植物生态学报 ›› 2021, Vol. 45 ›› Issue (3): 309-320.DOI: 10.17521/cjpe.2020.0264
所属专题: 全球变化与生态系统; 生物地球化学; 微生物生态学
• 研究论文 • 上一篇
朱湾湾1,2, 王攀2, 许艺馨2, 李春环2, 余海龙2, 黄菊莹1,*()
收稿日期:
2020-08-03
接受日期:
2020-12-22
出版日期:
2021-03-20
发布日期:
2021-05-17
通讯作者:
黄菊莹
作者简介:
* 黄菊莹: ORCID:0000-0002-1351-7282 (juyinghuang@163.com)基金资助:
ZHU Wan-Wan1,2, WANG Pan2, XU Yi-Xin2, LI Chun-Huan2, YU Hai-Long2, HUANG Ju-Ying1,*()
Received:
2020-08-03
Accepted:
2020-12-22
Online:
2021-03-20
Published:
2021-05-17
Contact:
HUANG Ju-Ying
Supported by:
摘要:
土壤酶主要由植物根系和微生物分泌产生, 参与有机质降解和元素循环等重要过程。研究降水量变化和氮(N)添加下土壤酶活性及其与植物群落组成以及微生物活动间的联系, 可为深入理解全球变化背景下植被-土壤系统中元素的循环与转化机制提供科学依据。该研究基于2017年在宁夏荒漠草原设立的降水量变化(减少50%、减少30%、对照、增加30%以及增加50%)和N添加(0和5 g·m-2·a-1)的野外试验, 研究了2018-2019年土壤蔗糖酶、脲酶和磷酸酶活性的变化, 分析了其与植物群落组成、微生物生态化学计量特征的关系。结果表明: 与减少降水量相比, 增加降水量对3种酶活性的影响较大, 但其效应与N添加以及年份存在交互作用。2018年增加降水量对3种酶活性的影响缺乏明显的规律性。2019年增加降水量不同程度地提高了3种酶活性。N添加对3种酶活性影响较小(尤其2019年); 草木樨状黄耆(Astragalus melilotoides)生物量与脲酶和磷酸酶活性负相关。糙隐子草(Cleistogenes squarrosa)生物量与3种酶活性正相关。除Patrick丰富度指数外, 植物群落多样性指数普遍与3种酶活性负相关; 对酶活性影响较大的因子包括土壤pH、土壤全磷(P)含量和微生物生物量碳(C):N:P。因此, 短期内降水量变化及N添加对荒漠草原土壤酶的影响较小(尤其在减少降水量条件下); 降水量增加及N添加通过提高植物生物量、改变植物多样性、调节微生物生物量元素平衡以及增强土壤P有效性, 直接影响着土壤酶活性。鉴于土壤酶种类的多样化和功能的复杂性, 今后还需结合多种酶活性的长期变化规律, 深入分析全球变化对酶活性的影响机制。
朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素. 植物生态学报, 2021, 45(3): 309-320. DOI: 10.17521/cjpe.2020.0264
ZHU Wan-Wan, WANG Pan, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition. Chinese Journal of Plant Ecology, 2021, 45(3): 309-320. DOI: 10.17521/cjpe.2020.0264
pH | 有机碳含量 Organic carbon content (g·kg-1) | 全氮含量 Total nitrogen (N) content (g·kg-1) | 全磷含量 Total phosphorus (P) content (g·kg-1) | NH4+-N含量 Ammonium N content (mg·kg-1) | NO3--N含量 Nitrate N content (mg·kg-1) | 速效磷含量 Available P content (mg·kg-1) |
---|---|---|---|---|---|---|
8.85 ± 0.01 | 3.70 ± 0.11 | 0.48 ± 0.00 | 0.34 ± 0.01 | 1.83 ± 0.07 | 9.96 ± 0.59 | 2.55 ± 0.29 |
表1 降水和氮(N)添加处理前试验样地0-20 cm土壤理化性质(平均值±标准误)
Table 1 Soil physical and chemical properties in 0-20 cm layer of experimental field before precipitation and nitrogen (N) addition treatments (mean ± SE)
pH | 有机碳含量 Organic carbon content (g·kg-1) | 全氮含量 Total nitrogen (N) content (g·kg-1) | 全磷含量 Total phosphorus (P) content (g·kg-1) | NH4+-N含量 Ammonium N content (mg·kg-1) | NO3--N含量 Nitrate N content (mg·kg-1) | 速效磷含量 Available P content (mg·kg-1) |
---|---|---|---|---|---|---|
8.85 ± 0.01 | 3.70 ± 0.11 | 0.48 ± 0.00 | 0.34 ± 0.01 | 1.83 ± 0.07 | 9.96 ± 0.59 | 2.55 ± 0.29 |
试验处理 Experimental treatment | 降水量减少50% 50% reduction in precipitation | 降水量减少30% 30% reduction in precipitation | 自然降水量 Natural precipitation | 降水量增加30% 30% increase in precipitation | 降水量增加50% 50% increase in precipitation |
---|---|---|---|---|---|
0 g N·m-2·a-1 | W1N0 | W2N0 | W3N0 | W4N0 | W5N0 |
5 g N·m-2·a-1 | W1N5 | W2N5 | W3N5 | W4N5 | W5N5 |
表2 试验处理及其代码
Table 2 Experimental treatments and their abbreviations
试验处理 Experimental treatment | 降水量减少50% 50% reduction in precipitation | 降水量减少30% 30% reduction in precipitation | 自然降水量 Natural precipitation | 降水量增加30% 30% increase in precipitation | 降水量增加50% 50% increase in precipitation |
---|---|---|---|---|---|
0 g N·m-2·a-1 | W1N0 | W2N0 | W3N0 | W4N0 | W5N0 |
5 g N·m-2·a-1 | W1N5 | W2N5 | W3N5 | W4N5 | W5N5 |
差异来源 Difference source | α | β | γ | α × β | α × γ | β × γ | α × β × γ |
---|---|---|---|---|---|---|---|
SA | 25.571** | 4.421** | 24.767** | 5.802** | 0.179 | 0.433 | 0.472 |
UA | 385.536** | 5.662** | 8.980** | 4.755** | 0.563 | 3.530* | 2.959* |
PA | 186.338** | 7.070** | 3.716 | 16.133 | 1.207 | 1.143 | 3.945** |
表3 年份(α)、降水量(β)、氮添加(γ)及其交互作用对土壤酶活性的影响
Table 3 Effects of sampling year (α), precipitation (β), nitrogen addition (γ), and their interactions on soil enzyme activities
差异来源 Difference source | α | β | γ | α × β | α × γ | β × γ | α × β × γ |
---|---|---|---|---|---|---|---|
SA | 25.571** | 4.421** | 24.767** | 5.802** | 0.179 | 0.433 | 0.472 |
UA | 385.536** | 5.662** | 8.980** | 4.755** | 0.563 | 3.530* | 2.959* |
PA | 186.338** | 7.070** | 3.716 | 16.133 | 1.207 | 1.143 | 3.945** |
图1 2018和2019年降水量及氮(N)添加对土壤酶活性的影响(平均值±标准误)。W1、W2、W3、W4和W5分别代表降水量减少50%、减少30%、自然降水、增加30%和增加50%。N0和N5分别代表0和5 g·m-2·a-1的N添加水平。不同小写字母表示相同N添加水平下降水量处理间各指标存在显著性差异(p < 0.05)。*表示相同降水量下N添加处理间各指标存在显著性差异(p < 0.05)。
Fig. 1 Effects of precipitation and nitrogen addition on soil enzyme activities in 2018 and 2019 (mean ± SE). W1, W2, W3, W4, and W5 represent 50% reduction in precipitation, 30% reduction in precipitation, natural precipitation (control), 30% increase in precipitation, 50% increase in precipitation, respectively. N0 and N5 represent 0 and 5 g·m -2·a-1 of nitrogen addition level, respectively. Different lowercase letters indicate significant difference (p < 0.05) of indices among precipitation treatments under the same nitrogen addition level. * indicates significant difference (p < 0.05) of indices among nitrogen addition treatments under the same precipitation.
图2 土壤酶活性与植物生物量的关系。A、B、C、D和E分别表示牛枝子、草木樨状黄耆、白草、针茅和糙隐子草的种群生物量。F代表群落生物量。SA、UA和PA分别代表蔗糖酶、脲酶和磷酸酶活性。*、**和***分别表示p < 0.05、p < 0.01和p < 0.001。
Fig. 2 Relationships between soil enzyme activities and plant biomass. A, B, C, D and E represent the population biomass of Lespedeza potaninii, Astragalus melilotoides, Pennisetum centrasiaticum, Stipa capillata, Cleistogenes squarrosa, respectively. F represents the community biomass. SA, UA, and PA represent sucrase, urease, and phosphatase activities, respectively. *, ** and *** indicate p < 0.05, p < 0.01 and p < 0.001, respectively.
图3 荒漠草原土壤酶活性与植物群落多样性的关系。SA、UA和PA分别代表蔗糖酶、脲酶和磷酸酶活性。*、**和***分别表示p < 0.05、p < 0.01和p < 0.001。
Fig. 3 Relationships between soil enzyme activities and plant community diversity in desert steppe. SA, UA, and PA represent sucrase, urease, and phosphatase activities, respectively. *, ** and *** indicate p < 0.05, p < 0.01 and p < 0.001, respectively.
指标 Index | pH | TP | C:Pm | C:Nm | N:Ps | MBC | MBP | C:Ps | NH4+-N | MBN | NO3--N | N:Pm | SWC | SOC | TN | EC | AP | C:Ns |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | 53.7 | 37.3 | 28.4 | 28.0 | 27.2 | 22.4 | 20.1 | 18.4 | 17.9 | 16.4 | 5.9 | 2.5 | 1.1 | 1.0 | 0.9 | 0.4 | 0.3 | 0.2 |
p | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.016 | 0.110 | 0.266 | 0.318 | 0.356 | 0.638 | 0.676 | 0.776 |
表4 冗余分析中各环境因子的条件效应
Table 4 Conditional effects of environmental factors in redundancy analysis
指标 Index | pH | TP | C:Pm | C:Nm | N:Ps | MBC | MBP | C:Ps | NH4+-N | MBN | NO3--N | N:Pm | SWC | SOC | TN | EC | AP | C:Ns |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | 53.7 | 37.3 | 28.4 | 28.0 | 27.2 | 22.4 | 20.1 | 18.4 | 17.9 | 16.4 | 5.9 | 2.5 | 1.1 | 1.0 | 0.9 | 0.4 | 0.3 | 0.2 |
p | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.016 | 0.110 | 0.266 | 0.318 | 0.356 | 0.638 | 0.676 | 0.776 |
图4 土壤酶活性与微生物生态化学计量特征及其他环境因子的冗余分析(RDA)。SA、UA和PA分别代表蔗糖酶、脲酶和磷酸酶活性。TP、C:Ps和N:Ps分别代表土壤全P含量、C:P和N:P。MBC、MBN、MBP、C:Nm和C:Pm分别代表微生物生物量C、N、P含量, C:N和C:P。NH4+-N、NO3--N分别代表土壤NH4+-N、NO3--N含量。
Fig. 4 Redundancy analysis (RDA) of soil enzyme activities and microbial ecological stoichiometry and other environmental factors. SA, UA, and PA represent sucrase, urease, and phosphatase activities, respectively. TP, C:Ps and N:Psrepresent soil total phosphorus content, C:P and N:P, respectively. MBC, MBN, MBP, C:Nm and C:Pm represent microbial biomass carbon, nitrogen, phosphorus content, C:N and C:P, respectively. NH4+-N, NO3--N represent soil ammonium nitrogen, nitrate nitrogen content, respectively.
[1] |
Allison VJ, Condron LM, Peltzer DA, Richardson SJ, Turner BL (2007). Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology & Biochemistry, 39, 1770-1781.
DOI URL |
[2] | Bai CL, Alata, Chen HJ, Shan YM, Eerdunhua, Wang MJ (2013). Effects of addition of nitrogen and water on plant community characteristics of Stipa breviflora desert steppe. Chinese Journal of Grassland, 35(2), 69-75. |
[白春利, 阿拉塔, 陈海军, 单玉梅, 额尔敦花, 王明玖 (2013). 氮素和水分添加对短花针茅荒漠草原植物群落特征的影响. 中国草地学报, 35(2), 69-75.] | |
[3] |
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234.
DOI URL |
[4] |
Deng Q, Hui DF, Dennis S, Reddy KC (2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecology and Biogeography, 26, 713-728.
DOI URL |
[5] | Dou PP, Wang F, Ma Y, Pang M, Mi XC, Ma KP, Lin DM (2018). Response of litter carbon, nitrogen and phosphorus to simulated leaching. Chinese Science Bulletin, 63, 3114-3123. |
[豆鹏鹏, 王芳, 马瑜, 庞梅, 米湘成, 马克平, 林敦梅 (2018). 叶凋落物碳、氮和磷元素对模拟淋溶的响应. 科学通报, 63, 3114-3123.] | |
[6] | Duan L, Hao JM, Xie SD, Zhou ZP (2002). Estimating critical loads of sulfur and nitrogen for Chinese soils by steady state method. Environmental Science, 23(2), 7-12. |
[段雷, 郝吉明, 谢绍东, 周中平 (2002). 用稳态法确定中国土壤的硫沉降和氮沉降临界负荷. 环境科学, 23(2), 7-12.] | |
[7] | Gao JQ, Yang XG, Dong CY, Li KN (2015). Precipitation resource changed characteristics in arid and humid regions in Northern China with climate changes. Transactions of the Chinese Society of Agricultural Engineering, 31(12), 99-110. |
[高继卿, 杨晓光, 董朝阳, 李克南 (2015). 气候变化背景下中国北方干湿区降水资源变化特征分析. 农业工程学报, 31(12), 99-110.] | |
[8] | Gu FX, Huang M, Zhang YD, Yan HM, Li J, Guo R, Zhong XL (2016). Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961-2010. Acta Ecologica Sinica, 36, 3591-3600. |
[顾峰雪, 黄玫, 张远东, 闫慧敏, 李洁, 郭瑞, 钟秀丽 (2016). 1961-2010年中国区域氮沉降时空格局模拟研究. 生态学报, 36, 3591-3600.] | |
[9] | Hu XW, Wang YR, Wu YP (2004). Research progress on eco-physiological responses of desert grassland plants to drought conditions. Acta Prataculturae Sinica, 13(3), 9-15. |
[胡小文, 王彦荣, 武艳培 (2004). 荒漠草原植物抗旱生理生态学研究进展. 草业学报, 13(3), 9-15.] | |
[10] | IPCC Intergovernmental Panel on Climate Change (2013). Summary for policymakers/climate change: the physical science basis// Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 20-107. |
[11] |
Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker AR, Tsigaridis K, Mihalopoulos N (2016). Past, present and future atmospheric nitrogen deposition. Journal of the Atmospheric Sciences, 73, 2039-2047.
DOI URL |
[12] | Li CB, Peng YF, Zhao DZ, Ning Y, Zhou GY (2016). Effects of precipitation change and nitrogen addition on community structure and plant diversity in an alpine steppe on the Qinghai-Tibetan Plateau. Research of Soil and Water Conservation, 23(6), 185-191. |
[李长斌, 彭云峰, 赵殿智, 宁祎, 周国英 (2016). 降水变化和氮素添加对青藏高原高寒草原群落结构和物种多样性的影响. 水土保持研究, 23(6), 185-191.] | |
[13] | Li J, Yu XY, Tang M (2013). Effects of different plants on soil microbial biomass and enzyme activities in Zhifangou watershed of Loess Plateau. Acta Botanica Boreali- Occidentalia Sinica, 33, 387-393. |
[李静, 蔚晓燕, 唐明 (2013). 黄土高原纸坊沟流域不同植物对土壤微生物生物量和土壤酶活性的影响. 西北植物学报, 33, 387-393.] | |
[14] | Li YH, Zhu HQ, Fang LZ, Li FD (2020). Soil enzyme activity characteristics and impact factors under plant communities of the Ebinur Lake wetland. Acta Ecologica Sinica, 40, 549-559. |
[李艳红, 朱海强, 方丽章, 李发东 (2020). 艾比湖湿地植物群落土壤酶活性特征及影响因素. 生态学报, 40, 549-559.] | |
[15] | Liu HM, Zhou GF, Li J, Wang LL, Wang H, Yang DL (2018). Effects of nitrogen deposition on soil enzyme activities of Stipa baicalensis steppe. Ecology and Environmental Sciences, 27, 1387-1394. |
[刘红梅, 周广帆, 李洁, 王丽丽, 王慧, 杨殿林 (2018). 氮沉降对贝加尔针茅草原土壤酶活性的影响. 生态环境学报, 27, 1387-1394.] | |
[16] | Liu X, Wang JS, Zhao XH (2015). Effects of simulated nitrogen deposition on the soil enzyme activities in a Pinus tabulaeformis forest at the Taiyue Mountain. Acta Ecologica Sinica, 35, 4613-4624. |
[刘星, 汪金松, 赵秀海 (2015). 模拟氮沉降对太岳山油松林土壤酶活性的影响. 生态学报, 35, 4613-4624.] | |
[17] |
Lü XT, Kong DL, Pan QM, Simmons ME, Han XG (2012). Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia, 168, 301-310.
DOI URL |
[18] | Ma WW, Yao T, Jin P, Wang GJ, Zhang YX (2014). Characteristics of microorganisms and enzyme activity under two plant communities in desert steppe. Journal of Desert Research, 34, 176-183. |
[马文文, 姚拓, 靳鹏, 王国基, 张玉霞 (2014). 荒漠草原2种植物群落土壤微生物及土壤酶特征. 中国沙漠, 34, 176-183.] | |
[19] | Qiao WJ, Dai YY, Zhang W, Fu SY, Yang GH, Han XH, Chen ZX, Gao DX, Feng YZ (2018). Relationship between the vegetation community and soil nutrient and enzyme activity during the restoration of abandoned land in the loess hilly region. Environmental Science, 39, 5687-5698. |
[乔文静, 戴银月, 张伟, 付淑月, 杨改河, 韩新辉, 陈正兴, 高德新, 冯永忠 (2018). 黄土丘陵区撂荒恢复过程中植物群落组成与土壤养分及酶活性变化的关系. 环境科学, 39, 5687-5698.] | |
[20] |
Rappe-George MO, Choma M, Čapek P, Börjesson G, Kaštovská E, Šantrůčková H, Gärdenäs AI (2017). Indications that long-term nitrogen loading limits carbon resources for soil microbes. Soil Biology & Biochemistry, 115, 310-321.
DOI URL |
[21] |
Schimel J, Balser TC, Wallenstein M (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88, 1386-1394.
PMID |
[22] |
Steenbergh AK, Bodelier PLE, Hoogveld HL, Slomp CP, Laanbroek HJ (2011). Phosphatases relieve carbon limitation of microbial activity in Baltic Sea sediments along a redox-gradient. Limnology and Oceanography, 56, 2018-2026.
DOI URL |
[23] | Su X, Lu M, Feng CC, Guo YL, Yue ZH (2020). Responses of seasonal dynamic of soil enzyme activity to soil salinity in Songnen saline-alkali grassland. Chinese Journal of Grassland, 42(1), 127-134. |
[苏鑫, 卢嫚, 冯程程, 郭迎岚, 岳中辉 (2020). 松嫩草地土壤酶活性对土壤盐分季节动态的响应. 中国草地学报, 42(1), 127-134.] | |
[24] |
Tian DS, Wang H, Sun J, Niu SL (2016). Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environmental Research Letters, 11, 024012. DOI: 10.1088/1748-9326/11/2/024012.
DOI URL |
[25] | Tu LH, Hu TX, Zhang J, Li RH, Dai HZ, Luo SH, Xiang YB, Huang LH (2009). Soil enzyme activities in a Pleioblastus amurus plantation in Rainy Area of West China under simulated nitrogen deposition. Chinese Journal of Applied Ecology, 20, 2943-2948. |
[涂利华, 胡庭兴, 张健, 李仁洪, 戴洪忠, 雒守华, 向元彬, 黄立华 (2009). 华西雨屏区苦竹林土壤酶活性对模拟氮沉降的响应. 应用生态学报, 20, 2943-2948.] | |
[26] | Wan ZM, Song CC (2009). Advance on response of soil enzyme activity to ecological environment. Chinese Journal of Soil Science, 40, 951-956. |
[万忠梅, 宋长春 (2009). 土壤酶活性对生态环境的响应研究进展. 土壤通报, 40, 951-956.] | |
[27] | Wang CT, Long RJ, Wang GX, Liu W, Wang QL, Zhang L, Wu PF (2010). Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows. Acta Prataculturae Sinica, 19(6), 25-34. |
[王长庭, 龙瑞军, 王根绪, 刘伟, 王启兰, 张莉, 吴鹏飞 (2010). 高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究. 草业学报, 19(6), 25-34.] | |
[28] | Wang J, Li G, Xiu WM, Song XL, Zhao JN, Yang DL (2014a). Effects of nitrogen and water on soil enzyme activity and soil microbial biomass in stipa baicalensis steppe, Inner Mongolia of North China. Journal of Agricultural Resources and Environment, 31, 237-245. |
[王杰, 李刚, 修伟明, 宋晓龙, 赵建宁, 杨殿林 (2014a). 氮素和水分对贝加尔针茅草原土壤酶活性和微生物量碳氮的影响. 农业资源与环境学报, 31, 237-245.] | |
[29] | Wang J, Li G, Xiu WM, Zhao JN, Wang H, Yang DL (2014b). Responses of soil microbial functional diversity to nitrogen and water input in Stipa baicalensis steppe, Inner Mongolia, Northern China. Acta Prataculturae Sinica, 23, 343-350. |
[王杰, 李刚, 修伟明, 赵建宁, 王慧, 杨殿林 (2014b). 贝加尔针茅草原土壤微生物功能多样性对氮素和水分添加的响应. 草业学报, 23, 343-350.] | |
[30] | Wang QL, Wang CT, Liu W, Cao GM, Long RJ (2010). Changes in plant communities and soil enzyme activities of artificial grasslands in headwater areas of the Yangtze and Yellow rivers. Chinese Journal of Applied and Environmental Biology, 16, 662-666. |
[王启兰, 王长庭, 刘伟, 曹广民, 龙瑞军 (2010). 江河源区人工草地植物群落和土壤酶活性变化. 应用与环境生物学报, 16, 662-666.] | |
[31] | Wang XP, Xiao X, Tang TW, Li YX, Xiao J (2018). Seasonal changes of the input of root exudates and its driving characteristics of rhizosphere microbe in a Cercidiphyllum japonicum Sieb. plantation. Bulletin of Botanical Research, 38, 47-55. |
[王小平, 肖肖, 唐天文, 黎云祥, 肖娟 (2018). 连香树人工林根系分泌物输入季节性变化及其驱动的根际微生物特性研究. 植物研究, 38, 47-55.] | |
[32] | Wu JY, Ye DB, Wang XJ (2010). Soil enzyme activity and its correlation with soil physical and chemical properties in suburban forests in Changsha City. Journal of Northeast Forestry University, 38(3), 97-99. |
[吴际友, 叶道碧, 王旭军 (2010). 长沙市城郊森林土壤酶活性及其与土壤理化性质的相关性. 东北林业大学学报, 38(3), 97-99.] | |
[33] | Xu H, He MZ, Sun Y (2018). Response of soil enzyme activities to precipitation regulation in arid desert areas. Journal of Lanzhou University (Natural Sciences), 54, 790-797. |
[许华, 何明珠, 孙岩 (2018). 干旱荒漠区土壤酶活性对降水调控的响应. 兰州大学学报(自然科学版), 54, 790-797.] | |
[34] |
Xu ZW, Li MH, Zimmermann NE, Li SP, Li H, Ren HY, Sun H, Han XG, Jiang Y, Jiang L (2018). Plant functional diversity modulates global environmental change effects on grassland productivity. Journal of Ecology, 106, 1941-1951.
DOI URL |
[35] | Yan ZQ, Qi YC, Li SJ, Dong YS, Peng Q, He YL, Li ZL (2017a). Soil microorganisms and enzyme activity of grassland ecosystem affected by changes in precipitation pattern and increase in nitrogen deposition—A review. Microbiology China, 44, 1481-1490. |
[闫钟清, 齐玉春, 李素俭, 董云社, 彭琴, 贺云龙, 李兆林 (2017a). 降水和氮沉降增加对草地土壤微生物与酶活性的影响研究进展. 微生物学通报, 44, 1481-1490.] | |
[36] | Yan ZQ, Qi YC, Peng Q, Dong YS, Guo SF, He YL, Wang LQ, Li ZL (2017b). Effects of increased precipitation and nitrogen deposition on soil enzyme activities. Acta Ecologica Sinica, 37, 3019-3027. |
[闫钟清, 齐玉春, 彭琴, 董云社, 郭树芳, 贺云龙, 王丽芹, 李兆林 (2017b). 降水和氮沉降增加对草地土壤酶活性的影响. 生态学报, 37, 3019-3027.] | |
[37] | Yang R, Zhao DP (2018). Characteristics of seasonal variation of precipitation in northwest vulnerable ecotone under the background of climate warming in the past 54 years. Research of Soil and Water Conservation, 25(6), 85-93. |
[杨蓉, 赵多平 (2018). 气候变暖背景下西北脆弱带近54年降水季节变化特征. 水土保持研究, 25(6), 85-93.] | |
[38] | Yang WQ, Wang KY (2002). Advances on soil enzymology. Chinese Journal of Applied and Environmental Biology, 8, 564-570. |
[杨万勤, 王开运 (2002). 土壤酶研究动态与展望. 应用与环境生物学报, 8, 564-570.] | |
[39] |
Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429.
DOI URL |
[40] |
Yu HL, He NP, Wang QF, Zhu JX, Gao Y, Zhang YH, Jia YL, Yu GR (2017). Development of atmospheric acid deposition in China from the 1990s to the 2010s. Environmental Pollution, 231, 182-190.
DOI URL |
[41] | Zhang JF, Xu YQ (2016). Responses of plant biomass and net primary production to nitrogen fertilization and increased precipitation in re-grassed croplands in Duolun County of Inner Mongolia, China. Chinese Journal of Eco-Agriculture, 24, 192-200. |
[张金凤, 徐雨晴 (2016). 水氮添加对内蒙古多伦县退耕还草地生物量、生产力及其分配的影响. 中国生态农业学报, 24, 192-200.] | |
[42] | Zhang MM, Fan SH, Guan FY, Yan YJ, Yin ZX, Huang LY (2020). Study on soil microbial biomass and enzyme activities in mixed forest of bamboo and broad-leaved trees. Soils, 52, 97-105. |
[张美曼, 范少辉, 官凤英, 晏颖杰, 尹子旭, 黄兰鹰 (2020). 竹阔混交林土壤微生物生物量及酶活性特征研究. 土壤, 52, 97-105.] | |
[43] | Zhang RY, Xu DH, Chen LY, Wang G (2014). Plant N status in the alpine grassland of the Qinghai-Tibet Plateau: base on the N:P stoichiometry. Environmental Science, 35, 1131-1137. |
[张仁懿, 徐当会, 陈凌云, 王刚 (2014). 基于N:P化学计量特征的高寒草甸植物养分状况研究. 环境科学, 35, 1131-1137.] | |
[44] |
Zhong Y, Yan WM, Wang RW, Shangguan ZP (2017). Differential responses of litter decomposition to nutrient addition and soil water availability with long-term vegetation recovery. Biology and Fertility of Soils, 53, 939-949.
DOI URL |
[45] | Zhu WW, Wang P, Fan J, Niu YB, Yu HL, Huang JY (2019). Effects of precipitation and N addition on soil C:N:P ecological stoichiometry and plant community composition in a desert steppe of Ningxia, northwestern China. Acta Prataculturae Sinica, 28(9), 33-44. |
[朱湾湾, 王攀, 樊瑾, 牛玉斌, 余海龙, 黄菊莹 (2019). 降水量及N添加对宁夏荒漠草原土壤C:N:P生态化学计量特征和植被群落组成的影响. 草业学报, 28(9), 33-44.] | |
[46] | Zhu YZ, Li YY, Han JG, Yao HY (2019). Effects of changes in water status on soil microbes and their response mechanism: a review. Chinese Journal of Applied Ecology, 30, 4323-4332. |
[朱义族, 李雅颖, 韩继刚, 姚槐应 (2019). 水分条件变化对土壤微生物的影响及其响应机制研究进展. 应用生态学报, 30, 4323-4332.] |
[1] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[2] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[3] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[4] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[5] | 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J]. 植物生态学报, 2016, 40(11): 1189-1207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19