植物生态学报 ›› 2023, Vol. 47 ›› Issue (9): 1310-1321.DOI: 10.17521/cjpe.2022.0176
李冰1,2, 朱湾湾3, 韩翠1, 余海龙3, 黄菊莹2,*()
收稿日期:
2022-05-05
接受日期:
2022-09-07
出版日期:
2023-09-20
发布日期:
2023-09-28
通讯作者:
* 黄菊莹(基金资助:
LI Bing1,2, ZHU Wan-Wan3, HAN Cui1, YU Hai-Long3, HUANG Ju-Ying2,*()
Received:
2022-05-05
Accepted:
2022-09-07
Online:
2023-09-20
Published:
2023-09-28
Contact:
* HUANG Ju-Ying(Supported by:
摘要:
土壤呼吸是陆地生态系统碳循环最关键的组分之一。研究降水量变化下荒漠草原土壤呼吸的时间动态及其与环境因子间的联系, 可为深入理解降水格局改变下脆弱生态系统碳循环关键过程的调控机制提供数据支撑。该研究基于2014年在宁夏荒漠草原设立的降水量变化(减少50%、减少30%、自然、增加30%、增加50%)的野外控制实验, 探究了2019年6-10月土壤呼吸速率的时间动态, 分析了土壤呼吸速率与土壤性质和植物特征的关系。整个生长季土壤呼吸速率呈先增加后减弱的时间动态, 最大值(2.79-5.35 μmol·m-2·s-1)出现在7月下旬或8月上旬。与自然降水量相比, 减少30%降水量对土壤呼吸速率无显著影响, 反映了土壤呼吸对适度干旱的适应性。整体来看, 减少50%降水量降低了土壤呼吸速率, 增加降水量(尤其是增加30%)提高了土壤呼吸速率, 且其促进作用在前期(6-7月)尤为明显。土壤呼吸速率与土壤温度呈显著的指数关系, 与土壤含水量呈显著的线性关系。土壤理化性质对土壤呼吸速率有高的独立解释力, 且其影响与土壤生物学性质和植物多样性高度相关。降水量可直接影响土壤呼吸速率, 也可通过影响土壤生物学性质和植物生物量间接影响土壤呼吸速率。该研究结果表明, 适度增加降水量缓解了荒漠草原土壤水分受限性、刺激了土壤酶活性、促进了微生物活性和植物生长, 从而加速了土壤呼吸; 极端增加降水量则可能导致土壤透气性降低、微生物代谢活动受阻, 进而抑制土壤呼吸。
李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素. 植物生态学报, 2023, 47(9): 1310-1321. DOI: 10.17521/cjpe.2022.0176
LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes. Chinese Journal of Plant Ecology, 2023, 47(9): 1310-1321. DOI: 10.17521/cjpe.2022.0176
差异来源 Difference source | df | 8:00-10:00 | 15:00-17:00 |
---|---|---|---|
降水量处理 Precipitation treatment (α) | 4 | 13.198** | 37.013** |
测定时间 Measuring time (β) | 4 | 24.532** | 37.278** |
降水量处理×测定时间 Interaction of α and β | 16 | 0.520 | 0.678 |
表1 降水量和测定时间影响荒漠草原土壤呼吸速率的重复测量方差分析
Table 1 Repeated measurement ANOVA of precipitation and measuring time on soil respiration rate in a desert steppe
差异来源 Difference source | df | 8:00-10:00 | 15:00-17:00 |
---|---|---|---|
降水量处理 Precipitation treatment (α) | 4 | 13.198** | 37.013** |
测定时间 Measuring time (β) | 4 | 24.532** | 37.278** |
降水量处理×测定时间 Interaction of α and β | 16 | 0.520 | 0.678 |
图2 降水量变化对6-10月荒漠草原土壤呼吸速率的影响(平均值±标准误)。W1, 降水量减少50%; W2, 降水量减少30%; W3, 自然降水量; W4, 降水量增加30%; W5, 降水量增加50%。不同小写字母表示同一测定时间下降水量处理间差异显著(p < 0.05)。
Fig. 2 Effects of precipitation change on soil respiration rate from June to October in a desert steppe (mean ± SE). W1, 50% reduction in precipitation; W2, 30% reduction in precipitation; W3, natural precipitation; W4, 30% increase in precipitation; W5, 50% increase in precipitation. Different lowercase letters indicate significant differences among the precipitation treatments under the same measuring time (p < 0.05).
差异来源 Differences source | df | ST | SWC | |
---|---|---|---|---|
8:00-10:00 | 15:00-17:00 | 8:00-10:00 | ||
降水量处理 Precipitation treatment (α) | 4 | 3.707* | 2.276 | 27.601** |
测定时间 Measuring time (β) | 4 | 57.317** | 146.775** | 15.003** |
降水量处理×测定时间 Interaction of α and β | 16 | 0.108 | 0.306 | 1.879 |
表2 降水量和测定时间影响荒漠草原土壤温度(ST)和含水量(SWC)的重复测量方差分析
Table 2 Repeated measurement ANOVA of precipitation and measuring time on soil temperature (ST) and soil water content (SWC) in a desert steppe
差异来源 Differences source | df | ST | SWC | |
---|---|---|---|---|
8:00-10:00 | 15:00-17:00 | 8:00-10:00 | ||
降水量处理 Precipitation treatment (α) | 4 | 3.707* | 2.276 | 27.601** |
测定时间 Measuring time (β) | 4 | 57.317** | 146.775** | 15.003** |
降水量处理×测定时间 Interaction of α and β | 16 | 0.108 | 0.306 | 1.879 |
图3 降水量变化对6-10月荒漠草原土壤温度的影响(平均值±标准误)。W1, 降水量减少50%; W2, 降水量减少30%; W3, 自然降水量; W4, 降水量增加30%; W5, 降水量增加50%。不同小写字母表示同一测定时间下降水量处理间差异显著(p < 0.05)。
Fig. 3 Effects of precipitation change on soil temperature from June to October in a desert steppe (mean ± SE). W1, 50% reduction in precipitation; W2, 30% reduction in precipitation; W3, natural precipitation; W4, 30% increase in precipitation; W5, 50% increase in precipitation. Different lowercase letters indicate significant differences among the precipitation treatments under the same measuring time (p < 0.05).
图4 降水量变化对6-10月荒漠草原土壤含水量的影响(平均值±标准误)。W1, 降水量减少50%; W2, 降水量减少30%; W3, 自然降水量; W4, 降水量增加30%; W5, 降水量增加50%。不同小写字母表示同一测定时间下降水量处理间差异显著(p < 0.05)。
Fig. 4 Effects of precipitation change on soil water content from June to October in a desert steppe (mean ± SE). W1, 50% reduction in precipitation; W2, 30% reduction in precipitation; W3, natural precipitation; W4, 30% increase in precipitation; W5, 50% increase in precipitation. Different lowercase letters indicate significant differences among the precipitation treatments under the same measuring time (p < 0.05).
指标 Index | 处理 Treatment | ||||
---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | |
pH | 8.52 ± 0.05bc | 8.58 ± 0.04ab | 8.43 ± 0.04c | 8.67 ± 0.05a | 8.66 ± 0.04a |
EC | 89.97 ± 0.88a | 93.37 ± 2.44a | 128.70 ± 18.49a | 289.67 ± 22.93a | 358.00 ± 38.19a |
SOC | 2.96 ± 0.08b | 3.25 ± 0.50ab | 3.34 ± 0.17ab | 3.38 ± 0.24ab | 3.70 ± 0.12a |
TN | 0.48 ± 0.00a | 0.49 ± 0.01a | 0.48 ± 0.01a | 0.43 ± 0.02b | 0.43 ± 0.01b |
TP | 0.34 ± 0.00a | 0.29 ± 0.00b | 0.27 ± 0.01c | 0.28 ± 0.00bc | 0.27 ± 0.00c |
NO3--N | 5.50 ± 0.41a | 5.08 ± 0.76ab | 3.28 ± 0.05b | 5.19 ± 0.91a | 5.81 ± 0.42a |
NH4+-N | 2.91 ± 0.23a | 3.59 ± 0.68a | 5.44 ± 1.12a | 5.71 ± 1.84a | 5.31 ± 3.34a |
AP | 1.56 ± 0.13a | 1.62 ± 0.51a | 1.72 ± 0.28a | 2.14 ± 0.30a | 2.47 ± 0.68a |
SA | 318.41 ± 33.75c | 359.39 ± 41.44bc | 381.78 ± 33.90abc | 434.93 ± 36.46ab | 474.67 ± 30.07a |
UA | 27.85 ± 3.86b | 30.68 ± 0.67b | 30.95 ± 1.96b | 45.34 ± 4.52a | 45.70 ± 4.82a |
PA | 44.58 ± 0.32bc | 40.89 ± 3.01c | 43.88 ± 2.97bc | 49.02 ± 2.42ab | 55.60 ± 1.35a |
MBC | 99.05 ± 9.57ab | 77.05 ± 20.59ab | 46.68 ± 14.32b | 100.24 ± 27.02ab | 108.73 ± 8.91a |
MBN | 48.97 ± 2.28a | 5.90 ± 0.80a | 7.45 ± 1.74a | 15.10 ± 7.95a | 19.91 ± 8.67a |
MBP | 1.76 ± 0.73b | 3.56 ± 0.40a | 1.76 ± 0.76b | 1.14 ± 0.34b | 2.00 ± 0.34ab |
R | 5.00 ± 0.58b | 6.67 ± 0.88ab | 6.00 ± 1.00ab | 8.67 ± 1.20a | 8.67 ± 0.88a |
H' | 1.13 ± 0.14c | 1.31 ± 0.07bc | 1.49 ± 0.10ab | 1.43 ± 0.02ab | 1.66 ± 0.08a |
E | 0.70 ± 0.03b | 0.70 ± 0.06b | 0.86 ± 0.04a | 0.67 ± 0.04b | 0.77 ± 0.00ab |
D | 0.43 ± 0.06a | 0.37 ± 0.05ab | 0.27 ± 0.02bc | 0.36 ± 0.04abc | 0.24 ± 0.02c |
表3 降水量变化对8月荒漠草原土壤性质和植物特征的影响(平均值±标准误)
Table 3 Effects of precipitation change on soil properties and plant characteristics in August in a desert steppe (mean ± SE)
指标 Index | 处理 Treatment | ||||
---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | |
pH | 8.52 ± 0.05bc | 8.58 ± 0.04ab | 8.43 ± 0.04c | 8.67 ± 0.05a | 8.66 ± 0.04a |
EC | 89.97 ± 0.88a | 93.37 ± 2.44a | 128.70 ± 18.49a | 289.67 ± 22.93a | 358.00 ± 38.19a |
SOC | 2.96 ± 0.08b | 3.25 ± 0.50ab | 3.34 ± 0.17ab | 3.38 ± 0.24ab | 3.70 ± 0.12a |
TN | 0.48 ± 0.00a | 0.49 ± 0.01a | 0.48 ± 0.01a | 0.43 ± 0.02b | 0.43 ± 0.01b |
TP | 0.34 ± 0.00a | 0.29 ± 0.00b | 0.27 ± 0.01c | 0.28 ± 0.00bc | 0.27 ± 0.00c |
NO3--N | 5.50 ± 0.41a | 5.08 ± 0.76ab | 3.28 ± 0.05b | 5.19 ± 0.91a | 5.81 ± 0.42a |
NH4+-N | 2.91 ± 0.23a | 3.59 ± 0.68a | 5.44 ± 1.12a | 5.71 ± 1.84a | 5.31 ± 3.34a |
AP | 1.56 ± 0.13a | 1.62 ± 0.51a | 1.72 ± 0.28a | 2.14 ± 0.30a | 2.47 ± 0.68a |
SA | 318.41 ± 33.75c | 359.39 ± 41.44bc | 381.78 ± 33.90abc | 434.93 ± 36.46ab | 474.67 ± 30.07a |
UA | 27.85 ± 3.86b | 30.68 ± 0.67b | 30.95 ± 1.96b | 45.34 ± 4.52a | 45.70 ± 4.82a |
PA | 44.58 ± 0.32bc | 40.89 ± 3.01c | 43.88 ± 2.97bc | 49.02 ± 2.42ab | 55.60 ± 1.35a |
MBC | 99.05 ± 9.57ab | 77.05 ± 20.59ab | 46.68 ± 14.32b | 100.24 ± 27.02ab | 108.73 ± 8.91a |
MBN | 48.97 ± 2.28a | 5.90 ± 0.80a | 7.45 ± 1.74a | 15.10 ± 7.95a | 19.91 ± 8.67a |
MBP | 1.76 ± 0.73b | 3.56 ± 0.40a | 1.76 ± 0.76b | 1.14 ± 0.34b | 2.00 ± 0.34ab |
R | 5.00 ± 0.58b | 6.67 ± 0.88ab | 6.00 ± 1.00ab | 8.67 ± 1.20a | 8.67 ± 0.88a |
H' | 1.13 ± 0.14c | 1.31 ± 0.07bc | 1.49 ± 0.10ab | 1.43 ± 0.02ab | 1.66 ± 0.08a |
E | 0.70 ± 0.03b | 0.70 ± 0.06b | 0.86 ± 0.04a | 0.67 ± 0.04b | 0.77 ± 0.00ab |
D | 0.43 ± 0.06a | 0.37 ± 0.05ab | 0.27 ± 0.02bc | 0.36 ± 0.04abc | 0.24 ± 0.02c |
图5 整个生长季荒漠草原土壤呼吸速率(SR)与土壤温度(T)和含水量(W)的拟合关系。
Fig. 5 Fitting relationships of soil respiration rate (SR) with soil temperature (T) and water content (W) across the whole growing season in a desert steppe.
图6 环境因子组合对荒漠草原土壤呼吸速率的方差分解。小于0的数值未显示。单个圆圈内数字代表该环境因子组合能解释的方差。圆圈重合部分内数字代表几个环境因子组合共同解释的方差。X1组包括土壤温度、含水量、pH、有机碳、硝态氮和铵态氮含量。X2组包括土壤蔗糖酶活性和微生物生物量碳、氮、磷含量。X3组包括Shannon-Wiener多样性指数和Pielou均匀度指数。
Fig. 6 Variation partitioning of soil respiration rate by environmental factor groups in a desert steppe. Values < 0 are not shown. Data in one circle represent the variation individually explained by the environmental factor groups. Data in the overlapped part of circles represent the variation jointly explained by environmental factor groups. X1 group includes soil temperature, water content, pH, organic carbon, nitrate nitrogen, and ammonium nitrogen content. X2 group includes soil sucrase activity and microbial biomass carbon, nitrogen, phosphorus content. X3 group includes Shannon-Wiener diversity index and Pielou evenness index.
图7 降水量变化下荒漠草原土壤呼吸速率与环境因子的结构方程模型。CP, 降水量; PB, 植物生物量; R, Patrick丰富度指数; SBP, 土壤生物学性质(蔗糖酶活性、脲酶活性、磷酸酶活性、微生物生物量碳含量); SCP, 土壤化学性质(pH、电导率、有机碳、速效磷含量); SPP, 土壤物理性质(含水量和温度); SR, 土壤呼吸速率。黑色实线和虚线分别表示显著(p < 0.05)和不显著(p > 0.05)路径。箭头上数字为标准化的路径系数(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。模型拟合总结: χ2 ?= 5.709, p = 0.457, df = 6; 拟合优度指数(GFI) = 0.998; 标准化残差均方根(RMSEA) = 0.000; 相对配适指数(SRMR) = 0.035。
Fig. 7 Structural equation model of soil respiration rate and environmental factors under changing precipitation regimes in a desert steppe. CP, precipitation; PB, plant biomass; R, Patrick richness index; SBP, soil biological properties (sucrase activity, urease activity, phosphatase activity, microbial biomass carbon content); SCP, soil chemical property (pH, electrical conductivity, organic carbon, available phosphorus content); SPP, soil physical property (water content and temperature); SR, soil respiration rate. Black solid and dashed arrows indicate significant (p < 0.05) and insignificant (p > 0.05) path, respectively. Numbers on the arrows are normalized path coefficients (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Model fit summary: χ2 = 5.709, p = 0.457, df = 6; comparative fit index (GFI) = 0.998; root mean square error of approximation (RMSEA) = 0.000; standardized root mean square residual (SRMR) = 0.035.
[1] |
Arredondo T, Delgado-Balbuena J, Huber-Sannwald E, García- Moya E, Loescher HW, Aguirre-Gutiérrez C, Rodriguez-Robles U (2018). Does precipitation affects soil respiration of tropical semiarid grasslands with different plant cover types? Agriculture, Ecosystems & Environment, 251, 218-225.
DOI URL |
[2] | Bao SD (2000). Soil and Agricaltral Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[3] |
Chang M, Liu B, Martinez-Villalobos C, Ren G, Li S, Zhou T (2020). Changes in extreme precipitation accumulations during the warm season over continental China. Journal of Climate, 33, 10799-10811.
DOI URL |
[4] |
Chen X, Chen HYH (2019). Plant diversity loss reduces soil respiration across terrestrial ecosystems. Global Change Biology, 25, 1482-1492.
DOI URL |
[5] | Cui H, Zhang YH (2016). Diurnal and seasonal dynamic variation of soil respiration and its influencing factors of different fenced enclosure years in desert steppe. Environmental Science, 37, 1507-1515. |
[崔海, 张亚红 (2016). 不同封育年限荒漠草原土壤呼吸日、季动态变化及其影响因子. 环境科学, 37, 1507-1515.] | |
[6] | Cui Y, Yan SW, Wu JZ, Luo QH, Lin YM, Wang DJ, Wu CZ (2019). Effects of plant and microbial biomass and enzyme activities on soil respiration in the preliminary stage after the Wenchuan earthquake. Chinese Journal of Applied and Environmental Biology, 25, 215-224. |
[崔羽, 严思维, 吴建召, 罗清虎, 林勇明, 王道杰, 吴承祯 (2019). 汶川地震受损区恢复初期植物与微生物生物量、土壤酶活性对土壤呼吸的影响. 应用与环境生物学报, 25, 215-224.] | |
[7] | Ding JZ, Lai LM, Zhao XC, Zhu LH, Jiang LH, Zheng YR (2011). Effects of desertification on soil respiration and ecosystem carbon fixation in Mu Us sandy land. Acta Ecologica Sinica, 31, 1594-1603. |
[丁金枝, 来利明, 赵学春, 朱林海, 姜联合, 郑元润 (2011). 荒漠化对毛乌素沙地土壤呼吸及生态系统碳固持的影响. 生态学报, 31, 1594-1603.] | |
[8] | Dou WQ, Tian LL, Xiao B, Yao XM, Li SL (2022). Responses of respiration rate of moss biocrusts to the manipulation of rainfall amount on the Chinese Loess Plateau. Acta Ecologica Sinica, 42, 1703-1715. |
[窦韦强, 田乐乐, 肖波, 姚小萌, 李胜龙 (2022). 黄土高原藓结皮土壤呼吸速率对降雨量变化的响应. 生态学报, 42, 1703-1715.] | |
[9] | Fan KK, Li SZ, Chen JQ, Yan YC, Xin XP, Wang X (2022). Spatial heterogeneity analysis of soil respiration in Hulunbuir grassland. Acta Agrestia Sinica, 30, 205-211. |
[范凯凯, 李淑贞, 陈金强, 闫玉春, 辛晓平, 王旭 (2022). 呼伦贝尔草原土壤呼吸作用空间异质性分析. 草地学报, 30, 205-211.]
DOI |
|
[10] | Gao MH, Wurenqiqige, Bateer, Mu YH, Wang J, Zhao HR, Meng QT (2016). Influences of grazing on plant community characteristics, soil microorganism and soil enzyme activity. Bulletin of Soil and Water Conservation, 36, 62-65. |
[高明华, 乌仁其其格, 巴特尔, 穆艳红, 王金, 赵慧如, 孟庆涛 (2016). 放牧对植物群落特征和土壤微生物及酶活性的影响. 水土保持通报, 36, 62-65.] | |
[11] | Guan YS (1986). Soil Enzymes and Their Research Methods. China Agriculture Press, Beijing. |
[关荫松 (1986). 土壤酶及其研究方法. 中国农业出版社, 北京.] | |
[12] | Guo WZ, Jing CQ, Wang GX, Hou ZX, Zhao WK (2021). Responses of soil respiration and ecosystem respiration to precipitation in desert steppe on the northern slope of Tianshan Mountains. Acta Agrestia Sinica, 29, 2031-2039. |
[郭文章, 井长青, 王公鑫, 侯志雄, 赵苇康 (2021). 天山北坡荒漠草原土壤呼吸和生态系统呼吸对降水的响应. 草地学报, 29, 2031-2039.]
DOI |
|
[13] | Guo YP, Li HJ (2022). Response of soil respiration to soil moisture, temperature and vegetation factors in two shrub communities of Tianlong Mountain area. Soil and Fertilizer Sciences in China, (4), 131-139. |
[郭艳萍, 李洪建 (2022). 天龙山灌丛生态系统土壤呼吸对水热和植被因子的响应. 中国土壤与肥料, (4), 131-139.] | |
[14] |
Han D, Li YL, Yang HL, Ning ZY, Zhang ZQ (2021). Effects of simulated temperature increase and change of rainfall frequency on soil respiration in arid and semi-arid areas. Journal of Desert Research, 41, 100-108.
DOI |
[韩丹, 李玉霖, 杨红玲, 宁志英, 张子谦 (2021). 模拟增温和改变降雨频率对干旱半干旱区土壤呼吸的影响. 中国沙漠, 41, 100-108.]
DOI |
|
[15] |
Hao LY, Zhang LH, Xie ZK, Zhao RF, Wang JF, Guo YF, Gao JP (2021). Influence of precipitation change on soil respiration in desert grassland. Environmental Science, 42, 4527-4537.
DOI URL |
[蒿廉伊, 张丽华, 谢忠奎, 赵锐锋, 王军锋, 郭亚飞, 高江平 (2021). 降水变化对荒漠草原土壤呼吸的影响. 环境科学, 42, 4527-4537.] | |
[16] | Hou JF, Lü XT, Wang C, Wang P (2014). Variation of soil respiration and its underlying mechanism in grasslands of northern China. Chinese Journal of Applied Ecology, 25, 2840-2846. |
[侯建峰, 吕晓涛, 王超, 王朋 (2014). 中国北方草地土壤呼吸的空间变异及成因. 应用生态学报, 25, 2840-2846.] | |
[17] | IPCC Intergovernmental Panel on Climate Change (2021). Climate Change 2021: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[18] |
Knapp AK, Beier C, Briske DD, Classen AT, Luo YQ, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811-821.
DOI URL |
[19] |
Knapp AK, Ciais P, Smith MD (2017). Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytologist, 214, 41-47.
DOI PMID |
[20] | Li XG, Han GX, Zhu LQ, Chen CN (2019). Effects of drying- wetting cycle caused by rainfall on soil respiration: progress and prospect. Chinese Journal of Ecology, 38, 567-575. |
[李新鸽, 韩广轩, 朱连奇, 陈超男 (2019). 降雨引起的干湿交替对土壤呼吸的影响: 进展与展望. 生态学杂志, 38, 567-575.] | |
[21] |
Liu L, Wang X, Lajeunesse MJ, Miao G, Piao S, Wan S, Wu Y, Wang Z, Yang S, Li P, Deng M (2016). A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Global Change Biology, 22, 1394-1405.
DOI PMID |
[22] |
Liu T, Wang L, Feng XJ, Zhang JB, Ma T, Wang X, Liu ZG (2018). Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands. Biogeosciences, 15, 1627-1641.
DOI URL |
[23] |
Liu T, Zhang YX, Xu ZZ, Zhou GS, Hou YH, Lin L (2012). Effects of short-term warming and increasing precipitation on soil respiration of desert steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 36, 1043-1053.
DOI |
[刘涛, 张永贤, 许振柱, 周广胜, 侯彦会, 林琳 (2012). 短期增温和增加降水对内蒙古荒漠草原土壤呼吸的影响. 植物生态学报, 36, 1043-1053.]
DOI |
|
[24] |
Lopatin J, Araya-López R, Galleguillos M, Perez-Quezada JF (2022). Disturbance alters relationships between soil carbon pools and aboveground vegetation attributes in an anthropogenic peatland in Patagonia. Ecology and Evolution, 12, e8694. DOI: 10.1002/ECE3.8694.
PMID |
[25] | Lu RK (2000). Methods for Soil Agrochemical Analysis. China Agricultural Science and Technology Press, Beijing. |
[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[26] |
Ma ZY, Liu HY, Mi ZR, Zhang ZH, Wang YH, Xu W, Jiang L, He JS (2017). Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378. DOI: 10.1038/ncomms15378.
PMID |
[27] |
Reichmann LG, Sala OE (2014). Differential sensitivities of grassland structural components to changes in precipitation mediate productivity response in a desert ecosystem. Functional Ecology, 28, 1292-1298.
DOI URL |
[28] |
Ru JY, Zhou YQ, Hui DF, Zheng MM, Wan SQ (2018). Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland. Global Change Biology, 24, 1001-1011.
DOI PMID |
[29] |
Schuur EAG (2003). Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology, 84, 1165-1170.
DOI URL |
[30] | Song XH, Wang YH, Wang ZW, Kang H, Liu C, Li ZG, Qu ZQ, Han GD, Wang ZW (2019). Relationship between soil respiration and community underground biomass of desert steppe under different grazing intensities and water treatments. Acta Agrestia Sinica, 27, 962-968. |
[宋晓辉, 王悦骅, 王占文, 康慧, 刘晨, 李治国, 屈志强, 韩国栋, 王忠武 (2019). 不同放牧强度和水分处理下荒漠草原土壤呼吸与群落地下生物量的关系. 草地学报, 27, 962-968.]
DOI |
|
[31] | Su YF, Zhao CF, Wang Y, Ma ZS (2020). Spatiotemporal variations of precipitation in China using surface gauge observations from 1961 to 2016. Atmosphere, 11, 303. DOI: 10.3390/atmos11030303. |
[32] | Wang CH, Zhang SN, Li KC, Zhang FM, Yang K (2021). Change characteristics of precipitation in northwest China from 1961 to 2018. Chinese Journal of Atmospheric Sciences, 45, 713-724. |
[王澄海, 张晟宁, 李课臣, 张飞民, 杨凯 (2021). 1961-2018年西北地区降水的变化特征. 大气科学, 45, 713-724.] | |
[33] | Wang CT, Long RJ, Wang GX, Liu W, Wang QL, Zhang L, Wu PF (2010). Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows. Acta Prataculturae Sinica, 19, 25-34. |
[王长庭, 龙瑞军, 王根绪, 刘伟, 王启兰, 张莉, 吴鹏飞 (2010). 高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究. 草业学报, 19, 25-34.] | |
[34] | Wang JL, Teng DX, He XM, Li ZK, Chen YD, Ma W, Li WJ, Wang SY, Liu FY, Lü GH (2022). Spatial variation in the direct and indirect effects of plant diversity on soil respiration in an arid region. Ecological Indicators, 142, 109288. DOI: 10.1016/j.ecolind.2022.109288. |
[35] | Wang Y, Xie Y, Rapson G, Ma H, Jing L, Zhang Y, Li J (2021). Increased precipitation enhances soil respiration in a semi-arid grassland on the Loess Plateau, China. PeerJ, 9, e10729. DOI: 10.7717/PEERJ.10729. |
[36] | Wang ZW, Song XH, Wang YH, Wang ZW, Yan BL, Han GD (2020). Effects of simulated precipitation on soil respiration of Stipa breviflora desert steppe. Chinese Journal of Grassland, 42, 111-116. |
[王忠武, 宋晓辉, 王悦骅, 王占文, 闫宝龙, 韩国栋 (2020). 模拟降水对短花针茅荒漠草原土壤呼吸的影响. 中国草地学报, 42, 111-116.] | |
[37] | Xu M, Bian HF, Xu L, Chen Z, He NP (2020). Effects of precipitation pulse on soil carbon released by microbes in different grasslands. Acta Ecologica Sinica, 40, 1562-1571. |
[徐敏, 边红枫, 徐丽, 陈智, 何念鹏 (2020). 脉冲式降水对不同类型草地土壤微生物呼吸碳释放量的影响. 生态学报, 40, 1562-1571.] | |
[38] |
Xu Z, Li MH, Zimmermann NE, Li SP, Li H, Ren H, Sun H, Han X, Jiang Y, Jiang L (2018). Plant functional diversity modulates global environmental change effects on grassland productivity. Journal of Ecology, 106, 1941-1951.
DOI URL |
[39] |
Yang QX, Tian DS, Zeng H, Niu SL (2017). Main factors driving changes in soil respiration under altering precipitation regimes and the controlling processes. Chinese Journal of Plant Ecology, 41, 1239-1250.
DOI URL |
[杨青霄, 田大栓, 曾辉, 牛书丽 (2017). 降水格局改变背景下土壤呼吸变化的主要影响因素及其调控过程. 植物生态学报, 41, 1239-1250.]
DOI |
|
[40] | Yao JQ, Yang Q, Liu ZH, Li CZ (2015). Spatio-temporal change of precipitation in arid region of the northwest China. Acta Ecologica Sinica, 35, 5846-5855. |
[姚俊强, 杨青, 刘志辉, 李诚志 (2015). 中国西北干旱区降水时空分布特征. 生态学报, 35, 5846-5855.] | |
[41] | Yu X, Wang X, Wu T, Wang QX, Ma Y, Xie L, Song NP (2021). Relationship between restoration of plant diversity and soil habitat in desert steppe. Acta Ecologica Sinica, 41, 8516-8524. |
[余轩, 王兴, 吴婷, 王启学, 马昀, 谢莉, 宋乃平 (2021). 荒漠草原植物多样性恢复与土壤生境的关系. 生态学报, 41, 8516-8524.] | |
[42] | Zhang HZ, Shi XZ, Yu DS, Wang HJ, Zhao YC, Sun WX, Huang BR (2009). Seasonal and regional variations of soil temperature in China. Acta Pedologica Sinica, 46, 227-234. |
[张慧智, 史学正, 于东升, 王洪杰, 赵永存, 孙维侠, 黄宝荣 (2009). 中国土壤温度的季节性变化及其区域分异研究. 土壤学报, 46, 227-234.] | |
[43] | Zhang JT (2004). Quantitative Ecology. Science Press, Beijing. |
[张金屯 (2004). 数量生态学. 科学出版社, 北京.] | |
[44] |
Zhang Q, Li J, Singh VP, Xu CY (2013). Copula-based spatio- temporal patterns of precipitation extremes in China. International Journal of Climatology, 33, 1140-1152.
DOI URL |
[45] |
Zhang R, Zhao X, Zuo X, Degen AA, Shang Z, Luo Y, Zhang Y, Chen J (2019). Effect of manipulated precipitation during the growing season on soil respiration in the desert- grasslands in Inner Mongolia, China. Catena, 176, 73-80.
DOI |
[46] | Zhang Y, Xie YZ, Ma HB, Zhang J, Jing L, Wang YT, Li JP (2021). The responses of soil respiration to changed precipitation and increased temperature in desert grassland in northern China. Journal of Arid Environments, 193, 104579. DOI: 10.1016/j.jaridenv.2021.104579. |
[47] | Zhang YF, Wang XP, Hu R, Pan YX (2013). Effects of shrubs and precipitation on spatial-temporal variation of soil temperature at the microhabitats induced by desert shrubs. Journal of Desert Research, 33, 536-542. |
[张亚峰, 王新平, 虎瑞, 潘颜霞 (2013). 荒漠灌丛微生境土壤温度的时空变异特征——灌丛与降水的影响. 中国沙漠, 33, 536-542.]
DOI |
|
[48] | Zhao M, Guo SL, Wang R (2021). Diverse soil respiration responses to extreme precipitation patterns in arid and semiarid ecosystems. Applied Soil Ecology, 163, 103928. DOI: 10.1016/j.apsoil.2021.103928. |
[49] |
Zhu WW, Wang P, Fan J, Niu YB, Yu HL, Huang JY (2019). Effects of precipitation and N addition on soil C:N:P ecological stoichiometry and plant community composition in a desert steppe of Ningxia, northwestern China. Acta Prataculturae Sinica, 28(9), 33-44.
DOI |
[朱湾湾, 王攀, 樊瑾, 牛玉斌, 余海龙, 黄菊莹 (2019). 降水量及N添加对宁夏荒漠草原土壤C:N:P生态化学计量特征和植被群落组成的影响. 草业学报, 28(9), 33-44.]
DOI |
|
[50] |
Zuo XA, Zhang J, Lv P, Zhou X, Li YL, Luo YY, Luo YQ, Lian J, Yue XY (2016). Plant functional diversity mediates the effects of vegetation and soil properties on community- level plant nitrogen use in the restoration of semiarid sandy grassland. Ecological Indicators, 64, 272-280.
DOI URL |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[4] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[5] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[6] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[7] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
[8] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[9] | 陈林, 王磊, 杨新国, 宋乃平, 李月飞, 苏莹, 卞莹莹, 祝忠有, 孟文婷. 荒漠草原猪毛蒿种群繁殖特征的土壤驱动因子分析[J]. 植物生态学报, 2019, 43(1): 65-76. |
[10] | 闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响[J]. 植物生态学报, 2018, 42(3): 327-336. |
[11] | 靳宇曦, 刘芳, 张军, 韩梦琪, 王忠武, 屈志强, 韩国栋. 不同载畜率处理下短花针茅荒漠草原生态系统净碳交换特征[J]. 植物生态学报, 2018, 42(3): 361-371. |
[12] | 黄菊莹, 余海龙, 王丽丽, 马凯博, 康扬眉, 杜雅仙. 不同氮磷比处理对甘草生长与生态化学计量特征的影响[J]. 植物生态学报, 2017, 41(3): 325-336. |
[13] | 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应[J]. 植物生态学报, 2016, 40(2): 165-. |
[14] | 李永强, 李治国, 董智, 王忠武, 屈志强, 韩国栋. 内蒙古荒漠草原放牧强度对风沙通量和沉积物粒径的影响[J]. 植物生态学报, 2016, 40(10): 1003-1014. |
[15] | 王薪琪, 王传宽, 韩轶. 树种对土壤有机碳密度的影响: 5种温带树种同质园试验[J]. 植物生态学报, 2015, 39(11): 1033-1043. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19