植物生态学报 ›› 2024, Vol. 48 ›› Issue (6): 719-729.DOI: 10.17521/cjpe.2023.0271 cstr: 32100.14.cjpe.2023.0271
所属专题: 植物功能性状
收稿日期:
2023-09-22
接受日期:
2024-02-26
出版日期:
2024-06-20
发布日期:
2024-02-26
通讯作者:
*张春雨(zcy_0520@163.com)
基金资助:
WEN Jia, ZHANG Xin-Na, WANG Juan, ZHAO Xiu-Hai, ZHANG Chun-Yu*()
Received:
2023-09-22
Accepted:
2024-02-26
Online:
2024-06-20
Published:
2024-02-26
Contact:
*ZHANG Chun-Yu(zcy_0520@163.com)
Supported by:
摘要:
性状有助于更好地理解邻体竞争和环境对于幼苗存活的影响, 然而以往研究使用物种平均性状, 忽视了种内性状变异。因此, 基于吉林蛟河针阔混交林150个幼苗样方中的幼苗个体监测数据, 运用二项分布的广义线性混合效应模型比较种内性状变异和物种平均性状对幼苗存活率的影响, 探究性状如何调节幼苗对邻体竞争和环境的响应。研究结果表明种内性状变异模型和物种平均性状模型对幼苗存活率的预测能力并不一致, 考虑种内性状变异的比叶面积(SLA)模型比物种平均性状的SLA模型赤池信息量准则值和贝叶斯信息准则值更小, 解释的方差也更多, 模型的拟合度更好。但是, 叶面积(LA)、叶碳含量(LCC)和叶氮含量(LNC)的物种平均性状模型比种内性状变异模型效果更好。此外, 性状调节邻体竞争和土壤元素含量对幼苗存活的影响, 例如: 受到相同的密度制约时, LA更小的幼苗存活率更高; 土壤营养元素缺乏时, 较高的LCC会提高幼苗存活率, 反之在优良的土壤中, 幼苗存活率降低。模型比较的结果说明种内性状变异预测幼苗个体存活的能力并不绝对比物种平均性状强, 这种原因可能与林分和环境有关。另外, 加入邻体竞争和环境变量能够增强性状与幼苗存活之间的关系。尽管种内性状变异不能更好地预测幼苗存活率, 但这种基于个体性状的方法为预测幼苗动态变化提供了一个新的视角。
文佳, 张新娜, 王娟, 赵秀海, 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应. 植物生态学报, 2024, 48(6): 719-729. DOI: 10.17521/cjpe.2023.0271
WEN Jia, ZHANG Xin-Na, WANG Juan, ZHAO Xiu-Hai, ZHANG Chun-Yu. Traits mediate response of seedling survival rate to neighborhood competition and abiotic environment. Chinese Journal of Plant Ecology, 2024, 48(6): 719-729. DOI: 10.17521/cjpe.2023.0271
物种 Species | 科 Family | 属 Genus | 高度 Height (cm) | 平均高度 Mean height (cm) |
---|---|---|---|---|
糠椴 Tilia mandshurica | 锦葵科 Malvaceae | 椴属 Tilia | 4.9-12.2 | 7.6 |
杉松 Abies holophylla | 松科 Pinaceae | 冷杉属 Abies | 4.0-31.9 | 7.5 |
水曲柳 Fraxinus mandschurica | 木犀科 Oleaceae | 梣属 Fraxinus | 5.0-49.4 | 14.3 |
裂叶榆 Ulmus laciniata | 榆科 Ulmaceae | 榆属 Ulmus | 5.2-40.0 | 14.5 |
大果榆 Ulmus macrocarpa | 榆科 Ulmaceae | 榆属 Ulmus | 10.9-23.6 | 18.6 |
蒙古栎 Quercus mongolica | 壳斗科 Fagaceae | 栎属 Quercus | 8.2-24.7 | 17.4 |
紫椴 Tilia amurensis | 锦葵科 Malvaceae | 椴属 Tilia | 2.7-28.0 | 7.3 |
红松 Pinus koraiensis | 松科 Pinaceae | 松属 Pinus | 3.1-30.0 | 11.8 |
东北槭 Acer mandshuricum | 无患子科 Sapindaceae | 槭属 Acer | 4.0-48.2 | 16.2 |
色木槭 Acer pictum subsp. mono | 无患子科 Sapindaceae | 槭属 Acer | 1.9-49.0 | 15.5 |
青楷槭 Acer tegmentosum | 无患子科 Sapindaceae | 槭属 Acer | 8.2-19.4 | 12.1 |
千金榆 Carpinus cordata | 桦木科 Betulaceae | 鹅耳枥属 Carpinus | 3.0-11.1 | 5.8 |
表1 吉林蛟河针阔混交林中12种乔木幼苗的物种信息
Table 1 Species information of 12 tree seedling species in a needleleaf and broadleaf mixed forest in Jiaohe, Jilin
物种 Species | 科 Family | 属 Genus | 高度 Height (cm) | 平均高度 Mean height (cm) |
---|---|---|---|---|
糠椴 Tilia mandshurica | 锦葵科 Malvaceae | 椴属 Tilia | 4.9-12.2 | 7.6 |
杉松 Abies holophylla | 松科 Pinaceae | 冷杉属 Abies | 4.0-31.9 | 7.5 |
水曲柳 Fraxinus mandschurica | 木犀科 Oleaceae | 梣属 Fraxinus | 5.0-49.4 | 14.3 |
裂叶榆 Ulmus laciniata | 榆科 Ulmaceae | 榆属 Ulmus | 5.2-40.0 | 14.5 |
大果榆 Ulmus macrocarpa | 榆科 Ulmaceae | 榆属 Ulmus | 10.9-23.6 | 18.6 |
蒙古栎 Quercus mongolica | 壳斗科 Fagaceae | 栎属 Quercus | 8.2-24.7 | 17.4 |
紫椴 Tilia amurensis | 锦葵科 Malvaceae | 椴属 Tilia | 2.7-28.0 | 7.3 |
红松 Pinus koraiensis | 松科 Pinaceae | 松属 Pinus | 3.1-30.0 | 11.8 |
东北槭 Acer mandshuricum | 无患子科 Sapindaceae | 槭属 Acer | 4.0-48.2 | 16.2 |
色木槭 Acer pictum subsp. mono | 无患子科 Sapindaceae | 槭属 Acer | 1.9-49.0 | 15.5 |
青楷槭 Acer tegmentosum | 无患子科 Sapindaceae | 槭属 Acer | 8.2-19.4 | 12.1 |
千金榆 Carpinus cordata | 桦木科 Betulaceae | 鹅耳枥属 Carpinus | 3.0-11.1 | 5.8 |
土壤理化性质 Soil physical and chemical property | PC1 | PC2 | PC3 |
---|---|---|---|
土壤含水量 Soil moisture | 0.618 | 0.003 | -0.203 |
全氮含量 Total nitrogen content | 0.607 | -0.159 | -0.340 |
全磷含量 Total phosphorus content | 0.587 | 0.405 | 0.076 |
全钾含量 Total potassium content | -0.596 | 0.461 | -0.040 |
有机质含量 Organic matter content | 0.550 | -0.041 | -0.201 |
有效氮含量 Available nitrogen content | 0.634 | 0.487 | 0.298 |
有效磷含量 Available phosphorus content | 0.051 | 0.626 | 0.405 |
有效钾含量 Available potassium content | 0.779 | -0.233 | 0.203 |
土壤pH Soil pH | 0.008 | -0.625 | 0.681 |
变异解释 Proportion of variance (%) | 30.701 | 16.422 | 15.233 |
累计变异解释 Cumulative proportion of variance (%) | 30.701 | 47.124 | 62.357 |
表2 吉林蛟河针阔混交林中土壤理化性质在3个主成分(PC)上的载荷值
Table 2 Loading values of soil physicochemical properties on the first three principal components (PC) in needleleaf and broadleaf mixed forest in Jiaohe, Jilin
土壤理化性质 Soil physical and chemical property | PC1 | PC2 | PC3 |
---|---|---|---|
土壤含水量 Soil moisture | 0.618 | 0.003 | -0.203 |
全氮含量 Total nitrogen content | 0.607 | -0.159 | -0.340 |
全磷含量 Total phosphorus content | 0.587 | 0.405 | 0.076 |
全钾含量 Total potassium content | -0.596 | 0.461 | -0.040 |
有机质含量 Organic matter content | 0.550 | -0.041 | -0.201 |
有效氮含量 Available nitrogen content | 0.634 | 0.487 | 0.298 |
有效磷含量 Available phosphorus content | 0.051 | 0.626 | 0.405 |
有效钾含量 Available potassium content | 0.779 | -0.233 | 0.203 |
土壤pH Soil pH | 0.008 | -0.625 | 0.681 |
变异解释 Proportion of variance (%) | 30.701 | 16.422 | 15.233 |
累计变异解释 Cumulative proportion of variance (%) | 30.701 | 47.124 | 62.357 |
图1 种内性状变异和物种平均性状模型中各参数的标准化系数估计值和95%置信区间。 LA, 叶面积; LCC, 叶碳含量; LNC, 叶氮含量; SLA, 比叶面积。CI, 同种密度指数; Height, 个体高度; TI, 异种性状距离指数; Trait, 物种或个体的性状; Trait:CI, 性状和同种密度指数的交互作用; Trait:TI, 性状和异种性状距离指数的交互作用。AIC, 赤池信息量准则, 一般AIC值越小, 代表模型拟合度越好; BIC, 贝叶斯信息量准则, 一般BIC值越小, 代表模型拟合度越好。R2c, 模型的固定和随机效应对因变量的解释率; R2m, 固定效应对因变量的解释率。
Fig. 1 Estimated values and 95% confidence intervals of standardized coefficients for parameters in intraspecific trait variation and species average trait models. LA, leaf area; LCC, leaf carbon content; LNC, leaf nitrogen content; SLA, specific leaf area. CI, conspecific neighbor density index; Height, individual height; TI, heterospecific neighbor trait dissimilarity index; Trait, the trait of a species or individual; Trait:CI, the interaction between a trait and the conspecific neighbor density index; Trait:TI, the interaction between trait and the heterospecific neighbor trait dissimilarity index. AIC, Akaike Information Criterion, generally, a smaller AIC value indicates a better fit; BIC, Bayesian Information Criterion, generally, a smaller BIC value indicates a better fit. R2c, fraction of the variance explained by the fixed and random effects in the model; R2m, fraction of the variance explained by the fixed effects.
图2 性状调节幼苗存活率对于同种密度和异种邻体效应的响应。 A, 在叶面积的不同分位数下, 存活率随同种密度指数(CI)的变化。B, 在比叶面积的不同分位数下, 存活率随异种邻体性状距离指数(TI)的变化。
Fig. 2 Traits mediate the response of seedling survival rate to conspecific density dependence and heterospecific neighbor effects. A, The variation of survival rate with conspecific density index (CI) at different quantile of leaf area. B, The variation of survival rate with heterospecific neighbor trait distance index (TI) at different quantile of specific leaf area.
模型参数 Model parameter | LA | SLA | LCC | LNC |
---|---|---|---|---|
Height | 0.39 [-0.05, 0.84] | 0.62 [0.23, 1.00] | 0.53 [0.15, 0.90] | 0.46 [0.12, 0.82] |
TI | -0.41 [-0.76, -0.07] | -0.18 [-0.47, 0.10] | 0.05 [-0.37, 0.50] | -0.28 [-0.53, -0.03] |
CI | -0.05 [-0.31, 0.22] | -0.12 [-0.40, 0.16] | -0.10 [-0.37, 0.17] | -0.07 [-0.31, 0.18] |
Trait | 0.70 [0.06, 1.34] | 0.32 [-0.08, 0.71] | -0.66 [-1.10, -0.22] | -0.20 [-0.65, 0.01] |
PC1 | 0.51 [0.20, 0.83] | 0.48 [0.16, 0.80] | 0.58 [0.25, 0.90] | 0.52 [0.23, 0.81] |
PC2 | -0.39 [-0.70, -0.08] | -0.37 [-0.69, -0.07] | -0.34 [-0.65, -0.04] | -0.35 [-0.63, -0.07] |
PC3 | -0.07 [-0.40, 0.25] | -0.13 [-0.45, 0.20] | -0.18 [-0.51, 0.16] | -0.08 [-0.37, 0.22] |
LAI | 0.07 [-0.30, 0.44] | 0.06 [-0.28, 0.40] | 0.19 [-0.19, 0.57] | 0.08 [-0.24, 0.40] |
Trait:PC1 | 0.05 [-0.30, 0.40] | 0.33 [0.02, 0.65] | -0.47 [-0.81, -0.14] | -0.41 [-0.68, -0.14] |
Trait:PC2 | -0.21 [-0.62, 0.19] | -0.03 [-0.26, 0.22] | -0.01 [-0.31, 0.29] | -0.06 [-0.30, 0.17] |
Trait:PC3 | 0.20 [-0.14, 0.54] | 0.12 [-0.13, 0.37] | 0.09 [-0.29, 0.46] | -0.18 [-0.45, 0.08] |
Trait:LAI | 0.19 [-0.28, 0.66] | 0.06 [-0.21, 0.33] | -0.30 [-0.66, 0.06] | 0.13 [-0.14, 0.41] |
R2m | 0.23 | 0.19 | 0.30 | 0.22 |
R2c | 0.45 | 0.41 | 0.50 | 0.37 |
表3 考虑种内性状变异下包含邻体与环境变量的幼苗存活模型的各参数估计值及区间
Table 3 Considering intraspecific trait variation, the parameter estimates and confidence intervals of the seedling survival model including neighborhood and environmental variables
模型参数 Model parameter | LA | SLA | LCC | LNC |
---|---|---|---|---|
Height | 0.39 [-0.05, 0.84] | 0.62 [0.23, 1.00] | 0.53 [0.15, 0.90] | 0.46 [0.12, 0.82] |
TI | -0.41 [-0.76, -0.07] | -0.18 [-0.47, 0.10] | 0.05 [-0.37, 0.50] | -0.28 [-0.53, -0.03] |
CI | -0.05 [-0.31, 0.22] | -0.12 [-0.40, 0.16] | -0.10 [-0.37, 0.17] | -0.07 [-0.31, 0.18] |
Trait | 0.70 [0.06, 1.34] | 0.32 [-0.08, 0.71] | -0.66 [-1.10, -0.22] | -0.20 [-0.65, 0.01] |
PC1 | 0.51 [0.20, 0.83] | 0.48 [0.16, 0.80] | 0.58 [0.25, 0.90] | 0.52 [0.23, 0.81] |
PC2 | -0.39 [-0.70, -0.08] | -0.37 [-0.69, -0.07] | -0.34 [-0.65, -0.04] | -0.35 [-0.63, -0.07] |
PC3 | -0.07 [-0.40, 0.25] | -0.13 [-0.45, 0.20] | -0.18 [-0.51, 0.16] | -0.08 [-0.37, 0.22] |
LAI | 0.07 [-0.30, 0.44] | 0.06 [-0.28, 0.40] | 0.19 [-0.19, 0.57] | 0.08 [-0.24, 0.40] |
Trait:PC1 | 0.05 [-0.30, 0.40] | 0.33 [0.02, 0.65] | -0.47 [-0.81, -0.14] | -0.41 [-0.68, -0.14] |
Trait:PC2 | -0.21 [-0.62, 0.19] | -0.03 [-0.26, 0.22] | -0.01 [-0.31, 0.29] | -0.06 [-0.30, 0.17] |
Trait:PC3 | 0.20 [-0.14, 0.54] | 0.12 [-0.13, 0.37] | 0.09 [-0.29, 0.46] | -0.18 [-0.45, 0.08] |
Trait:LAI | 0.19 [-0.28, 0.66] | 0.06 [-0.21, 0.33] | -0.30 [-0.66, 0.06] | 0.13 [-0.14, 0.41] |
R2m | 0.23 | 0.19 | 0.30 | 0.22 |
R2c | 0.45 | 0.41 | 0.50 | 0.37 |
图3 性状调节幼苗存活率对土壤元素含量的响应。 A, 叶碳含量(LCC)与存活率之间的斜率随土壤第一主成分(PC1)的变化。B, 土壤PC1最大和最小值的情况下, LCC与存活率之间的关系。
Fig. 3 Traits mediate the response of seedling survival rate to soil element content. A, The slope of the leaf carbon content (LCC)-seedling survival rate changes along the first principle component (PC1) of soil. B, The relationship between LCC and seedling survival rate under the maximum and minimum values of PC1 of soil.
[1] |
Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014). Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences of the United States of America, 111, 740-745.
DOI PMID |
[2] |
Bai XJ, Queenborough SA, Wang XG, Zhang J, Li BH, Yuan ZQ, Xing DL, Lin F, Ye J, Hao ZQ (2012). Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest. Oecologia, 170, 755-765.
DOI PMID |
[3] |
Baraloto C, Timothy Paine CE, Poorter L, Beauchene J, Bonal D, Domenach AM, Hérault B, Patiño S, Roggy JC, Chave J (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-1347.
DOI PMID |
[4] | Boerner REJ (1984). Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility. The Journal of Applied Ecology, 21, 1029-1040. |
[5] | Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26, 183-192. |
[6] | Cao J, Zhang CY, Zhao B, Li XY, Hou MM, Zhao XH (2018). Seedling density dependence regulated by population density and habitat filtering: evidence from a mixed primary broad-leaved Korean pine forest in Northeastern China. Annals of Forest Science, 75, 25. DOI: 10.1007/s13595-018-0706-x. |
[7] |
Chen L, Mi XC, Comita LS, Zhang LW, Ren HB, Ma KP (2010). Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecology Letters, 13, 695-704.
DOI PMID |
[8] | Chesson P (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366. |
[9] |
Comita LS, Hubbell SP (2009). Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology, 90, 328-334.
PMID |
[10] | Connell JH (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees//Boer PJ, Gradwell GR. Dynamics of Populations. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands. 298-312. |
[11] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[12] |
Crous KY, O’Sullivan OS, Zaragoza-Castells J, Bloomfield KJ, Negrini ACA, Meir P, Turnbull MH, Griffin KL, Atkin OK (2017). Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. New Phytologist, 215, 992-1008.
DOI PMID |
[13] | Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171. |
[14] |
Fortunel C, Valencia R, Wright SJ, Garwood NC, Kraft NJB (2016). Functional trait differences influence neighbourhood interactions in a hyperdiverse Amazonian forest. Ecology Letters, 19, 1062-1070.
DOI PMID |
[15] |
Green PT, Harms KE, Connell JH (2014). Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 111, 18649-18654.
DOI PMID |
[16] | Hao M, Messier C, Geng Y, Zhang C, Zhao X, von Gadow K (2020). Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. European Journal of Forest Research, 139, 959-968. |
[17] | Iida Y, Kohyama TS, Swenson NG, Su S, Chen C, Chiang JM, Sun I (2014). Linking functional traits and demographic rates in a subtropical tree community: the importance of size dependency. Journal of Ecology, 102, 641-650. |
[18] | Janzen DH (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528. |
[19] | Jiang F (2021). Variation of Plant Functional Traits and Maintenance of Diversity in Temperate Forests. PhD dissertation, Northeast Forestry University, Harbin. |
[姜峰 (2021). 温带森林植物功能性状变异与多样性维持机制. 博士毕业论文, 东北林业大学, 哈尔滨.] | |
[20] | Jiang F, Jin GZ (2021). Functional traits influence plant survival depending on environmental contexts and life stages in an old-growth temperate forest. Journal of Plant Ecology, 14, 981-994. |
[21] | Johnson DJ, Condit R, Hubbell SP, Comita LS (2017). Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proceedings of the Royal Society B: Biological Sciences, 284, 20172210. DOI: 10.1098/rspb.2017.2210. |
[22] | Keddy PA (1992). Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science, 3, 157-164. |
[23] |
Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012). Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters, 15, 831-840.
DOI PMID |
[24] |
Laughlin DC (2018). Rugged fitness landscapes and Darwinian demons in trait-based ecology. New Phytologist, 217, 501-503.
DOI PMID |
[25] |
Laughlin DC, Strahan RT, Adler PB, Moore MM (2018). Survival rates indicate that correlations between community- weighted mean traits and environments can be unreliable estimates of the adaptive value of traits. Ecology Letters, 21, 411-421.
DOI PMID |
[26] |
Lebrija-Trejos E, Reich PB, Hernández A, Wright SJ (2016). Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecology Letters, 19, 1071-1080.
DOI PMID |
[27] |
Li Y, Jiang Y, Shipley B, Li B, Luo W, Chen Y, Zhao K, He D, Rodríguez-Hernández DI, Chu C (2021). The complexity of trait-environment performance landscapes in a local subtropical forest. New Phytologist, 229, 1388-1397.
DOI PMID |
[28] |
Liu X, Swenson NG, Lin D, Mi X, Umaña MN, Schmid B, Ma K (2016). Linking individual-level functional traits to tree growth in a subtropical forest. Ecology, 97, 2396-2405.
DOI PMID |
[29] | Lu RK (2000). Soil and Agro-chemistry Analytical Methods. China Agricultural Science and Technology Press, Beijing. |
[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京. ] | |
[30] | MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385. |
[31] | McGill B, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185. |
[32] | Meng LJ, Zhang CY, Yao J, Zhao XH (2019). Effects of density and habitat on arbor seedling survival in a mixed conifer and broad-leaved forest in Jiaohe, Jilin Province. Forest Research, 55(11), 172-180. |
[孟令君, 张春雨, 姚杰, 赵秀海 (2019). 吉林蛟河针阔混交林乔木幼苗存活对密度和生境的响应. 林业科学, 55(11), 172-180.] | |
[33] |
Milla R, Reich PB (2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2114.
DOI PMID |
[34] |
Miller JED, Damschen EI, Ives AR (2019). Functional traits and community composition: a comparison among community-weighted means, weighted correlations, and multilevel models. Methods in Ecology and Evolution, 10, 415-425.
DOI |
[35] | Nakagawa S, Schielzeth H (2013). A general and simple method for obtaining R2 from generalized linear mixed- effects models. Methods in Ecology and Evolution, 4, 133-142. |
[36] |
Paine CET, Norden N, Chave J, Forget PM, Fortunel C, Dexter KG, Baraloto C (2012). Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest. Ecology Letters, 15, 34-41.
DOI PMID |
[37] | Peters HA (2003). Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters, 6, 757-765. |
[38] |
Poorter L (2007). Are species adapted to their regeneration niche, adult niche, or both? The American Naturalist, 169, 433-442.
PMID |
[39] |
Poorter L, Castilho CV, Schietti J, Oliveira RS, Costa FRC (2018). Can traits predict individual growth performance? A test in a hyperdiverse tropical forest. New Phytologist, 219, 109-121.
DOI PMID |
[40] | Pu XC, Umaña MN, Jin GZ (2020). Trait-mediated neighbor effects on plant survival depend on life stages and stage-specific traits in a temperate forest. Forest Ecology and Management, 472, 118250. DOI: 10.1016/j.foreco.2020.118250. |
[41] | Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[42] |
Rozendaal DMA, Chazdon RL (2015). Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecological Applications, 25, 506-516.
PMID |
[43] | Santiago LS, Wright SJ (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21, 19-27. |
[44] |
Umaña MN, Forero-Montaña J, Muscarella R, Nytch CJ, Thompson J, Uriarte M, Zimmerman J, Swenson NG (2016). Interspecific functional convergence and divergence and intraspecific negative density dependence underlie the seed-to-seedling transition in tropical trees. The American Naturalist, 187, 99-109.
DOI PMID |
[45] | Uriarte M, Condit R, Canham CD, Hubbell SP (2004). A spatially explicit model of sapling growth in a tropical forest: Does the identity of neighbours matter? Journal of Ecology, 92, 348-360. |
[46] | Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252. |
[47] | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. |
[48] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[49] |
Wright JS (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1-14.
DOI PMID |
[50] |
Wu J, Swenson NG, Brown C, Zhang C, Yang J, Ci X, Li J, Sha L, Cao M, Lin L (2016). How does habitat filtering affect the detection of conspecific and phylogenetic density dependence? Ecology, 97, 1182-1193.
PMID |
[51] | Yang J, Cao M, Swenson NG (2018). Why functional traits do not predict tree demographic rates. Trends in Ecology & Evolution, 33, 326-336. |
[52] | Yang J, Song X, Zambrano J, Chen Y, Cao M, Deng X, Zhang W, Yang X, Zhang G, Tang Y, Swenson NG (2021). Intraspecific variation in tree growth responses to neighbourhood composition and seasonal drought in a tropical forest. Journal of Ecology, 109, 26-37. |
[53] | Yao J, Bachelot B, Meng L, Qin J, Zhao X, Zhang C (2020). Abiotic niche partitioning and negative density dependence across multiple life stages in a temperate forest in northeastern China. Journal of Ecology, 108, 1299-1310. |
[1] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[2] | 江蓝, 魏晨思, 何中声, 朱静, 邢聪, 王雪琳, 刘金福, 沈彩霞, 施友文. 格氏栲天然林林窗植物群落功能性状的变异[J]. 植物生态学报, 2022, 46(3): 267-279. |
[3] | 郑珊珊, 陈旭波, 许微楠, 骆争荣, 夏更寿. 外来种-本地种亲缘关系对外来植物归化和入侵的影响[J]. 植物生态学报, 2018, 42(10): 990-999. |
[4] | 闫琰, 张新娜, 姚杰, 张春雨, 赵秀海. 吉林蛟河不同演替阶段针阔混交林乔木幼苗数量组成及其时间动态[J]. 植物生态学报, 2016, 40(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19