p < 0.05), and asterisks (*) indicates significant differences between dry and rainy seasons (p < 0.05). Ci-10, Ci-30, Ck-10, Ck-30 see Table 1.
图3 不同树龄柠条锦鸡儿和中间锦鸡儿的叶片相对含水量(A)、叶片凌晨和午间水势(B、C)及水势差(D) (平均值±标准误)。不同小写字母表示不同树龄和不同物种间显著差异(p < 0.05), 星号(*)为旱季和雨季间的显著差异(p < 0.05)。Ci-10、Ci-30、Ck-10、Ck-30同表1。
Fig. 3 Relative water content (A), water potential at predawn and midday (B, C) and the difference of water potential (D) in leaves of Caragana korshinskii and C. liouana at different ages (mean ± SE). Different lowercase letters indicate significant differences between different ages and different species (p < 0.05), and asterisks (*) indicates significant differences between dry and rainy seasons (p < 0.05). Ci-10, Ci-30, Ck-10, Ck-30 see Table 1.
图4 不同树龄柠条锦鸡儿和中间锦鸡儿的叶片气体交换参数(平均值±标准误)。不同小写字母表示不同树龄和不同物种间差异显著(p < 0.05), 星号(*)为旱季和雨季间的差异显著(p < 0.05)。Ci-10、Ci-30、Ck-10、Ck-30同表1。
Fig. 4 Leaf gas exchange parameters of Caragana korshinskii and C. liouana at different ages (mean ± SE). Different lowercase letters indicate significant differences between different ages and different species (p < 0.05), and asterisks (*) indicates significant differences between dry and rainy seasons (p < 0.05). Ci-10, Ci-30, Ck-10, Ck-30 see Table 1.
图5 不同树龄柠条锦鸡儿和中间锦鸡儿功能性状的效应值(ln RR) (平均值±标准误)。效应值>0表明雨季的水分对功能性状的影响更大, 反之, 旱季的影响更大; 其中, 由于凌晨和午间水势(Ψpd和Ψmd)的值为负数, 因此以绝对值进行计算, 即Ψpd和Ψmd的效应值<0表示雨季对水势影响更大。星号(*)表示效应值显著不同于0。?Ψ, 日水势差(Ψpd - Ψmd); Ψpd, 凌晨水势; Ψmd, 午间水势; gs,气孔导度; Ks, 茎比导水率; Pn, 净光合速率; PLC, 导水率损失百分比; RWC, 相对含水量; Tr, 蒸腾速率; WUE, 水分利用效率。Ci-10、Ci-30、Ck-10、Ck-30同表1。
Fig. 5 Effect size (ln RR) of Caragana korshinskii and C. liouana at different ages (mean ± SE). Effect size greater than zero showed rainy season has a greater effect on functional traits, and smaller than zero showed the effect of dry senson is greater. Among them, since the values of the water potential at predawn and midday (Ψpd and Ψmd) are negative, the absolute value is used for calculation. So the effect size of Ψpd and Ψmd < 0 indicates that rainy season has a greater impact on the water potential. Asterisks (*) indicates that the effect size is significantly different from 0. ?Ψ, daily water potential difference (Ψpd - Ψmd); Ψpd, predawn water potential; Ψmd, midday water potential; gs, stomatal conductance; Ks, xylem specific hydraulic conductivity; Pn, net photosynthetic rate; PLC, the percent loss of hydraulic conductivity; RWC, relative water content; Tr, transpiration rate; WUE, water use efficiency. Ci-10, Ci-30, Ck-10, Ck-30 see Table 1.
图6 柠条锦鸡儿和中间锦鸡儿不同功能性状间的相关性分析(A)和线性回归分析(B-E)。A中未连线的功能性状表示其间无显著相关关系; B-E中数值均为平均值±标准误而且显示了线性回归的决定系数(R2)和显著性水平(p), 灰色阴影代表90%的置信区间。?Ψ, 日水势差(Ψpd - Ψmd); Ψpd, 凌晨水势; Ψmd, 午间水势; gs, 气孔导度; Ks, 茎比导水率; Pn, 净光合速率; PLC, 导水率损失百分比; RWC, 相对含水量; SWC, 土壤含水量; Tr, 蒸腾速率; WUE, 水分利用效率。Ci-10、Ci-30、Ck-10、Ck-30同表1。
Fig. 6 Correlation analysis (A) and linear regression analysis (B-E) among different functional traits of Caragana korshinskii and C. liouana. The unconnected functional traits in A indicate that there is no significant correlation between them. The values are all mean ± SE, and the coefficients of determination (R2) and significance levels (p) of linear regression are shown in B-E. The shades of grey represent 90% confidence intervals. ?Ψ, daily water potential difference (Ψpd - Ψmd); Ψpd, predawn water potential; Ψmd, midday water potential; gs, stomatal conductance; Ks, xylem specific hydraulic conductivity; Pn, net photosynthetic rate; PLC, the percent loss of hydraulic conductivity; RWC, relative water content; SWC, soil water content; Tr, transpiration rate; WUE, water use efficiency. Ci-10, Ci-30, Ck-10, Ck-30 see Table 1.
[1] |
Bai YX, Zhang YQ, Michalet R, She WW, Jia X, Qin SG (2019). Responses of different herb life-history groups to a dominant shrub species along a dune stabilization gradient. Basic and Applied Ecology, 38, 1-12.
DOI URL |
[2] |
Bao JT, Wang J, Li XR, Zhang ZS, Su JQ (2015). Age-related changes in photosynthesis and water relations of revegetated Caragana korshinskii in the Tengger Desert, Northern China. Trees, 29, 1749-1760.
DOI URL |
[3] |
Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WT (2009). Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and the Environment, 7, 185-189.
DOI URL |
[4] |
Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Arce ME (2009). Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species. Oecologia, 160, 631-641.
DOI PMID |
[5] |
Chen LR, Li YY (2018). Responses of stem hydraulic traits in Salix psammophila and Caragana korshinskii to manipulated precipitation variation. Chinese Journal of Applied Ecology, 29, 507-514.
DOI |
[陈丽茹, 李秧秧 (2018). 沙柳和柠条茎水力学特性对模拟降雨改变的响应. 应用生态学报, 29, 507-514.]
DOI |
|
[6] |
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539.
DOI |
[7] | Dai YX, Wang L, Wan XC (2015). Progress on researches of drought-induced tree mortality mechanisms. Chinese Journal of Ecology, 34, 3228-3236. |
[代永欣, 王林, 万贤崇 (2015). 干旱导致树木死亡机制研究进展. 生态学杂志, 34, 3228-3236.] | |
[8] |
De Guzman ME, Santiago LS, Schnitzer SA, Álvarez-Cansino L (2017). Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species. Tree Physiology, 37, 1404-1414.
DOI PMID |
[9] |
Dixon HH, Joly J (1894). On the ascent of sap. Proceedings of the Royal Society of London, 57, 3-5.
DOI URL |
[10] | Gong R, Xu X, Tian XY, Jiang HL, Li X, Guan MX (2018). Hydraulic architecture characteristics and drought adaption strategies for three Caragana genus species. Acta Ecologica Sinica, 38, 4984-4993. |
[龚容, 徐霞, 田晓宇, 江红蕾, 李霞, 关梦茜 (2018). 三种锦鸡儿属植物水力结构特征及其干旱适应策略. 生态学报, 38, 4984-4993.] | |
[11] |
Huang L, Zhang ZS, Chen YL (2013). Probabilistic modeling of soil moisture dynamics in a revegetated desert area. Sciences in Cold and Arid Regions, 5, 205-210.
DOI URL |
[12] | Köcher P, Gebauer T, Horna V, Leuschner C (2009). Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Annals of Forest Science, 66, 101. DOI: 10.1051/forest/2008076. |
[13] |
Ladjal M, Huc R, Ducrey M (2005). Drought effects on hydraulic conductivity and xylem vulnerability to embolism in diverse species and provenances of Mediterranean cedars. Tree Physiology, 25, 1109-1117.
PMID |
[14] |
Li XR, Ma FY, Xiao HL, Wang XP, Kim KC (2004). Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China. Journal of Arid Environments, 57, 1-16.
DOI URL |
[15] | Lin RC, Yang WQ, Wang BC, Yu LJ, Wang WD, Tian LJ, Chi W, Lu QT, Han GG, Kuang TY (2021) Advances and perspectives in several areas of photosynthesis research. Scientia Sinica (Vitae), 51, 1376-1384. (in Chinese) |
[林荣呈, 杨文强, 王柏臣, 于龙江, 王文达, 田利金, 迟伟, 卢庆陶, 韩广业, 匡廷云 (2021). 光合作用研究若干前沿进展与展望. 中国科学: 生命科学, 51, 1376-1384.] | |
[16] |
Luo DD, Wang CK, Jin Y (2017). Plant water-regulation strategies: isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 41, 1020-1032.
DOI URL |
[罗丹丹, 王传宽, 金鹰 (2017). 植物水分调节对策: 等水与非等水行为. 植物生态学报, 41, 1020-1032.]
DOI |
|
[17] |
Luo DD, Wang CK, Jin Y (2021). Response mechanisms of hydraulic systems of woody plants to drought stress. Chinese Journal of Plant Ecology, 45, 925-941.
DOI URL |
[罗丹丹, 王传宽, 金鹰 (2021). 木本植物水力系统对干旱胁迫的响应机制. 植物生态学报, 45, 925-941.]
DOI |
|
[18] | Ma XF, Zhu JT, Yan W, Zhao CY (2021). Projections of desertification trends in Central Asia under global warming scenarios. Science of the Total Environment, 781, 146777. DOI: 10.1016/j.scitotenv.2021.146777. |
[19] |
Martinez-Vilalta J, Anderegg WR, Sapes G, Sala A (2019). Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytologist, 223, 22-32.
DOI PMID |
[20] |
McDowell NG, Allen CD (2015). Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5, 669-672.
DOI |
[21] | Mu Q, Cai HJ, Sun SK, Wen SS, Xu JT, Dong MQ, Saddique Q (2021). The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes. Agricultural Water Management, 243, 106475. DOI: 10.1016/j.agwat.2020.106475. |
[22] | Niu XW (1999). The distribution and description of Caragana Fabr. in China. Acta Botanica Boreali-Occidentalia Sinica, 19, 107-133. |
[牛西午 (1999). 中国锦鸡儿属植物资源研究——分布及分种描述. 西北植物学报, 19, 107-133.] | |
[23] | Niu XW, Ding YC, Zhang Q, Xu Q (2003). Studies on the characteristics of Caragana root development and some relevant physiology. Acta Botanica Boreali-Occidentalia Sinica, 23, 860-865. |
[牛西午, 丁玉川, 张强, 徐强 (2003). 柠条根系发育特征及有关生理特性研究. 西北植物学报, 23, 860-865.] | |
[24] |
Ryan MG (2011). Tree responses to drought. Tree Physiology, 31, 237-239.
DOI PMID |
[25] |
Sperry JS, Stiller V, Hacke UG (2003). Xylem hydraulics and the soil-plant-atmosphere continuum: opportunities and unresolved issues. Agronomy Journal, 95, 1362-1370.
DOI URL |
[26] | Tian LH, Wu WY, Zhou X, Zhang DS, Yu Y, Wang HJ, Wang QY (2019). The ecosystem effects of sand-binding shrub Hippophae rhamnoides in alpine semi-arid desert in the Northeastern Qinghai-Tibet Plateau. Land, 8, 183. DOI: 10.3390/Land8210183. |
[27] |
Turner NC (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58, 339-366.
DOI URL |
[28] | Wang AY, Jiang YJ, Hao GY, Cao KF (2008). The effect of seasonal drought to plant hydraulics and photosynthesis of three dominant evergreen tree species in seasonal tropical rainforest of Xishuangbanna limestone area. Acta Botanica Yunnanica, 30, 325-332. |
[王爱英, 姜艳娟, 郝广友, 曹坤芳 (2008). 季节性干旱胁迫对石灰山三种常绿优势树种的水分和光合生理的影响. 云南植物研究, 30, 325-332.] | |
[29] | Wang YL, Li XR, Liu LC, Zhao JC, Sun JY (2019). Life history response of Echinops gmelinii Turcz. to variation in the rainfall pattern in a temperate desert. PeerJ, 7, e8159. DOI: 10.7717/peerj.8159. |
[30] | Wei YR, Ma CC, Qi SX (2010). Comparative study on the hydraulic structural properties of Caragana korshinskii under different weather conditions. Arid Zone Research, 27, 363-368. |
[魏亚冉, 马成仓, 齐书香 (2010). 不同气候条件下柠条锦鸡儿水力结构特征比较. 干旱区研究, 27, 363-368.] | |
[31] | Xu H, He MZ, Tang L, Sun Y (2020). Response of changes of microbial biomass carbon and nitrogen to precipitation in desert soil. Acta Ecologica Sinica, 40, 1295-1304. |
[许华, 何明珠, 唐亮, 孙岩 (2020). 荒漠土壤微生物量碳、氮变化对降水的响应. 生态学报, 40, 1295-1304.] | |
[32] | Xu L, Wang YQ, Sun H, He MN, Tong YP, Zhang PP (2021). Seasonal changes of soil water content and controlling factors in a small watershed in the water-wind erosion crisscross region of the Loess Plateau. Journal of Soil and Water Conservation, 35, 122-129. |
[徐澜, 王云强, 孙慧, 贺美娜, 童永平, 张萍萍 (2021). 黄土高原水蚀风蚀交错带小流域土壤水分季节变化特征与主控因素. 水土保持学报, 35, 122-129.] | |
[33] | Yang QL, Zhang FC, Liu XG, Wang X, Zhang N, Ge ZY (2011). Research progress on regulation mechanism for the process of water transport in plants. Acta Ecologica Sinica, 31, 4427-4436. |
[杨启良, 张富仓, 刘小刚, 王玺, 张楠, 戈振扬 (2011). 植物水分传输过程中的调控机制研究进展. 生态学报, 31, 4427-4436.] | |
[34] | Yu T, Liu PJ, Zhang Q, Ren Y, Yao JN (2021). Detecting forest degradation in the Three-North forest shelterbelt in China from multi-scale satellite images. Remote Sensing, 13, 1131. DOI: 10.3390/rs13061131. |
[35] | Zhang HX, Li WB, Adams HD, Wang AZ, Wu JB, Jin CG, Guan D, Yuan FH (2018). Responses of woody plant functional traits to nitrogen addition: a meta-analysis of leaf economics, gas exchange, and hydraulic traits. Frontiers in Plant Science, 9, 683. DOI: 10.3389/fpls.2018.00683. |
[36] |
Zhang YF, Wang XP, Hu R, Pan YX, Paradeloc M (2015). Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. Journal of Hydrology, 527, 1084-1095.
DOI URL |
[37] | Zhang ZS, He MZ, Tan HJ, Chen YW, Pan YX (2007). Evaporation from soils covered with biological crusts in revegetated desert—A case study in shapotou desert research and experiment station. Acta Pedologica Sinica, 44, 404-410. |
[张志山, 何明珠, 谭会娟, 陈应武, 潘颜霞 (2007). 沙漠人工植被区生物结皮类土壤的蒸发特性——以沙坡头沙漠研究试验站为例. 土壤学报, 44, 404-410.] | |
[38] |
Zhang ZS, Li XR, Wang T, Wang XP, Xue QW, Liu LC (2008). Distribution and seasonal dynamics of roots in a revegetated stand of Artemisia ordosica Kracsh. in the Tengger Desert (North China). Arid Land Research and Management, 22, 195-211.
DOI URL |
[1] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[2] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[5] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[6] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[7] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[8] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[9] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[10] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[11] | 程汉亭, 李勤奋, 刘景坤, 严廷良, 张俏燕, 王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594. |
[12] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[13] | 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518. |
[14] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[15] | 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J]. 植物生态学报, 2016, 40(11): 1189-1207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19