植物生态学报 ›› 2023, Vol. 47 ›› Issue (7): 932-942.DOI: 10.17521/cjpe.2022.0128
所属专题: 生态化学计量; 生态系统结构与功能; 生物多样性
冉松松1, 余再鹏1,*(), 万晓华1, 傅彦榕1, 邹秉章2, 王思荣2, 黄志群1
收稿日期:
2022-04-08
接受日期:
2022-10-11
出版日期:
2023-07-20
发布日期:
2023-07-21
通讯作者:
*余再鹏(基金资助:
RAN Song-Song1, YU Zai-Peng1,*(), WAN Xiao-Hua1, FU Yan-Rong1, ZOU Bing-Zhang2, WANG Si-Rong2, HUANG Zhi-Qun1
Received:
2022-04-08
Accepted:
2022-10-11
Online:
2023-07-20
Published:
2023-07-21
Contact:
*YU Zai-Peng(Supported by:
摘要:
生物多样性丧失威胁生态系统功能, 研究生物多样性对植物生态化学计量比的影响, 有利于深入评估生物多样性对生态系统功能的影响机制。该研究利用亚热带地区大型野外树种多样性实验平台, 选取不同树种丰富度(1、4、8、16、32)样地中的杉木(Cunninghamia lanceolata)为目标树种, 探讨邻域树种丰富度、邻域树种与目标树间的性状差异以及邻体竞争对目标树杉木叶片氮(N)、磷(P)含量及N:P的影响。主要研究结果: (1)邻域树种与目标树根组织密度差异显著降低了杉木叶片N含量, 而比根长差异显著增加了杉木叶片P含量。(2)邻域树种竞争显著降低了杉木叶片N含量和N:P。(3)邻体竞争指数和比根长差异的交互作用, 以及邻域树种丰富度和比根长差异的交互作用均显著降低了杉木叶片P含量。即比根长差异对杉木叶片P含量的正影响随着邻域树种丰富度的增加而降低, 比根长差异对杉木叶片P含量的正影响也随着邻体竞争的增加而降低。(4)邻域树种丰富度和邻域系统发育差异的交互作用显著提高了杉木叶片N:P。邻域系统发育差异对杉木叶片N:P的负效应随着邻域树种丰富度的增加而降低。综上, 杉木与功能性状差异较大的树种混交显著提高杉木叶片P含量, 而邻域树种竞争降低了杉木叶片N含量。在杉木与多树种混交时, 树种间功能性状差异有助于减缓种间竞争带来的不利影响, 提高杉木叶片N:P, 进而有利于其生长。
冉松松, 余再鹏, 万晓华, 傅彦榕, 邹秉章, 王思荣, 黄志群. 邻域树种多样性对杉木叶片氮磷生态化学计量比的影响. 植物生态学报, 2023, 47(7): 932-942. DOI: 10.17521/cjpe.2022.0128
RAN Song-Song, YU Zai-Peng, WAN Xiao-Hua, FU Yan-Rong, ZOU Bing-Zhang, WANG Si-Rong, HUANG Zhi-Qun. Effects of neighborhood tree species diversity on foliar nitrogen-phosphorus stoichiometry of Cunninghamia lanceolata. Chinese Journal of Plant Ecology, 2023, 47(7): 932-942. DOI: 10.17521/cjpe.2022.0128
编号 No. | 树种丰富度 Species richness | 样地重复数 Replicates | 树种组成 Tree species composition |
---|---|---|---|
A | 1 | 4 | 杉木 Cunninghamia lanceolata |
B | 4 | 3 | 红锥、杉木、柳杉、米槠 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii |
C | 4 | 3 | 红锥、杉木、福建柏、南方红豆杉 Castanopsis hystrix, Cunninghamia lanceolata, Fokienia hodginsii, Taxus wallichiana var. mairei |
D | 4 | 3 | 杉木、马尾松、南方红豆杉、壳菜果 Cunninghamia lanceolata, Pinus massoniana, Taxus wallichiana var. mairei, Mytilaria laosensis |
E | 8 | 3 | 红锥、杉木、柳杉、米槠、醉香含笑、野鸦椿、木莲、江南桤木 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia fordiana, Alnus trabeculosa |
F | 8 | 3 | 红锥、杉木、柳杉、米槠、福建柏、南方红豆杉、闽楠、木荷 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii, Fokienia hodginsii, Taxus wallichiana var. mairei, Phoebe bournei, Schima superba |
G | 8 | 3 | 红锥、杉木、枫香树、马尾松、福建柏、南方红豆杉、苦槠、壳菜果 Castanopsis hystrix, Cunninghamia lanceolata, Liquidambar formosana, Pinus massoniana, Fokienia hodginsii, Taxus wallichiana var. mairei, Castanopsis sclerophylla, Mytilaria laosensis |
H | 16 | 4 | 红锥、杉木、柳杉、米槠、醉香含笑、野鸦椿、木莲、江南桤木、福建柏、南方红豆杉、闽楠、木荷、红豆树、深山含笑、刨花润楠、浙江楠 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia fordiana, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana var. mairei, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis |
I | 16 | 4 | 红锥、杉木、柳杉、米槠、枫香树、马尾松、枳椇、栓皮栎、福建柏、南方红豆杉、闽楠、木荷、苦槠、壳菜果、鸡爪槭、柯 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii, Liquidambar formosana, Pinus massoniana, Quercus variabilis, Hovenia acerba, Fokienia hodginsii, Taxus wallichiana var. mairei, Phoebe bournei, Schima superba, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber |
J | 32 | 4 | 红锥、杉木、柳杉、米槠、醉香含笑、野鸦椿、木莲、江南桤木、福建柏、南方红豆杉、闽楠、木荷、红豆树、深山含笑、刨花润楠、浙江楠、枫香树、马尾松、朴树、栓皮栎、枳椇、黧蒴锥、青钱柳、无患子、苦槠、壳菜果、鸡爪槭、柯、樟、山杜英、紫薇、木樨 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica Manglietia fordiana, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana var. mairei, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis, Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans |
表1 不同树种丰富度样地中树种组成情况
Table 1 Composition of tree species in different tree species richness plots
编号 No. | 树种丰富度 Species richness | 样地重复数 Replicates | 树种组成 Tree species composition |
---|---|---|---|
A | 1 | 4 | 杉木 Cunninghamia lanceolata |
B | 4 | 3 | 红锥、杉木、柳杉、米槠 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii |
C | 4 | 3 | 红锥、杉木、福建柏、南方红豆杉 Castanopsis hystrix, Cunninghamia lanceolata, Fokienia hodginsii, Taxus wallichiana var. mairei |
D | 4 | 3 | 杉木、马尾松、南方红豆杉、壳菜果 Cunninghamia lanceolata, Pinus massoniana, Taxus wallichiana var. mairei, Mytilaria laosensis |
E | 8 | 3 | 红锥、杉木、柳杉、米槠、醉香含笑、野鸦椿、木莲、江南桤木 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia fordiana, Alnus trabeculosa |
F | 8 | 3 | 红锥、杉木、柳杉、米槠、福建柏、南方红豆杉、闽楠、木荷 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii, Fokienia hodginsii, Taxus wallichiana var. mairei, Phoebe bournei, Schima superba |
G | 8 | 3 | 红锥、杉木、枫香树、马尾松、福建柏、南方红豆杉、苦槠、壳菜果 Castanopsis hystrix, Cunninghamia lanceolata, Liquidambar formosana, Pinus massoniana, Fokienia hodginsii, Taxus wallichiana var. mairei, Castanopsis sclerophylla, Mytilaria laosensis |
H | 16 | 4 | 红锥、杉木、柳杉、米槠、醉香含笑、野鸦椿、木莲、江南桤木、福建柏、南方红豆杉、闽楠、木荷、红豆树、深山含笑、刨花润楠、浙江楠 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica, Manglietia fordiana, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana var. mairei, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis |
I | 16 | 4 | 红锥、杉木、柳杉、米槠、枫香树、马尾松、枳椇、栓皮栎、福建柏、南方红豆杉、闽楠、木荷、苦槠、壳菜果、鸡爪槭、柯 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii, Liquidambar formosana, Pinus massoniana, Quercus variabilis, Hovenia acerba, Fokienia hodginsii, Taxus wallichiana var. mairei, Phoebe bournei, Schima superba, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber |
J | 32 | 4 | 红锥、杉木、柳杉、米槠、醉香含笑、野鸦椿、木莲、江南桤木、福建柏、南方红豆杉、闽楠、木荷、红豆树、深山含笑、刨花润楠、浙江楠、枫香树、马尾松、朴树、栓皮栎、枳椇、黧蒴锥、青钱柳、无患子、苦槠、壳菜果、鸡爪槭、柯、樟、山杜英、紫薇、木樨 Castanopsis hystrix, Cunninghamia lanceolata, Cryptomeria japonica var. sinensis, Castanopsis carlesii, Michelia macclurei, Euscaphis japonica Manglietia fordiana, Alnus trabeculosa, Fokienia hodginsii, Taxus wallichiana var. mairei, Phoebe bournei, Schima superba, Ormosia hosiei, Michelia maudiae, Machilus pauhoi, Phoebe chekiangensis, Liquidambar formosana, Pinus massoniana, Celtis sinensis, Quercus variabilis, Hovenia acerba, Castanopsis fissa, Cyclocarya paliurus, Sapindus saponaria, Castanopsis sclerophylla, Mytilaria laosensis, Acer palmatum, Lithocarpus glaber, Cinnamomum camphora, Elaeocarpus sylvestris, Lagerstroemia indica, Osmanthus fragrans |
编号 No. | 树种丰富度 Species richness | 重复数 Replicate | 目标树高 Focal tree height (m) | 目标树地径 Focal tree ground diameter (mm) | 平均树高 Mean tree heigh (m) | 平均地径 Mean ground diameter (mm) |
---|---|---|---|---|---|---|
A | 1 | 4 | 1.4 ± 0.2 | 25 ± 4.2 | 1.1 ± 0.1 | 18 ± 1.6 |
B | 4 | 3 | 1.4 ± 0.3 | 27 ± 6.0 | 1.2 ± 0.2 | 19 ± 1.1 |
C | 4 | 3 | 1.5 ± 0.3 | 26 ± 5.4 | 1.2 ± 0.2 | 19 ± 1.6 |
D | 4 | 3 | 1.4 ± 0.2 | 23 ± 3.2 | 1.4 ± 0.2 | 21 ± 1.4 |
E | 8 | 3 | 1.6 ± 0.3 | 28 ± 5.3 | 1.3 ± 0.2 | 19 ± 1.6 |
F | 8 | 3 | 1.4 ± 0.4 | 27 ± 8.1 | 1.2 ± 0.1 | 19 ± 0.9 |
G | 8 | 3 | 1.6 ± 0.3 | 29 ± 6.0 | 1.2 ± 0.2 | 19 ± 1.6 |
H | 16 | 4 | 1.5 ± 0.2 | 26 ± 4.6 | 1.2 ± 0.1 | 18 ± 1.5 |
I | 16 | 4 | 1.3 ± 0.2 | 26 ± 3.8 | 1.1 ± 0.1 | 17 ± 1.4 |
J | 32 | 4 | 1.4 ± 0.2 | 25 ± 4.9 | 1.2 ± 0.1 | 18 ± 1.4 |
表2 不同树种丰富度样地树木生长情况(平均值±标准误)
Table 2 Tree growth of plots with different tree species richness (mean ± SE)
编号 No. | 树种丰富度 Species richness | 重复数 Replicate | 目标树高 Focal tree height (m) | 目标树地径 Focal tree ground diameter (mm) | 平均树高 Mean tree heigh (m) | 平均地径 Mean ground diameter (mm) |
---|---|---|---|---|---|---|
A | 1 | 4 | 1.4 ± 0.2 | 25 ± 4.2 | 1.1 ± 0.1 | 18 ± 1.6 |
B | 4 | 3 | 1.4 ± 0.3 | 27 ± 6.0 | 1.2 ± 0.2 | 19 ± 1.1 |
C | 4 | 3 | 1.5 ± 0.3 | 26 ± 5.4 | 1.2 ± 0.2 | 19 ± 1.6 |
D | 4 | 3 | 1.4 ± 0.2 | 23 ± 3.2 | 1.4 ± 0.2 | 21 ± 1.4 |
E | 8 | 3 | 1.6 ± 0.3 | 28 ± 5.3 | 1.3 ± 0.2 | 19 ± 1.6 |
F | 8 | 3 | 1.4 ± 0.4 | 27 ± 8.1 | 1.2 ± 0.1 | 19 ± 0.9 |
G | 8 | 3 | 1.6 ± 0.3 | 29 ± 6.0 | 1.2 ± 0.2 | 19 ± 1.6 |
H | 16 | 4 | 1.5 ± 0.2 | 26 ± 4.6 | 1.2 ± 0.1 | 18 ± 1.5 |
I | 16 | 4 | 1.3 ± 0.2 | 26 ± 3.8 | 1.1 ± 0.1 | 17 ± 1.4 |
J | 32 | 4 | 1.4 ± 0.2 | 25 ± 4.9 | 1.2 ± 0.1 | 18 ± 1.4 |
图1 邻域树种功能性状差异和邻体竞争指数对杉木叶片养分含量的影响。
Fig. 1 Effects of functional traits dissimilarity and neighborhood competition index on foliar nutrient contents of Cunninghamia lanceolata.
变量 Variable | 系数 Estimate | 标准误 SE | df | t | p | R2m | R2c | |
---|---|---|---|---|---|---|---|---|
叶片氮含量 Foliar N content | 截距 Intercept | 2.87 | 0.02 | 66.4 | 184.16 | <0.001 | 0.05 | 0.20 |
NSR | 0.03 | 0.02 | 55.0 | 1.83 | 0.073 | |||
NCI | -0.03 | 0.01 | 263.0 | -2.06 | 0.04 | |||
RTD_diss | -0.04 | 0.02 | 93.5 | -2.30 | 0.024 | |||
叶片磷含量 Foliar P content | 截距 Intercept | -0.05 | 0.02 | 134.6 | -2.45 | 0.016 | 0.17 | 0.29 |
NSR | 0.03 | 0.02 | 123.9 | 1.26 | 0.212 | |||
NCI | 0.02 | 0.02 | 263.4 | 0.92 | 0.361 | |||
SRL_diss | 0.05 | 0.02 | 191.1 | 1.98 | 0.049 | |||
NSR × SRL_diss | -0.05 | 0.02 | 87.6 | -2.40 | 0.018 | |||
NCI × SRL_diss | -0.05 | 0.02 | 263.8 | -2.25 | 0.026 | |||
叶片氮磷比 Foliar N:P | 截距 Intercept | 2.89 | 0.03 | 159.0 | 114.09 | <0.001 | 0.16 | 0.33 |
NSR | 0.02 | 0.31 | 168.8 | 0.61 | 0.546 | |||
NCI | -0.05 | 0.02 | 263.8 | -2.90 | 0.004 | |||
NP_diss | -0.06 | 0.03 | 228.5 | -1.90 | 0.059 | |||
NSR × NP_diss | 0.07 | 0.02 | 108.3 | 2.69 | 0.008 | |||
NCI × NP_diss | 0.04 | 0.02 | 251.7 | 1.58 | 0.116 |
表3 邻域树种多样性、功能性状差异和邻体竞争指数对杉木叶片氮磷含量及氮磷比影响的最优拟合模型结果
Table 3 Best-fitting mixed-effects model for the effects of neighborhood species richness, functional trait dissimilarity and neighbourhood competition index on foliar nitrogen (N) and phosphorus (P) contents and N:P of Cunninghamia lanceolata
变量 Variable | 系数 Estimate | 标准误 SE | df | t | p | R2m | R2c | |
---|---|---|---|---|---|---|---|---|
叶片氮含量 Foliar N content | 截距 Intercept | 2.87 | 0.02 | 66.4 | 184.16 | <0.001 | 0.05 | 0.20 |
NSR | 0.03 | 0.02 | 55.0 | 1.83 | 0.073 | |||
NCI | -0.03 | 0.01 | 263.0 | -2.06 | 0.04 | |||
RTD_diss | -0.04 | 0.02 | 93.5 | -2.30 | 0.024 | |||
叶片磷含量 Foliar P content | 截距 Intercept | -0.05 | 0.02 | 134.6 | -2.45 | 0.016 | 0.17 | 0.29 |
NSR | 0.03 | 0.02 | 123.9 | 1.26 | 0.212 | |||
NCI | 0.02 | 0.02 | 263.4 | 0.92 | 0.361 | |||
SRL_diss | 0.05 | 0.02 | 191.1 | 1.98 | 0.049 | |||
NSR × SRL_diss | -0.05 | 0.02 | 87.6 | -2.40 | 0.018 | |||
NCI × SRL_diss | -0.05 | 0.02 | 263.8 | -2.25 | 0.026 | |||
叶片氮磷比 Foliar N:P | 截距 Intercept | 2.89 | 0.03 | 159.0 | 114.09 | <0.001 | 0.16 | 0.33 |
NSR | 0.02 | 0.31 | 168.8 | 0.61 | 0.546 | |||
NCI | -0.05 | 0.02 | 263.8 | -2.90 | 0.004 | |||
NP_diss | -0.06 | 0.03 | 228.5 | -1.90 | 0.059 | |||
NSR × NP_diss | 0.07 | 0.02 | 108.3 | 2.69 | 0.008 | |||
NCI × NP_diss | 0.04 | 0.02 | 251.7 | 1.58 | 0.116 |
图2 邻域树种丰富度(NSR)、功能性状差异和邻体竞争指数(NCI)的交互作用对杉木叶片养分含量的影响(平均值±95%置信区间)。圆点表示NSR和NCI不同水平下邻域功能性状差异对叶片养分含量的影响。
Fig. 2 Interaction effects of neighborhood species richness (NSR), functional traits dissimilarity and neighborhood competition index (NCI) on foliar nutrients of Cunninghamia lanceolata (mean ± 95% confidence interval). The filled circle represent the effects of neighborhood functional traits dissimilarity on leaf nutrients at different level of NSR and NCI. N, nitrogen; P, phosphorus; SRL, specific root length.
[1] |
Abbas M, Ebeling A, Oelmann Y, Ptacnik R, Roscher C, Weigelt A, Weisser WW, Wilcke W, Hillebrand H (2013). Biodiversity effects on plant stoichiometry. PLoS ONE, 8, e58179. DOI: 10.1371/journal.pone.0058179.
DOI URL |
[2] |
Borer ET, Lind EM, Ogdahl EJ, Seabloom EW, Tilman D, Montgomery RA, Kinkel LL (2015). Food-web composition and plant diversity control foliar nutrient content and stoichiometry. Journal of Ecology, 103, 1432-1441.
DOI URL |
[3] |
Bu WS, Gu HJ, Zhang CC, Zhang Y, Singh AN, Fang XM, Fan J, Wang HM, Chen FS (2020). Mixed broadleaved tree species increases soil phosphorus availability but decreases the coniferous tree nutrient concentration in subtropical China. Forests, 11, 461. DOI: 10.3390/f11040461.
DOI URL |
[4] |
Cadotte M, Albert CH, Walker SC (2013). The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecology Letters, 16, 1234-1244.
DOI PMID |
[5] |
Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007). Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 104, 18123-18128.
DOI PMID |
[6] |
Chen YX, Wright SJ, Muller-Landau HC, Hubbell SP, Wang YF, Yu SX (2016). Positive effects of neighborhood complementarity on tree growth in a Neotropical forest. Ecology, 97, 776-785.
PMID |
[7] |
Dănescu A, Albrecht AT, Bauhus J (2016). Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182, 319-333.
DOI PMID |
[8] |
de Kroon H, Hendriks M, van Ruijven J, Ravenek J, Padilla FM, Jongejans E, Visser EJW, Mommer L (2012). Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. Journal of Ecology, 100, 6-15.
DOI URL |
[9] |
Fichtner A, Härdtle W, Bruelheide H, Kunz M, Li Y, von Oheimb G (2018). Neighbourhood interactions drive overyielding in mixed-species tree communities. Nature Communications, 9, 1144. DOI: 10.1038/s41467-018-03529-w.
DOI PMID |
[10] |
Fichtner A, Härdtle W, Li Y, Bruelheide H, Kunz M, von Oheimb G (2017). From competition to facilitation: How tree species respond to neighbourhood diversity. Ecology Letters, 20, 892-900.
DOI PMID |
[11] |
Firn J, Erskine PD, Lamb D (2007). Woody species diversity influences productivity and soil nutrient availability in tropical plantations. Oecologia, 154, 521-533.
PMID |
[12] |
Forrester DI, Bauhus J (2016). A review of processes behind diversity-productivity relationships in forests. Current Forestry Reports, 2, 45-61.
DOI URL |
[13] |
Fort F, Cruz P, Jouany C (2014). Hierarchy of root functional trait values and plasticity drive early-stage competition for water and phosphorus among grasses. Functional Ecology, 28, 1030-1040.
DOI URL |
[14] |
Fortunel C, Valencia R, Wright SJ, Garwood NC, Kraft NJB (2016). Functional trait differences influence neighbourhood interactions in a hyperdiverse Amazonian forest. Ecology Letters, 19, 1062-1070.
DOI PMID |
[15] |
Guiz J, Ebeling A, Eisenhauer N, Hacker N, Hertzog L, Oelmann Y, Roscher C, Wagg C, Hillebrand H (2018). Interspecific competition alters leaf stoichiometry in 20 grassland species. Oikos, 127, 903-914.
DOI URL |
[16] |
Guo QX, Wu XY, Korpelainen H, Li CY (2020). Stronger intra-specific competition aggravates negative effects of drought on the growth of Cunninghamia lanceolata. Environmental and Experimental Botany, 175, 104042. DOI: 10.1016/j.envexpbot.2020.104042.
DOI URL |
[17] |
Hector A, Bazeley-White E, Loreau M, Otway S, Schmid B (2002). Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments. Ecology Letters, 5, 502-511.
DOI URL |
[18] | Hegyi F (1974). A simulation model for managing jack-pine stands. Royal College of Forestry, 30, 74-90. |
[19] |
Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35.
DOI URL |
[20] |
Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang X, Liu X, Pei K, Both S, Yang B, Eichenberg D, et al. (2018). Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI PMID |
[21] |
Huang ZQ, Wan XH, He ZM, Yu ZP, Wang MH, Hu ZH, Yang YS (2013). Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China. Soil Biology & Biochemistry, 62, 68-75.
DOI URL |
[22] |
Isbell F, Calcagno V, Hector A, Connolly J, Stanley Harpole W, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011). High plant diversity is needed to maintain ecosystem services. Nature, 477, 199-202.
DOI |
[23] |
Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, Gonzalez-Olabarria JR, Koricheva J, Meurisse N, Brockerhoff EG (2017). Tree diversity drives forest stand resistance to natural disturbances. Current Forestry Reports, 3, 223-243.
DOI URL |
[24] |
Kraft NJB, Crutsinger GM, Forrestel EJ, Emery NC (2014). Functional trait differences and the outcome of community assembly: an experimental test with vernal pool annual plants. Oikos, 123, 1391-1399.
DOI URL |
[25] |
Liu C, Xiang WH, Tian DL, Fang X, Peng CH (2011). Overyielding of fine root biomass as increasing plant species richness in subtropical forests in central southern China. Chinese Journal of Plant Ecology, 35, 539-550.
DOI URL |
[刘聪, 项文化, 田大伦, 方晰, 彭长辉 (2011). 中亚热带森林植物多样性增加导致细根生物量“超产”. 植物生态学报, 35, 539-550.]
DOI |
|
[26] |
Liu SR, Yang YJ, Wang H (2018). Development strategy and management countermeasures of planted forests in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services. Acta Ecologica Sinica, 38, 1-10.
DOI URL |
[刘世荣, 杨予静, 王晖 (2018). 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营. 生态学报, 38, 1-10.] | |
[27] |
Loreau M (2000). Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91, 3-17.
DOI URL |
[28] |
Lu HC, Condés S, del Río M, Goudiaby V, den Ouden J, Mohren GMJ, Schelhaas MJ, de Waal R, Sterck FJ (2018). Species and soil effects on overyielding of tree species mixtures in the Netherlands. Forest Ecology and Management, 409, 105-118.
DOI URL |
[29] |
Luo YH, Sun DJ, Lin JY, Guo WF, Lu LH, Wen YG (2013). Effect of Close-to-Nature management on the natural regeneration and species diversity in a masson pine plantation. Acta Ecologica Sinica, 33, 6154-6162.
DOI URL |
[罗应华, 孙冬婧, 林建勇, 郭文福, 卢立华, 温远光 (2013). 马尾松人工林近自然化改造对植物自然更新及物种多样性的影响. 生态学报, 33, 6154-6162.] | |
[30] |
Ma WH, Fang JY (2006). The relationship between species richness and productivity in four typical grasslands of northern China. Biodiversity Science, 14, 21-28.
DOI |
[马文红, 方精云 (2006). 中国北方典型草地物种丰富度与生产力的关系. 生物多样性, 14, 21-28.]
DOI |
|
[31] |
Mayfield MM, Levine JM (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093.
DOI PMID |
[32] |
Mellert KH, Prietzel J, Straussberger R, Rehfuess KE, Kahle HP, Perez P, Spiecker H (2008). Relationships between long-term trends of air temperature, precipitation, nitrogen nutrition and growth of coniferous stands in central Europe and Finland. European Journal of Forest Research, 127, 507-524.
DOI URL |
[33] |
Miller AE, Bowman WD, Suding KN (2007). Plant uptake of inorganic and organic nitrogen: neighbor identity matters. Ecology, 88, 1832-1840.
PMID |
[34] |
Muledi J, Bauman D, Jacobs A, Meerts P, Shutcha M, Drouet T (2020). Tree growth, recruitment, and survival in a tropical dry woodland: the importance of soil and functional identity of the neighbourhood. Forest Ecology and Management, 460, 117894. DOI: 10.1016/j.foreco.2020.117894.
DOI URL |
[35] |
Nickmans H, Collet C, Bonal D, Verheyen K, Ponette Q (2017). Tree size and local neighbourhood affect foliar nutrient content in a mixed plantation of beech (Fagus sylvatica) and maple (Acer pseudoplatanus). Forest Ecology and Management, 400, 159-172.
DOI URL |
[36] |
Oelmann Y, Potvin C, Mark T, Werther L, Tapernon S, Wilcke W (2010). Tree mixture effects on aboveground nutrient pools of trees in an experimental plantation in Panama. Plant and Soil, 326, 199-212.
DOI URL |
[37] |
Paine CET, Norden N, Chave J, Forget PM, Fortunel C, Dexter KG, Baraloto C (2012). Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest. Ecology Letters, 15, 34-41.
DOI PMID |
[38] |
Pan FJ, Zhang W, Liu SJ, Li DJ, Wang KL (2015). Leaf N:P stoichiometry across plant functional groups in the karst region of southwestern China. Trees, 29, 883-892.
DOI URL |
[39] |
Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R, Magarey R, Suiter K, Gilbert GS (2015). Phylogenetic structure and host abundance drive disease pressure in communities. Nature, 520, 542-544.
DOI |
[40] |
Piao TF, Comita LS, Jin GZ, Kim JH (2013). Density dependence across multiple life stages in a temperate old-growth forest of northeast China. Oecologia, 172, 207-217.
DOI PMID |
[41] |
Pollastrini M, Nogales AG, Benavides R, Bonal D, Finer L, Fotelli M, Gessler A, Grossiord C, Radoglou K, Strasser RJ, Bussotti F (2017). Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest. Tree Physiology, 37, 199-208.
DOI PMID |
[42] |
Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N (2012). Impacts of biodiversity loss escalate through time as redundancy fades. Science, 336, 589-592.
DOI PMID |
[43] |
Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010). The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiology, 30, 1192-1208.
DOI PMID |
[44] |
Rieger I, Kowarik I, Ziche D, Wellbrock N, Cierjacks A (2019). Linkages between phosphorus and plant diversity in central European forest ecosystems—Complementarity or competition? Forests, 10, 1156. DOI: 10.3390/f10121156.
DOI URL |
[45] |
Roscher C, Schumacher J, Schmid B, Schulze ED (2015). Contrasting effects of intraspecific trait variation on trait- based niches and performance of legumes in plant mixtures. PLoS ONE, 10, e0119786. DOI: 10.1371/journal.pone.0119786.
DOI URL |
[46] |
Setiawan NN, Vanhellemont M, Baeten L, Gobin R, de Smedt P, Proesmans W, Ampoorter E, Verheyen K (2016). Does neighbourhood tree diversity affect the crown arthropod community in saplings? Biodiversity and Conservation, 25, 169-185.
DOI URL |
[47] | Sheng WT (2018). On the maintenance of long-term productivity of plantation in China. Forest Research, 31(1), 1-14. |
[盛炜彤 (2018). 关于我国人工林长期生产力的保持. 林业科学研究, 31(1), 1-14.] | |
[48] |
Simon J, Li XY, Rennenberg H (2014). Competition for nitrogen between European beech and sycamore maple shifts in favour of beech with decreasing light availability. Tree Physiology, 34, 49-60.
DOI PMID |
[49] |
Simon J, Waldhecker P, Brüggemann N, Rennenberg H (2010). Competition for nitrogen sources between European beech (Fagus sylvatica) and sycamore maple (Acer pseudoplatanus) seedlings. Plant Biology, 12, 453-458.
DOI PMID |
[50] |
Sirami C, Gross N, Baillod AB, Fahrig L (2019). Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences of the United States of America, 116, 16442-16447.
DOI PMID |
[51] |
Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001). Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
PMID |
[52] |
Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C (2016). Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 19, 638-647.
DOI PMID |
[53] |
Turnbull LA, Isbell F, Purves DW, Loreau M, Hector A (2016). Understanding the value of plant diversity for ecosystem functioning through niche theory. Proceedings of the Royal Society B, 283, 20160536. DOI: 10.1098/rspb.2016.0536.
DOI |
[54] |
Vilà M, Carrillo-Gavilán A, Vayreda J, Bugmann H, Fridman J, Grodzki W, Haase J, Kunstler G, Schelhaas M, Trasobares A (2013). Disentangling biodiversity and climatic determinants of wood production. PLoS ONE, 8, e53530. DOI: 10.1371/journal.pone.0053530.
DOI URL |
[55] |
Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252.
DOI URL |
[56] |
Wagg C, Ebeling A, Roscher C, Ravenek J, Bachmann D, Eisenhauer N, Mommer L, Buchmann N, Hillebrand H, Schmid B, Weisser WW (2017). Functional trait dissimilarity drives both species complementarity and competitive disparity. Functional Ecology, 31, 2320-2329.
DOI URL |
[57] |
Walker JT, James JJ, Drenovsky RE (2017). Competition from Bromus tectorum removes differences between perennial grasses in N capture and conservation strategies. Plant and Soil, 412, 177-188.
DOI URL |
[58] |
Xu XJ, Timmer VR (1999). Growth and nitrogen nutrition of Chinese fir seedlings exposed to nutrient loading and fertilization. Plant and Soil, 216, 83-91.
DOI URL |
[59] |
Yang X, Thornton PE, Ricciuto DM, Post WM (2014). The role of phosphorus dynamics in tropical forests—A modeling study using CLM-CNP. Biogeosciences, 11, 1667-1681.
DOI URL |
[60] | Yang YS, Chen GS, Xie JS, He ZM, Chen YX, Huang RZ (2002). Nutrient cycling of N and P by a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in subtropical China. Acta Phytoecologica Sinica, 26, 473-480. |
[杨玉盛, 陈光水, 谢锦升, 何宗明, 陈银秀, 黄荣珍 (2002). 杉木-观光木混交林群落N、P养分循环的研究. 植物生态学报, 26, 473-480.] | |
[61] |
Zemunik G, Turner BL, Lambers H, Laliberté E (2015). Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants, 1, 15050. DOI: 10.1038/nplants.2015.50.
DOI |
[62] |
Zeugin F, Potvin C, Jansa J, Scherer-Lorenzen M (2010). Is tree diversity an important driver for phosphorus and nitrogen acquisition of a young tropical plantation? Forest Ecology and Management, 260, 1424-1433.
DOI URL |
[63] | Zhang P, Pang SJ, Yang BG, Liu SL, Jia HY, Chen JB, Guo DQ (2021). Effects of different mixing patterns on growth, litter production and soil nutrients in Eucalyptus plantations. Journal of Northwest A&F University (Natural Science Edition), 49(2), 31-37. |
[张培, 庞圣江, 杨保国, 刘士玲, 贾宏炎, 陈健波, 郭东强 (2021). 不同混交模式对桉树林分生长、凋落物量和土壤养分的影响. 西北农林科技大学学报(自然科学版), 49(2), 31-37.] | |
[64] |
Zhou J, Li QR, Liu M, Zhou XQ, Song MH, Qiao N, Wang HM, Xu XL (2021). Neighboring tree species alter uptake of NH+ 4 and NO- 3 by Chinese fir. Trees, 35, 459-467.
DOI |
[65] |
Zhu DH, Hui DF, Wang MQ, Yang Q, Yu SX (2020). Light and competition alter leaf stoichiometry of introduced species and native mangrove species. Science of the Total Environment, 738, 140301. DOI: 10.1016/j.scitotenv.2020.140301.
DOI URL |
[66] |
Zou XH, Wu PF, Chen NL, Wang P, Ma XQ (2015). Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 45, 402-410.
DOI URL |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[4] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[5] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[6] | 胡昭佚, 陈天松, 赵丽, 许培轩, 吴正江, 董李勤, 张昆. 水位下降对若尔盖高寒草本沼泽木里薹草氮磷重吸收的影响[J]. 植物生态学报, 2023, 47(6): 847-855. |
[7] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[8] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[9] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[10] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[11] | 史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(1): 77-87. |
[12] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[13] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[14] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[15] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19