植物生态学报 ›› 2015, Vol. 39 ›› Issue (11): 1033-1043.DOI: 10.17521/cjpe.2015.0100
所属专题: 碳循环
• • 下一篇
收稿日期:
2015-02-02
接受日期:
2015-08-13
出版日期:
2015-11-01
发布日期:
2015-12-02
通讯作者:
王传宽
作者简介:
# 共同第一作者
基金资助:
WANG Xin-Qi, WANG Chuan-Kuan*(), HAN Yi
Received:
2015-02-02
Accepted:
2015-08-13
Online:
2015-11-01
Published:
2015-12-02
Contact:
Chuan-Kuan WANG
About author:
# Co-first authors
摘要:
树种通过改变凋落物输入与周转及根系活动影响 土壤的理化和生物学性质及固碳功能。合理选择树种是碳汇林业中一个亟待解决的理论和实践问题。为了减少林分特征和立地条件差异的影响, 2004年在相同气候、土壤和经营历史的立地上建立了东北地区常见树种同质园, 10年(2013-2014年)后测定了其中的3种阔叶树(白桦(Betula platyphylla)、胡桃楸(Juglans mandshurica)、水曲柳(Fraxinus mandshurica))和两种针叶树(落叶松(Larix gmelinii)、樟子松(Pinus sylvestris var. mongolica))人工纯林的土壤有机碳(SOC)及土壤容重、全氮、微生物生物量碳、微生物生物量氮、pH值等相关因子, 旨在比较探索树种对SOC含量及其垂直分布的影响。结果表明: (1)树种显著影响0-40 cm土层SOC总密度(p < 0.05)。其中, 0-10 cm土层SOC密度变化范围为2.79-3.08 kg·m-2, 表现为胡桃楸林>水曲柳林>白桦林>落叶松林>樟子松林; 10-20 cm土层变化范围为1.56-2.19 kg·m-2, 表现为樟子松林>胡桃楸林>水曲柳林>白桦林>落叶松林; 20-30 cm土层变化范围为1.17-2.10 kg·m-2, 表现为白桦林、水曲柳林显著高于其他树种纯林; 30-40 cm土层变化范围为0.84-1.43 kg· m-2, 表现为白桦林显著高于其他树种纯林。(2) SOC密度垂直分布格局因树种和土层而异。胡桃楸林、落叶松林0-10 cm土层SOC密度占0-40 cm土层总密度的相对量显著高于其他树种纯林, 白桦林20-40 cm土层的SOC密度相对量显著高于其他树种纯林, 这说明不同层次SOC密度的主控因子因树种而异。(3)不同树种纯林SOC浓度、容重差异显著, 且两者呈负相关。胡桃楸林、水曲柳林和落叶松林SOC密度与土壤微生物生物量、土壤pH值均呈正相关关系。5个树种纯林SOC密度均与全氮密度呈正相关关系。研究表明, 树种通过改变土壤理化性质和微生物活动而显著影响SOC密度, 不同树种SOC密度垂直变化格局可能是由不同树种在各个土层中的SOC密度主控因素不同所致。
王薪琪, 王传宽, 韩轶. 树种对土壤有机碳密度的影响: 5种温带树种同质园试验. 植物生态学报, 2015, 39(11): 1033-1043. DOI: 10.17521/cjpe.2015.0100
WANG Xin-Qi,WANG Chuan-Kuan,HAN Yi. Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species. Chinese Journal of Plant Ecology, 2015, 39(11): 1033-1043. DOI: 10.17521/cjpe.2015.0100
树种 Tree species | 基径 Basal diameter (cm) | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤pH值 Soil pH value |
---|---|---|---|---|---|
白桦 Betula platyphylla | 10.64 ± 2.84 | 7.61 ± 2.13 | 10.07 ± 1.19 | 3.37 ± 0.11 | 4.64 ± 0.05 |
胡桃楸 Juglans mandshurica | 5.81 ± 2.90 | 3.63 ± 1.90 | 3.74 ± 1.79 | 3.54 ± 0.21 | 4.77 ± 0.04 |
水曲柳 Fraxinus mandshurica | 13.73 ± 16.60 | 7.50 ± 9.97 | 3.01 ± 2.10 | 3.63 ± 0.21 | 4.75 ± 0.05 |
落叶松 Larix gmelinii | 9.32 ± 2.97 | 7.46 ± 4.07 | 6.80 ± 1.48 | 3.16 ± 0.15 | 4.69 ± 0.06 |
樟子松 Pinus sylvestris var. mongolica | 9.75 ± 2.08 | 7.36 ± 3.49 | 4.66 ± 0.65 | 3.40 ± 0.11 | 4.79 ± 0.05 |
表1 五个树种纯林样地基本情况(平均值±标准偏差)
Table 1 Site characteristics in the monocultures of five tree species (mean ± SD)
树种 Tree species | 基径 Basal diameter (cm) | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤pH值 Soil pH value |
---|---|---|---|---|---|
白桦 Betula platyphylla | 10.64 ± 2.84 | 7.61 ± 2.13 | 10.07 ± 1.19 | 3.37 ± 0.11 | 4.64 ± 0.05 |
胡桃楸 Juglans mandshurica | 5.81 ± 2.90 | 3.63 ± 1.90 | 3.74 ± 1.79 | 3.54 ± 0.21 | 4.77 ± 0.04 |
水曲柳 Fraxinus mandshurica | 13.73 ± 16.60 | 7.50 ± 9.97 | 3.01 ± 2.10 | 3.63 ± 0.21 | 4.75 ± 0.05 |
落叶松 Larix gmelinii | 9.32 ± 2.97 | 7.46 ± 4.07 | 6.80 ± 1.48 | 3.16 ± 0.15 | 4.69 ± 0.06 |
樟子松 Pinus sylvestris var. mongolica | 9.75 ± 2.08 | 7.36 ± 3.49 | 4.66 ± 0.65 | 3.40 ± 0.11 | 4.79 ± 0.05 |
图1 不同树种纯林0-40 cm土层土壤容重(A)、有机碳浓度(B)和有机碳密度(C)的比较(平均值±标准误差)。BH, 白桦林; HTQ, 胡桃楸林; LYS, 落叶松林; SQL, 水曲柳林; ZZS, 樟子松林。不同的小写字母分别代表树种间的显著性差异组别。
Fig. 1 Comparisons of soil bulk density (A), soil organic carbon concentration (B), and soil organic carbon density (C) among the monocultures of five tree species for 0-40 cm soil layer (mean ± SE). BH, HTQ, LYS, SQL, and ZZS represent Betula platyphylla, Juglans mandshurica, Larix gmelinii, Fraxinus mandshurica, and Pinus sylvestris var. mongolica, respectively. Different lowercase letters indicate significant differences among tree species.
图2 不同树种纯林土壤容重(A)、有机碳浓度(B)和有机碳密度(C)垂直变化的比较(平均值±标准误差)。BH, 白桦林; HTQ, 胡桃楸林; LYS, 落叶松林; SQL, 水曲柳林; ZZS, 樟子松林。不同的小写字母分别代表相同土层树种间的显著性差异组别, 未标字母的表示无显著性差异。
Fig. 2 Comparisons of the vertical changes in soil bulk density (A), soil organic carbon concentration (B), and soil organic carbon density (C) among the monocultures of five tree species (mean ± SE). BH, HTQ, LYS, SQL, and ZZS represent Betula platyphylla, Juglans mandshurica, Larix gmelinii, Fraxinus mandshurica, and Pinus sylvestris var. mongolica, respectively. Different lowercase letters within the same soil layers indicate significant differences among tree species, and the soil layers without designation of letters are not significantly different among groups.
图3 不同树种纯林土壤有机碳密度相对量的垂直变化(平均值±标准误差)。BH, 白桦林; HTQ, 胡桃楸林; LYS, 落叶松林; SQL, 水曲柳林; ZZS, 樟子松林。不同的小写字母分别代表树种间的显著性差异组别。
Fig. 3 Vertical changes in the percentage of soil organic carbon in each soil layer over the total soil organic carbon in the monocultures of five tree species (mean ± SE). BH, HTQ, LYS, SQL, and ZZS represent Betula platyphylla, Juglans mandshurica, Larix gmelinii, Fraxinus mandshurica, and Pinus sylvestris var. mongolica, respectively. Different lowercase letters within the same soil layers indicate significant differences among tree species.
图4 不同树种纯林土壤微生物生物量碳浓度(A)和密度(B)垂直变化的比较(平均值±标准误差)。BH, 白桦林; HTQ, 胡桃楸林; LYS, 落叶松林; SQL, 水曲柳林; ZZS, 樟子松林。不同的小写字母分别代表树种间的显著性差异组别, 未标字母的表示无显著性差异。
Fig. 4 Comparisons of the vertical changes in soil microbial biomass carbon concentration (A) and density (B) among the monocultures of five tree species (mean ± SE). BH, HTQ, LYS, SQL, and ZZS represent Betula platyphylla, Juglans mandshurica, Larix gmelinii, Fraxinus mandshurica, and Pinus sylvestris var. mongolica, respectively. Different lowercase letters within the same soil layers indicate significant differences among tree species, and the soil layers without designation of letters are not significantly different among groups.
![]() |
表2 不同树种纯林土壤有机碳浓度、密度与相关因子之间的Pearson相关系数
Table2 Pearson correlation coefficients among soil organic carbon concentration,soil organic carbon density and related factors in the monocultures of five tree species
![]() |
1 | Adam Langley J, Chapman SK, Hungate BA (2006). Ectomycorrhizal colonization slows root decomposition: The post-mortem fungal legacy.Ecology Letters, 9, 955-959. |
2 | Bauhus J, Paré D, Côté L (1998). Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest.Soil Biology & Biochemistry, 30, 1077-1089. |
3 | Bremner J, Mulvaney C (1982). Nitrogen-total. In: Page AL, Miller RH, Keeney DR eds. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison. 595-624. |
4 | Díaz-Pinés E, Rubio A, van Miegroet H, Montes F, Benito M (2011). Does tree species composition control soil organic carbon pools in Mediterranean mountain forests?Forest Ecology and Management, 262, 1895-1904. |
5 | Dijkstra FA, Fitzhugh RD (2003). Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the northeastern United States.Geoderma, 114, 33-47. |
6 | Ellert BH, Bettany JR (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes.Canadian Journal of Soil Science, 75, 529-538. |
7 | Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply.Nature, 450, 277-280. |
8 | Fröberg M, Hansson K, Kleja DB, Alavi G (2011). Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden.Forest Ecology and Management, 262, 1742-1747. |
9 | Guo ZL, Zheng JP, Ma YD, Li QK, Yu GR, Han SJ, Fan CN, Liu WD (2006). Researches on litterfall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China.Acta Ecologica Sinica, 26, 1037-1046. |
(in Chinese with English abstract) [郭忠玲, 郑金萍, 马元丹, 李庆康, 于贵瑞, 韩士杰, 范春楠, 刘万德 (2006). 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究. 生态学报, 26, 1037-1046.] | |
10 | Gurmesa GA, Schmidt IK, Gundersen P, Vesterdal L (2013). Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens.Forest Ecology and Management, 309, 47-57. |
11 | Hagen-Thorn A, Callesen I, Armolaitis K, Nihlgård B (2004). The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land.Forest Ecology and Management, 195, 373-384. |
12 | Han YY, Huang W, Sun T, Lu B, Mao ZJ (2015). Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxing’an Mountain, China.Acta Ecologica Sinica, 35, 1460-1469. |
(in Chinese with English abstract) [韩营营, 黄唯, 孙涛, 陆彬, 毛子军 (2015). 不同林龄白桦天然次生林土壤碳通量和有机碳储量. 生态学报, 35, 1460-1469.] | |
13 | Hansson K, Helmisaari HS, Sah SP, Lange H (2013). Fine root production and turnover of tree and understorey vegetation in Scots pine, silver birch and Norway spruce stands in SW Sweden.Forest Ecology and Management, 309, 58-65. |
14 | Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007). Tree species effects on soil organic matter dynamics: The role of soil cation composition.Ecosystems, 10, 999-1018. |
15 | Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007). How strongly can forest management influence soil carbon sequestration?Geoderma, 137, 253-268. |
16 | Kelleher BP, Simpson AJ (2006). Humic substances in soils: Are they really chemically distinct?Environmental Science & Technology, 40, 4605-4611. |
17 | Laganière J, Paré D, Bergeron Y, Chen HYH (2012). The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality.Soil Biology & Biochemistry, 53, 18-27. |
18 | Li Q, Ma DM, Liu YJ, Liu C, Chen MC (2008). Study on soil organic carbon and nutrients under the different planta- tions.Chinese Journal of Soil Science, 39, 1034-1037. |
(in Chinese with English abstract) [李强, 马明东, 刘跃建, 刘闯, 陈暮初 (2008). 几种人工林土壤有机碳和养分研究. 土壤通报, 39, 1034-1037.] | |
19 | Li XF, Zhang Y, Niu LJ, Han SJ (2007). Litter decomposition processes in the pure birch (Betula platyphlla) forest and the birch and poplar (Populus davidiana) mixed forest.Acta Ecologica Sinica, 27, 1782-1790. |
(in Chinese with English abstract) [李雪峰, 张岩, 牛丽君, 韩士杰 (2007). 长白山白桦(Betula platyphlla)纯林和白桦山杨(Populus davidiana)混交林凋落物的分解. 生态学报, 27, 1782-1790.] | |
20 | Liu SR, Wang H, Luan JW (2011). A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China.Acta Ecologica Sinica, 31, 5437-5448. |
(in Chinese with English abstract) [刘世荣, 王晖, 栾军伟 (2011). 中国森林土壤碳储量与土壤碳过程研究进展. 生态学报, 31, 5437-5448.] | |
21 | Mareschal L, Bonnaud P, Turpault MP, Ranger J (2010). Impact of common European tree species on the chemical and physicochemical properties of fine earth: An unusual pattern.European Journal of Soil Science, 61, 14-23. |
22 | Mei L, Wang ZQ, Cheng YH, Han YZ, Zhang ZW (2008). Relationships between fine roots distribution and soil nitrogen availability in manchurian ash and korean larch plantation.Journal of Huazhong Agricultural University, 27, 117-121. |
(in Chinese with English abstract) [梅莉, 王政权, 程云环, 韩有志, 张卓文 (2008). 水曲柳和落叶松细根分布与土壤有效氮的关系. 华中农业大学学报, 27, 117-121.] | |
23 | Mueller KE, Eissenstat DM, Hobbie SE, Oleksyn J, Jagodzinski AM, Reich PB, Chadwick OA, Chorover J (2012). Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment.Biogeochemistry, 111, 601-614. |
24 | Neirynck J, Mirtcheva S, Sioen G, Lust N (2000). Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy topsoil.Forest Ecology and Management, 133, 275-286. |
25 | Ovington JD (1954). Studies of the development of woodland conditions under different trees. II. The forest floor.Journal of Ecology, 42, 71-80. |
26 | Ovington JD (1956). Studies of the development of woodland conditions under different trees. IV. The ignition loss, water, carbon and nitrogen content of the mineral soil.Journal of Ecology, 44, 171-179. |
27 | Parry ML, Canzian OF, Palutikof JP, van der Linden P, Hanson CE (2007). Climate Change 2007: Impacts, adaptation and vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK Impacts, adaptation and vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 976. |
28 | Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemael B, Schumacher J, Gensior A (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach.Global Change Biology, 17, 2415-2427. |
29 | Rasse DP, Rumpel C, Dignac MF (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation.Plant and Soil, 269, 341-356. |
30 | Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005). Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species.Ecology Letters, 8, 811-818. |
31 | Shi W, Wang ZQ, Liu JL, Gu JC, Guo DL (2008). Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China. Journal of Plant Ecology (Chinese Version), 32, 1217-1226. |
(in Chinese with English abstract) [师伟, 王政权, 刘金梁, 谷加存, 郭大立 (2008). 帽儿山天然次生林20个阔叶树种细根形态. 植物生态学报, 32, 1217-1226.] | |
32 | Song HC, Chen LH, Lü CJ, Gai XG, Wang PH (2012). Distribution characteristics and mechanical properties of Betula platyphylla roots in North China mountainous area.Acta Agriculturae Zhejiangensis, 24, 693-698. |
(in Chinese with English abstract) [宋恒川, 陈丽华, 吕春娟, 盖小刚, 王萍花 (2012). 华北土石山区白桦根系分布特征及力学性能研究. 浙江农业学报, 24, 693-698.] | |
33 | Thomas GW (1996). Soil pH and soil acidity. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME eds. Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, Madison. 475-490. |
34 | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C.Soil Biology & Biochemistry, 19, 703-707. |
35 | Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013). Do tree species influence soil carbon stocks in temperate and boreal forests?Forest Ecology and Management, 309, 4-18. |
36 | Vesterdal L, Elberling B, Christiansen JR, Callesen I, Schmidt IK (2012). Soil respiration and rates of soil carbon turnover differ among six common European tree species.Forest Ecology and Management, 264, 185-196. |
37 | Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species.Forest Ecology and Management, 255, 35-48. |
38 | Wang H, Liu SR, Mo JM, Wang JX, Makeschin F, Wolff M (2010). Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China.Ecological Research, 25, 1071-1079. |
39 | Wellock ML, LaPerle CM, Kiely G (2011). What is the impact of afforestation on the carbon stocks of Irish mineral soils?Forest Ecology and Management, 262, 1589-1596. |
40 | Xu XF, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems.Global Ecology and Biogeography, 22, 737-749. |
41 | Yang H, Lou AR, Gao YJ, Song HT (2007). Life history characteristics and spatial distribution of the Betula platyphylla population in the Dongling Mountain region, Beijing, China. Journal of Plant Ecology (Chinese Version), 31, 272-282. |
(in Chinese with English abstract) [杨慧, 娄安如, 高益军, 宋宏涛 (2007). 北京东灵山地区白桦种群生活史特征与空间分布格局. 植物生态学报, 31, 272-282.] | |
42 | Yang JY, Wang CK (2005). Soil carbon storage and flux of temperate forest ecosystems in northeastern China.Acta Ecologica Sinica, 25, 2875-2882. |
(in Chinese with English abstract) [杨金艳, 王传宽 (2005). 东北东部森林生态系统土壤碳贮量和碳通量. 生态学报, 25, 2875-2882.] | |
43 | Zhu JJ, Kang HZ, Xu ML, Wu XY, Wang W (2007). Effects of ectomycorrhizal fungi on alleviating the decline of Pinus sylvestris var. mongolica plantations on Keerqin sandy land.Chinese Journal of Applied Ecology, 18, 2693-2698. |
(in Chinese with English abstract) [朱教君, 康宏樟, 许美玲, 吴祥云, 王巍 (2007). 外生菌根真菌对科尔沁沙地樟子松人工林衰退的影响. 应用生态学报, 18, 2693-2698.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[3] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[4] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[5] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[6] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[7] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[8] | 冉松松, 余再鹏, 万晓华, 傅彦榕, 邹秉章, 王思荣, 黄志群. 邻域树种多样性对杉木叶片氮磷生态化学计量比的影响[J]. 植物生态学报, 2023, 47(7): 932-942. |
[9] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[10] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[11] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[12] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[13] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[14] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[15] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19