植物生态学报 ›› 2015, Vol. 39 ›› Issue (11): 1033-1043.DOI: 10.17521/cjpe.2015.0100

• •    下一篇

树种对土壤有机碳密度的影响: 5种温带树种同质园试验

王薪琪, 王传宽*(), 韩轶   

  1. 东北林业大学生态研究中心, 哈尔滨 150040
  • 收稿日期:2015-02-02 接受日期:2015-08-13 出版日期:2015-11-01 发布日期:2015-12-02
  • 通讯作者: 王传宽
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    基金项目 国家“十二五”科技支撑项目(2011- BAD37B01)、教育部长江学者和创新团队发展计划(IRT1054)

Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species

WANG Xin-Qi, WANG Chuan-Kuan*(), HAN Yi   

  1. Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
  • Received:2015-02-02 Accepted:2015-08-13 Online:2015-11-01 Published:2015-12-02
  • Contact: Chuan-Kuan WANG
  • About author:

    # Co-first authors

摘要:

树种通过改变凋落物输入与周转及根系活动影响 土壤的理化和生物学性质及固碳功能。合理选择树种是碳汇林业中一个亟待解决的理论和实践问题。为了减少林分特征和立地条件差异的影响, 2004年在相同气候、土壤和经营历史的立地上建立了东北地区常见树种同质园, 10年(2013-2014年)后测定了其中的3种阔叶树(白桦(Betula platyphylla)、胡桃楸(Juglans mandshurica)、水曲柳(Fraxinus mandshurica))和两种针叶树(落叶松(Larix gmelinii)、樟子松(Pinus sylvestris var. mongolica))人工纯林的土壤有机碳(SOC)及土壤容重、全氮、微生物生物量碳、微生物生物量氮、pH值等相关因子, 旨在比较探索树种对SOC含量及其垂直分布的影响。结果表明: (1)树种显著影响0-40 cm土层SOC总密度(p < 0.05)。其中, 0-10 cm土层SOC密度变化范围为2.79-3.08 kg·m-2, 表现为胡桃楸林>水曲柳林>白桦林>落叶松林>樟子松林; 10-20 cm土层变化范围为1.56-2.19 kg·m-2, 表现为樟子松林>胡桃楸林>水曲柳林>白桦林>落叶松林; 20-30 cm土层变化范围为1.17-2.10 kg·m-2, 表现为白桦林、水曲柳林显著高于其他树种纯林; 30-40 cm土层变化范围为0.84-1.43 kg· m-2, 表现为白桦林显著高于其他树种纯林。(2) SOC密度垂直分布格局因树种和土层而异。胡桃楸林、落叶松林0-10 cm土层SOC密度占0-40 cm土层总密度的相对量显著高于其他树种纯林, 白桦林20-40 cm土层的SOC密度相对量显著高于其他树种纯林, 这说明不同层次SOC密度的主控因子因树种而异。(3)不同树种纯林SOC浓度、容重差异显著, 且两者呈负相关。胡桃楸林、水曲柳林和落叶松林SOC密度与土壤微生物生物量、土壤pH值均呈正相关关系。5个树种纯林SOC密度均与全氮密度呈正相关关系。研究表明, 树种通过改变土壤理化性质和微生物活动而显著影响SOC密度, 不同树种SOC密度垂直变化格局可能是由不同树种在各个土层中的SOC密度主控因素不同所致。

关键词: 树种, 土壤性质, 土壤有机碳, 土壤微生物, 垂直分布

Abstract:

Aims Forest trees alter litter inputs, turnover and rhizospheric activities, modify soil physical, chemical and biological properties, and consequently affect soil organic carbon (SOC) storage and carbon sink strength. That how to select appropriate tree species in afforestation, reforestation and management practices is critical to enhancing forest carbon sequestration. The objective of this study was to determine the effects of tree species on SOC density and vertical distributions.Methods A common garden experiment with the same climate, soil, and management history was established in Maoershan Forest Ecosystem Station, Northeast China, in 2004. The experimental design was a completely randomized arrangement with twenty 25 m × 25 m plots, consisting of monocultures of five tree species, including white birch (Betula platyphylla), Manchurian walnut (Juglans mandshurica), Manchurian ash (Fraxinus mandshurica), Dahurian larch (Larix gmelinii), and Mongolian pine (Pinus sylvestris var. mongolica), each with four replicated plots. A decade after the establishment (2013-2014), we measured carbon density and related factors (i.e., bulk density, total nitrogen concentration, microbial biomass carbon, microbial biomass nitrogen, pH value) in soils of the 0-40 cm depth for these monocultures. Important findings Results showed that tree species significantly influenced the SOC density in the 0-40 cm depth (p < 0.05). SOC density in the 0-10 cm depth varied from 2.79 to 3.08 kg·m-2, in the order of walnut > ash> birch > larch > pine, in the 10-20 cm depth from 1.56 to 2.19 kg·m-2, in the order of pine > walnut > ash > birch > larch, in the 20-30 cm depth from 1.17 to 2.10 kg·m-2, and in the 20-40 cm depth from 0.84 to 1.43 kg·m-2. The greatest SOC density occurred in the birch stands in the 20-40 cm depth. The vertical distributions of SOC density varied with tree species. The percentage of SOC in the 0-10 cm depth over the total SOC in the soil profile was significantly higher in the walnut and larch stands than in others, while the percentage of SOC in the 20-40 cm depth over the total SOC was highest in the birch stands. SOC concentration and soil bulk density differed significantly among the stands of different tree species, and were negatively correlated. SOC density was positively correlated with soil microbial biomass and soil pH in the walnut, ash, and larch stands, and with total nitrogen density in all the stands. We conclude that tree species modifies soil properties and microbial activity, thereby influencing SOC density, and that different patterns of vertical distributions of SOC density among monocultures of different tree species may be attributed to varying SOC controls at each soil depth.

Key words: tree species, soil property, soil organic carbon, soil microbe, vertical distribution