植物生态学报 ›› 2023, Vol. 47 ›› Issue (1): 77-87.DOI: 10.17521/cjpe.2022.0151
收稿日期:
2022-04-18
接受日期:
2022-08-15
出版日期:
2023-01-20
发布日期:
2022-08-23
通讯作者:
*汪承焕,ORCID:0000-0003-0289-1487(chwang@bio.ecnu.edu.cn)
基金资助:
SHI Huan-Huan, XUE Qiong, YU Zhen-Lin, WANG Cheng-Huan*()
Received:
2022-04-18
Accepted:
2022-08-15
Online:
2023-01-20
Published:
2022-08-23
Contact:
*WANG Cheng-Huan,ORCID:0000-0003-0289-1487(chwang@bio.ecnu.edu.cn)
Supported by:
摘要:
种间相互作用是影响湿地植物群落构建的关键因子, 其形式、强度和机制可能随着生长发育的过程而发生改变。种子萌发是植物生命周期的关键环节, 一定程度上决定了植物种群分布和群落结构。野外种子萌发过程受到邻近同种或异种种子间相互作用的影响, 但对于种子萌发过程中种内、种间相互作用强度及其影响因素的了解仍十分有限。该研究通过培养皿萌发实验探讨了种子密度(每皿80粒、每皿160粒)及比例(单种、3:1混种、2:2混种、1:3混种)对互花米草(Spartina alterniflora)、海三棱藨草(Scirpus × mariqueter)、芦苇(Phragmites australis)种子萌发率、平均萌发时间的影响, 并采用相对邻株效应(RNE)评估了这3个物种的种内、种间相互作用强度。结果表明, 密度对互花米草、海三棱藨草、芦苇种子的萌发率均有一定的促进作用。与互花米草混种时, 芦苇种子在占比最低(25%)处理下的平均萌发时间显著长于单种及其他混种比例处理。3种植物种子的竞争能力没有明确的等级关系, 存在非传递性竞争, 萌发时海三棱藨草相对互花米草具有一定的竞争优势, 互花米草相对芦苇具有一定优势, 而芦苇的竞争能力则比海三棱藨草强。由于自然环境下的种子间相互作用更为复杂, 将室内控制实验结果推广到自然生态系统时存在一定的局限性。
史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响. 植物生态学报, 2023, 47(1): 77-87. DOI: 10.17521/cjpe.2022.0151
SHI Huan-Huan, XUE Qiong, YU Zhen-Lin, WANG Cheng-Huan. Effects of density and species proportion on intraspecific and interspecific interactions between salt marsh plants during seed germination. Chinese Journal of Plant Ecology, 2023, 47(1): 77-87. DOI: 10.17521/cjpe.2022.0151
变异来源 Source of variation | 萌发率 Germination rate | 平均萌发时间 Mean germination time | ||||
---|---|---|---|---|---|---|
df | F | p | df | F | p | |
物种 Species | 2, 22 | 30.27 | <0.001 | 2, 22 | 1 955.36 | <0.001 |
密度 Density | 1, 22 | 1.76 | 0.201 | 1, 22 | 0.23 | 0.638 |
物种×密度 Species × density | 2, 18 | 0.85 | 0.443 | 2, 18 | 0.05 | 0.946 |
表1 物种、密度对单种时种子萌发率及平均萌发时间影响的方差分析
Table 1 Results of ANOVA testing the effects of species and density on seed germination rate and mean germination time
变异来源 Source of variation | 萌发率 Germination rate | 平均萌发时间 Mean germination time | ||||
---|---|---|---|---|---|---|
df | F | p | df | F | p | |
物种 Species | 2, 22 | 30.27 | <0.001 | 2, 22 | 1 955.36 | <0.001 |
密度 Density | 1, 22 | 1.76 | 0.201 | 1, 22 | 0.23 | 0.638 |
物种×密度 Species × density | 2, 18 | 0.85 | 0.443 | 2, 18 | 0.05 | 0.946 |
图1 不同密度处理下互花米草、海三棱藨草、芦苇种子的萌发率(A)及平均萌发时间(B) (平均值±标准误, n = 4)。不同大写字母表示不同物种间存在显著差异(p < 0.05)。
Fig. 1 Germination rate (A) and mean germination time (B) of Spartina alterniflora, Scirpus × mariqueter and Phragmites australis seeds in different density treatments (mean ± SE, n = 4). Different uppercase letters denote significant differences among different species (p < 0.05).
变异来源 Source of variation | 互花米草 Spartina alterniflora | 海三棱藨草 Scirpus × mariqueter | 芦苇 Phragmites australis | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
萌发率 Germination rate | 平均萌发时间 Mean germination time | 萌发率 Germination rate | 平均萌发时间 Mean germination time | 萌发率 Germination rate | 平均萌发时间 Mean germination time | |||||||||||||
df | F | p | df | F | p | df | F | p | df | F | p | df | F | p | df | F | p | |
物种组合 Species combination | 1, 46 | 0.07 | 0.786 | 1, 46 | 0.69 | 0.408 | 1, 46 | 1.30 | 0.262 | 1, 46 | 0.01 | 0.909 | 1, 46 | 11.90 | 0.013 | 1, 46 | 0.02 | 0.887 |
密度 Density | 1, 46 | 3.61 | 0.063 | 1, 46 | 0.09 | 0.764 | 1, 46 | 14.39 | <0.001 | 1, 46 | 0.19 | 0.664 | 1, 46 | 1.41 | 0.068 | 1, 46 | 0.02 | 0.889 |
种子比例 Seed proportion | 2, 46 | 0.53 | 0.590 | 2, 46 | 1.21 | 0.307 | 2, 46 | 2.21 | 0.124 | 2, 46 | 0.64 | 0.531 | 2, 46 | 0.40 | 0.458 | 2, 46 | 2.53 | 0.094 |
物种组合×密度 Species combination × density | 1, 44 | 0.17 | 0.680 | 1, 44 | 0.35 | 0.559 | 1, 44 | 1.15 | 0.290 | 1, 44 | 0.36 | 0.531 | 1, 44 | 1.41 | 0.242 | 1, 44 | 1.23 | 0.274 |
物种组合×种子比例 Species combination × seed proportion | 2, 42 | 0.40 | 0.670 | 2, 42 | 0.84 | 0.439 | 2, 42 | 0.35 | 0.707 | 2, 42 | 0.87 | 0.550 | 2, 42 | 0.34 | 0.715 | 2, 42 | 8.52 | 0.002 |
密度 × 种子比例 Density × seed proportion | 2, 42 | 0.71 | 0.497 | 2, 42 | 0.10 | 0.907 | 2, 42 | 0.20 | 0.817 | 2, 42 | 0.63 | 0.539 | 2, 42 | 0.29 | 0.749 | 2, 42 | 3.00 | 0.062 |
物种组合×密度×种子比例 Species combination × density × seed proportion | 2, 36 | 0.35 | 0.705 | 2, 36 | 1.29 | 0.286 | 2, 36 | 0.00 | 0.996 | 2, 36 | 0.11 | 0.898 | 2, 36 | 1.03 | 0.367 | 2, 36 | 0.45 | 0.643 |
表2 物种组合、密度、种子比例对互花米草、海三棱藨草、芦苇种子萌发率及平均萌发时间影响的方差分析
Table 2 Results of ANOVA testing the effects of species combination, density and seed proportion on the germination rate and mean germination time of Spartina alterniflora, Scirpus × mariqueter and Phragmites australis seeds
变异来源 Source of variation | 互花米草 Spartina alterniflora | 海三棱藨草 Scirpus × mariqueter | 芦苇 Phragmites australis | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
萌发率 Germination rate | 平均萌发时间 Mean germination time | 萌发率 Germination rate | 平均萌发时间 Mean germination time | 萌发率 Germination rate | 平均萌发时间 Mean germination time | |||||||||||||
df | F | p | df | F | p | df | F | p | df | F | p | df | F | p | df | F | p | |
物种组合 Species combination | 1, 46 | 0.07 | 0.786 | 1, 46 | 0.69 | 0.408 | 1, 46 | 1.30 | 0.262 | 1, 46 | 0.01 | 0.909 | 1, 46 | 11.90 | 0.013 | 1, 46 | 0.02 | 0.887 |
密度 Density | 1, 46 | 3.61 | 0.063 | 1, 46 | 0.09 | 0.764 | 1, 46 | 14.39 | <0.001 | 1, 46 | 0.19 | 0.664 | 1, 46 | 1.41 | 0.068 | 1, 46 | 0.02 | 0.889 |
种子比例 Seed proportion | 2, 46 | 0.53 | 0.590 | 2, 46 | 1.21 | 0.307 | 2, 46 | 2.21 | 0.124 | 2, 46 | 0.64 | 0.531 | 2, 46 | 0.40 | 0.458 | 2, 46 | 2.53 | 0.094 |
物种组合×密度 Species combination × density | 1, 44 | 0.17 | 0.680 | 1, 44 | 0.35 | 0.559 | 1, 44 | 1.15 | 0.290 | 1, 44 | 0.36 | 0.531 | 1, 44 | 1.41 | 0.242 | 1, 44 | 1.23 | 0.274 |
物种组合×种子比例 Species combination × seed proportion | 2, 42 | 0.40 | 0.670 | 2, 42 | 0.84 | 0.439 | 2, 42 | 0.35 | 0.707 | 2, 42 | 0.87 | 0.550 | 2, 42 | 0.34 | 0.715 | 2, 42 | 8.52 | 0.002 |
密度 × 种子比例 Density × seed proportion | 2, 42 | 0.71 | 0.497 | 2, 42 | 0.10 | 0.907 | 2, 42 | 0.20 | 0.817 | 2, 42 | 0.63 | 0.539 | 2, 42 | 0.29 | 0.749 | 2, 42 | 3.00 | 0.062 |
物种组合×密度×种子比例 Species combination × density × seed proportion | 2, 36 | 0.35 | 0.705 | 2, 36 | 1.29 | 0.286 | 2, 36 | 0.00 | 0.996 | 2, 36 | 0.11 | 0.898 | 2, 36 | 1.03 | 0.367 | 2, 36 | 0.45 | 0.643 |
图2 不同物种组合、密度、种子比例处理下互花米草(Sa, A、B)、海三棱藨草(Sm, C、D)、芦苇(Pa, E、F)种子的萌发率及平均萌发时间(平均值±标准误, n = 4)。不同大写字母表示不同密度处理间存在显著差异(p < 0.05), 不同小写字母表示同一物种组合及密度下不同种子比例间存在显著差异(p < 0.05)。
Fig. 2 Germination rate and mean germination time of Spartina alterniflora (Sa, A, B), Scirpus × mariqueter (Sm, C, D), Phragmites australis (Pa, E, F) seeds in different species combination, density and seed proportion treatments (mean ± SE, n = 4). Different uppercase letters denote significant differences between different density treatments (p < 0.05). Different lowercase letters denote significant differences among different seed proportion treatments of the same species combination and density (p < 0.05).
图3 不同物种组合下互花米草、海三棱藨草、芦苇种内及种间相互作用强度(用相对邻株效应(RNE)表示) (平均值±标准误, n = 4)。A, 互花米草+海三棱藨草。B, 互花米草+芦苇。C, 海三棱藨草+芦苇。*, RNE与零有显著差异(p < 0.05); 不同小写字母表示同一物种的种内相互作用强度与种间相互作用强度间存在显著差异(p < 0.05)。
Fig. 3 Intraspecific and interspecific competition intensity of Spartina alterniflora (Sa), Phragmites australis (Pa) and Scirpus × mariqueter (Sm) in different species combination indicated by the relative neighbor effect (RNE) index (mean ± SE, n = 4). A, Sa + Sm. B, Sa + Pa. C, Sm + Pa. *, significant difference against zero (p < 0.05); different lowercase letters denote significant difference between intraspecific interaction intensity and interspecific interaction intensity of the same species (p < 0.05).
[1] |
Aguilar-Franco ZM, Flores-Palacios A, Flores-Morales A, Perea-Arango I, Valencia-Díaz S (2019). Density-dependent effect of allelopathy on germination and seedling emergence in two Ipomoea species. Revista Chilena de Historia Natural, 92, 7. DOI: 10.1186/s40693-019-0087-z.
DOI |
[2] |
Ai JQ, Gao W, Gao ZQ, Shi, RH, Zhang C (2017). Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze Estuary using time series of GaoFen satellite No. 1 wide field of view imagery. Journal of Applied Remote Sensing, 11, 026020. DOI: 10.1117/1.JRS.11.026020.
DOI |
[3] |
Bao F, Rossatto DR, Pott A, Elsey-Quirk T, de Assis MA, Arruda R, Ramos DM (2021). Do neighbours matter? The effect of single- and mixed-species sowing density on seed germination of annual wetland plants. Applied Vegetation Science, 24, e12602. DOI: 10.1111/avsc.12602.
DOI |
[4] |
Baskin CC, Baskin JM, Chester EW, Smith M (2003). Ethylene as a possible cue for seed germination of Schoenoplectus hallii (Cyperaceae), a rare summer annual of occasionally flooded sites. American Journal of Botany, 90, 620-627.
DOI PMID |
[5] | Biber PD, Caldwell JD (2008). Seed germination and seedling survival of Spartina alterniflora Loisel. American Journal of Agricultural and Biological Science, 3, 633-638. |
[6] |
Buss LW, Jackson JBC (1979). Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. The American Naturalist, 113, 223-234.
DOI URL |
[7] |
Chen ZY, Li B, Chen JK (2004). Ecological consequences and management of Spartina spp. invasions in coastal ecosystems. Biodiversity Science, 12, 280-289.
DOI URL |
[ 陈中义, 李博, 陈家宽 (2004). 米草属植物入侵的生态后果及管理对策. 生物多样性, 12, 280-289.]
DOI |
|
[8] |
Chen ZY, Li B, Zhong Y, Chen JK (2004). Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia, 528, 99-106.
DOI URL |
[9] |
Connolly J (1986). On difficulties with replacement-series methodology in mixture experiments. Journal of Applied Ecology, 23, 125-137.
DOI URL |
[10] |
Cousens R (1991). Aspects of the design and interpretation of competition (interference) experiments. Weed Technology, 5, 664-673.
DOI URL |
[11] |
Dai WL, Wang TH, Wang CH (2020). Effects of interspecific interactions on seed germination between dominant species in the Yangtze River Estuary. Estuarine, Coastal and Shelf Science, 232, 106483. DOI: 10.1016/j.ecss.2019.106483.
DOI |
[12] |
Ding WH, Jiang JY, Li XZ, Huang X, Li XZ, Zhou YX, Tang CD (2015). Spatial distribution of species and influencing factors across salt marsh vegetation in southern Chongming Dongtan. Chinese Journal of Plant Ecology, 39, 704-716.
DOI URL |
[ 丁文慧, 姜俊彦, 李秀珍, 黄星, 李希之, 周云轩, 汤臣栋 (2015). 崇明东滩南部盐沼植被空间分布及影响因素分析. 植物生态学报, 39, 704-716.]
DOI |
|
[13] |
Dyer AR, Fenech A, Rice KJ (2000). Accelerated seedling emergence in interspecific competitive neighbourhoods. Ecology Letters, 3, 523-529.
DOI URL |
[14] |
Fenesi A, Albert ÁJ, Ruprecht E (2014). Fine-tuned ability to predict future competitive environment in Ambrosia artemisiifolia seeds. Weed Research, 54, 58-69.
DOI URL |
[15] |
Fenesi A, Kelemen K, Sándor D, Ruprecht E (2020). Influential neighbours: seeds of dominant species affect the germination of common grassland species. Journal of Vegetation Science, 31, 1028-1038.
DOI URL |
[16] |
Gallien L, Zimmermann NE, Levine JM, Adler PB (2017). The effects of intransitive competition on coexistence. Ecology Letters, 20, 791-800.
DOI PMID |
[17] |
Guido A, Hoss D, Pillar VD (2017). Exploring seed to seed effects for understanding invasive species success. Perspectives in Ecology and Conservation, 15, 234-238.
DOI URL |
[18] |
Hayasaka D, Nakagawa M, Maebara Y, Kurazono T, Hashimoto K (2020). Seed germination characteristics of invasive Spartina alterniflora Loisel in Japan: implications for its effective management. Scientific Reports, 10, 2116. DOI: 10.1038/s41598-020-58879-7.
DOI |
[19] |
Houseman GR, Mahoney AK (2015). Intraspecific seed interactions alter seedling emergence of Lespedeza cuneata under field conditions. Population Ecology, 57, 539-544.
DOI URL |
[20] | Hu QY, Zhao ZM, Lan YY, Zhang X, Xu CL, Zhang YJ (2020). Effects of salinity and duration of submergence on seed germination and seedling growth of Scirpus mariqueter. Journal of Shanghai Ocean University, 29, 55-63. |
[ 胡茜靥, 赵志淼, 兰燕月, 张筱, 徐成龙, 张饮江 (2020). 盐度和水淹对海三棱藨草种子萌发及幼苗生长的影响. 上海海洋大学学报, 29, 55-63.] | |
[21] | Huang ZL, Liu HL, Chu CJ, Li YZ (2022). Advances in intransitive competition between organisms. Biodiversity Science, 30, 124-135. |
[ 黄正良, 刘翰伦, 储诚进, 李远智 (2022). 生物间非传递性竞争研究进展. 生物多样性, 30, 124-135.] | |
[22] |
Inouye BD (2001). Response surface experimental designs for investigating interspecific competition. Ecology, 82, 2696-2706.
DOI URL |
[23] |
Jiao NY, Wang JT, Ma C, Zhang CC, Guo DY, Zhang FS, Jensen ES (2021). The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. The Crop Journal, 9, 1460-1469.
DOI URL |
[24] |
Laterra P, Bazzalo ME (1999). Seed-to-seed allelopathic effects between two invaders of burned Pampa grasslands. Weed Research, 39, 297-308.
DOI URL |
[25] |
Leger EA, Espeland EK (2010). The shifting balance of facilitation and competition affects the outcome of intra- and interspecific interactions over the life history of California grassland annuals. Plant Ecology, 208, 333-345.
DOI URL |
[26] |
le Roux PC, Shaw JD, Chown SL (2013). Ontogenetic shifts in plant interactions vary with environmental severity and affect population structure. New Phytologist, 200, 241-250.
DOI PMID |
[27] | Li L, Zhou DW, Sheng LX (2011). Density dependence-determined plant biomass allocation pattern. Chinese Journal of Ecology, 30, 1579-1589. |
[ 黎磊, 周道玮, 盛连喜 (2011). 密度制约决定的植物生物量分配格局. 生态学杂志, 30, 1579-1589.] | |
[28] |
Li B, Watkinson AR (2000) Competition along a nutrient gradient: a case study with Daucus carota and Chenopodium album. Ecological Research, 15, 293-306.
DOI URL |
[29] |
Li B, Liao CZ, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Cheng XL, Jiang LF, Chen JK (2009). Spartina alterniflora invasions in the Yangtze River Estuary, China: an overview of current status and ecosystem effects. Ecological Engineering, 35, 511-520.
DOI URL |
[30] |
Liu B, Lü XG, Jiang M, Zhang WG, Wu HT (2015). Effects of light and water depth on seed germination of Phragmites australis in the wetlands of Songnen Plain. Chinese Journal of Plant Ecology, 39, 616-620.
DOI URL |
[ 刘波, 吕宪国, 姜明, 张文广, 武海涛 (2015). 光照、水深交互作用对松嫩湿地芦苇种子萌发的影响. 植物生态学报, 39, 616-620.]
DOI |
|
[31] | Liu HY, Li SM, Fu SL, Zhang YL (2019). Study of allelopathy of water extract from Radix ranunculi Ternati seeds on wheat, Sudan grass and wild soybean. Heilongjiang Animal Science and Veterinary Medicine, (2), 119-123. |
[ 刘红云, 李淑梅, 扶胜兰, 张艳玲 (2019). 猫爪草种子水浸提液对小麦、苏丹草、野大豆的化感作用研究. 黑龙江畜牧兽医, (2), 119-123.] | |
[32] | Ma YS, Chang Y, Wang HR, Jia YF, Li WY, Qi RQ (2021). The allelopathy of Hyoscyamus niger seed extract on seed germination and seedling growth of Lolium perenne. Acta Agrestia Sinica, 29, 1697-1703. |
[ 马银山, 常妍, 王含睿, 贾云凤, 李文英, 漆瑞强 (2021). 天仙子种子浸提液对黑麦草种子萌发和幼苗生长的化感作用. 草地学报, 29, 1697-1703.]
DOI |
|
[33] | Ma YA, Ma ZJ (2006). Chongming Dongtan Wetland of International Importance. China Forestry Publishing House, Beijing. 2-20. |
[ 马云安, 马志军 (2006). 崇明东滩国际重要湿地. 中国林业出版社, 北京. 2-20.] | |
[34] |
Margreiter V, Walde J, Erschbamer B (2021). Competition-free gaps are essential for the germination and recruitment of alpine species along an elevation gradient in the European Alps. Alpine Botany, 131, 135-150.
DOI |
[35] |
McMurray MH, Jenkins SH, Longland WS (1997). Effects of seed density on germination and establishment of a native and an introduced grass species dispersed by granivorous rodents. The American Midland Naturalist, 138, 322-330.
DOI URL |
[36] | Mikami OK, Kawata M (2004). Does interspecific territoriality reflect the intensity of ecological interactions? A theoretical model for interspecific territoriality. Evolutionary Ecology Research, 6, 765-775. |
[37] |
Milotić T, Hoffmann M (2017). The impact of dung on inter- and intraspecific competition of temperate grassland seeds. Journal of Vegetation Science, 28, 774-786.
DOI URL |
[38] |
Oksanen L, Sammul M, Mägi M (2006). On the indices of plant-plant competition and their pitfalls. Oikos, 112, 149-155.
DOI URL |
[39] |
Orrock JL, Christopher CC (2010). Density of intraspecific competitors determines the occurrence and benefits of accelerated germination. American Journal of Botany, 97, 694-699.
DOI PMID |
[40] | Qi ZW, Jiang N, Gao YN, Li Y, Wang KY, Zhang C (2016). Responses of photosynthesis of Phragmites australis to water-salt indicators of soil in Dongtan wetlands, Chongming Island. Wetland Science, 14, 538-545. |
[ 戚志伟, 姜楠, 高艳娜, 李艳, 王开运, 张超 (2016). 崇明岛东滩湿地芦苇光合作用对土壤水盐因子的响应. 湿地科学, 14, 538-545.] | |
[41] |
Rejmánek M, Robinson GR, Rejmánková E (1989). Weed-crop competition: experimental designs and models for data analysis. Weed Science, 37, 276-284.
DOI URL |
[42] |
Reynolds C, Cumming GS (2016). Seed traits and bird species influence the dispersal parameters of wetland plants. Freshwater Biology, 61, 1157-1170.
DOI URL |
[43] |
Rooth JE, Stevenson JC (2000). Sediment deposition patterns in Phragmites australis communities: implications for coastal areas threatened by rising sea-level. Wetlands Ecology and Management, 8, 173-183.
DOI URL |
[44] | Rúa MA, Nijjer S, Johnson A, Rogers WE, Siemann E (2008). Experimental approaches to test allelopathy: a case study using the invader Sapium sebiferum. Allelopathy Journal, 22, 1-13. |
[45] |
Schiffers K, Tielbörger K (2006). Ontogenetic shifts in interactions among annual plants. Journal of Ecology, 94, 336-341.
DOI URL |
[46] | Shen YY, Li Y, Lu N (2002). Competitive ability and interspecific relationship among four forage species. Acta Prataculturae Sinica, 11(3), 8-13. |
[ 沈禹颖, 李昀, 陆妮 (2002). 4种牧草种间竞争力和种间关系的研究. 草业学报, 11(3), 8-13.] | |
[47] |
Smith AL, Atwater DZ, Kim W, Haak DC, Barney JN (2021). Invasive plant rhizome production and competitiveness vary based on neighbor identity. Journal of Plant Ecology, 14, 638-647.
DOI |
[48] |
Soons MB (2006). Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Applied Vegetation Science, 9, 271-278.
DOI URL |
[49] |
Tielbörger K, Prasse R (2009). Do seeds sense each other? Testing for density-dependent germination in desert perennial plants. Oikos, 118, 792-800.
DOI URL |
[50] |
Vukeya LR, Mokotjomela TM, Malebo NJ, Oke S (2021) Interspecific competition in germination of bird-dispersed seeds in a habitat with sparse tree vegetation in South Africa. Botanical Studies, 62, 10. DOI: 10.1186/s40529-021-00317-6.
DOI |
[51] |
Wang CH, Tang L, Fei SF, Wang JQ, Gao Y, Wang Q, Chen JK, Li B (2009). Determinants of seed bank dynamics of two dominant helophytes in a tidal salt marsh. Ecological Engineering, 35, 800-809.
DOI URL |
[52] | Wang GY, Han SD, Chen BH, Yang HL (2012). Allelopathy of cucumber seed during germination. Acta Botanica Boreali-Occidentalia Sinica, 32, 1654-1663. |
[ 王广印, 韩世栋, 陈碧华, 杨和连 (2012). 黄瓜种子及其萌发期的化感作用研究. 西北植物学报, 32, 1654-1663.] | |
[53] |
Wang Q, Wang CH, Zhao B, Ma ZJ, Luo YQ, Chen JK, Li B (2006). Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biological Invasions, 8, 1547-1560.
DOI URL |
[54] | Wang Q, Shi HH, Yu ZL, Wang TH, Wang CH (2022). Effects of salinity and interspecific interaction on germination and growth of Scirpus mariqueter and Spartina alterniflora. Acta Ecologica Sinica, 42, 8300-8310. |
[ 王倩, 史欢欢, 于振林, 王天厚, 汪承焕 (2022). 盐度及种间相互作用对海三棱藨草、互花米草萌发及生长的影响. 生态学报, 42, 8300-8310.] | |
[55] |
Wang XT, Liang CZ, Wang W (2014). Balance between facilitation and competition determines spatial patterns in a plant population. Chinese Science Bulletin, 59, 1405-1415.
DOI URL |
[56] | Wang XY, Zhou YP, Xue YF, Cheng JY, Liu WW, Zhang YH (2021). Seed germination characteristics of Spartina alterniflora from high and low latitude populations in relation to temperature. Chinese Journal of Ecology, 40, 2763-2772. |
[ 汪秀岩, 周宇鹏, 薛雨霏, 成竞扬, 刘文文, 张宜辉 (2021). 高低纬度种源互花米草种子萌发特性及其对温度的响应. 生态学杂志, 40, 2763-2772.] | |
[57] |
Wang YL, Geng QQ, Huang JH, Wang CH, Li L, Hasi M, Niu GX (2021). Effects of nitrogen addition and planting density on the growth and biological nitrogen fixation of Lespedeza davurica. Chinese Journal of Plant Ecology, 45, 13-22.
DOI URL |
[ 王银柳, 耿倩倩, 黄建辉, 王常慧, 李磊, 哈斯木其尔, 牛国祥 (2021). 氮肥和种植密度对达乌里胡枝子的生长与生物固氮的影响. 植物生态学报, 45, 13-22.] | |
[58] |
Xie BH, Han GX, Qiao PY, Mei BL, Wang Q, Zhou YF, Zhang AF, Song WM, Guan B (2019). Effects of mechanical and chemical control on invasive Spartina alterniflora in the Yellow River Delta, China. PeerJ, 7, e7655. DOI: 10.7717/peerj.7655.
DOI |
[59] | Xie T, Zhang SY, Li SZ, Wang Q, Cai YZ, Shi W, Cui BS (2018). Response of seed dispersal pattern to human reclamation in salt marshes. Journal of Beijing Normal University (Natural Science), 54, 1-8. |
[ 谢湉, 张树岩, 李姗泽, 王青, 蔡燕子, 施伟, 崔保山 (2018). 滨海盐沼植物种子扩散过程对潮流阻断的响应机制. 北京师范大学学报(自然科学版), 54, 1-8.] | |
[60] | Xu YD, Dong SK, Li S, Shen H (2019). Research progress on ecological filtering mechanisms for plant community assembly. Acta Ecologica Sinica, 39, 2267-2281. |
[ 许驭丹, 董世魁, 李帅, 沈豪 (2019). 植物群落构建的生态过滤机制研究进展. 生态学报, 39, 2267-2281.] | |
[61] | Yi GL, Luo JH, Lin GR, Xu FH, Liang QH (2004). Effects of different treatments on germination of Erythrophleum fordii seeds. Journal of Fujian Forestry Science and Technology, 31(3), 68-70. |
[ 易观路, 罗建华, 林国荣, 许方宏, 梁庆华 (2004). 不同处理对格木种子发芽的影响. 福建林业科技, 31(3), 68-70.] | |
[62] |
Yin LY, Wang CY, Chen YY, Yu C, Cheng Y, Li W (2009). Cold stratification, light and high seed density enhance the germination of Ottelia alismoides. Aquatic Botany, 90, 85-88.
DOI URL |
[63] | Yu XP, Li D, Chen JT, Jiang XJ, Zhou YM (2014). Reciprocal effects of allelopathic compounds of leaves of Spartina alterniflora and Phragmites australis on germ growth. Journal of Shanghai Institute of Technology (Natural Science), 14, 345-348. |
[ 余欣平, 李东, 陈金台, 江肖洁, 周玉梅 (2014). 互花米草与芦苇叶片化感物质对两者种子胚芽生长的影响. 上海应用技术学院学报(自然科学版), 14, 345-348.] | |
[64] |
Yuan Y, Wang KY, Li DZ, Pan Y, Lv YY, Zhao MX, Gao JJ (2013). Interspecific interactions between Phragmites australis and Spartina alterniflora along a tidal gradient in the Dongtan wetland, Eastern China. PLoS ONE, 8, e53843. DOI: 10.1371/journal.pone.0053843.
DOI |
[65] |
Zheng H, He CQ, Xu QY, Yang JN, Zhan YW, Lei YR (2011). Inference of allelopathy about Spartina alterniflora to Scirpus mariqueter by effects of activated carbon on soil. Procedia Environmental Sciences, 10, 1835-1840.
DOI URL |
[66] | Zheng X, Zhu F, Wei L (2006). Effects of water soluble extract of reed (Phragmites communis Trin) leaf on seed germination and seedling growth of three plant species. Jiangsu Journal of Agricultural Sciences, 20, 233-237. |
[ 郑曦, 朱峰, 魏磊 (2006). 芦苇叶水提物对三种植物种子萌发和幼苗生长的影响. 江苏农业学报, 20, 233-237.] |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[3] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[4] | 张慧, 曾文静, 龚新桃, 马泽清. 亚热带典型树种根毛特征及其与共生真菌的关系[J]. 植物生态学报, 2023, 47(1): 88-100. |
[5] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[6] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[7] | 韩广轩, 王法明, 马俊, 肖雷雷, 初小静, 赵明亮. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力[J]. 植物生态学报, 2022, 46(4): 373-382. |
[8] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[9] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[10] | 王银柳, 耿倩倩, 黄建辉, 王常慧, 李磊, 哈斯木其尔, 牛国祥. 氮肥和种植密度对达乌里胡枝子的生长与生物固氮的影响[J]. 植物生态学报, 2021, 45(1): 13-22. |
[11] | 于青含, 金光泽, 刘志理. 植株大小、枝龄和环境共同驱动红松枝性状的变异[J]. 植物生态学报, 2020, 44(9): 939-950. |
[12] | 冯银平, 沈海花, 罗永开, 徐龙超, 刘上石, 朱言坤, 赵梦颖, 邢爱军, 方精云. 种植密度对苜蓿生长及生物量的影响[J]. 植物生态学报, 2020, 44(3): 248-256. |
[13] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[14] | 李娜, 张一鹤, 韩晓增, 尤孟阳, 郝翔翔. 长期不同植被覆盖对黑土团聚体内有机碳组分的影响[J]. 植物生态学报, 2019, 43(7): 624-634. |
[15] | 冯慧芳, 刘落鱼, 薛立. 氮磷添加及林分密度对大叶相思林土壤化学性质的影响[J]. 植物生态学报, 2019, 43(11): 1010-1020. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19