植物生态学报 ›› 2023, Vol. 47 ›› Issue (10): 1333-1355.DOI: 10.17521/cjpe.2023.0055
所属专题: 全球变化与生态系统; 生态系统结构与功能; 菌根真菌
• 综述 • 下一篇
赵榕江1,3, 陈焘2,3, 董丽佳4, 郭辉5, 马海鲲6, 宋旭1,3, 王明刚7, 薛伟8, 杨强1,3,*()
收稿日期:
2023-02-23
接受日期:
2023-05-15
出版日期:
2023-10-20
发布日期:
2023-11-23
通讯作者:
* (基金资助:
ZHAO Rong-Jiang1,3, CHEN Tao2,3, DONG Li-Jia4, GUO Hui5, MA Hai-Kun6, SONG Xu1,3, WANG Ming-Gang7, XUE Wei8, YANG Qiang1,3,*()
Received:
2023-02-23
Accepted:
2023-05-15
Online:
2023-10-20
Published:
2023-11-23
Contact:
* (Supported by:
摘要:
植物-土壤反馈实验是研究植物与土壤生物群落互作的一种重要手段。植物-土壤反馈是指植物生长改变了土壤物理结构、化学性质和生物群落组成, 这种改变反过来影响植物个体生长、种群消长和群落动态的过程。植物-土壤反馈研究可为生物多样性的维持、农业的可持续发展、退化生态系统的恢复等提供重要的理论依据。该文首先介绍了植物-土壤反馈的概念和研究方法。其次, 综述了植物-土壤反馈的研究进展, 即植物-土壤反馈在植物物种多样性的维持、植物群落演替、植物入侵与物种迁移、陆地生态系统对气候变化的响应、植物地上-地下多营养级生物互作、退化生态系统恢复、不同农业种植制度下的作物表现等方面具有的重要意义。最后, 基于上述研究进展, 提出了该领域的未来发展趋势, 包括: (1)研究对象: 从单一物种扩展到群落水平; (2)研究地点: 从温室转移到自然生态系统; (3)实际应用: 从理论研究到生态实践。
赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展. 植物生态学报, 2023, 47(10): 1333-1355. DOI: 10.17521/cjpe.2023.0055
ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang. Progress of plant-soil feedback in ecology studies. Chinese Journal of Plant Ecology, 2023, 47(10): 1333-1355. DOI: 10.17521/cjpe.2023.0055
图1 植物-土壤反馈概念模式图。土壤α和土壤β分别表示物种A和物种B生长所驯化的土壤生物群落。αA和βB分别表示物种A引起的土壤生物群落(土壤α)变化对物种A的同种反馈和物种B引起的土壤生物群落(土壤β)变化对物种B的同种反馈。αB和βA分别表示物种A引起的土壤生物群落(土壤α)变化对物种B的异种反馈和物种B引起的土壤生物群落(土壤β)变化对物种A的异种反馈。
Fig. 1 An illustration of plant-soil feedback. Soil α and soil β represent the soil biological community conditioned by the growth of species A and B, respectively. αA and βB represent the conspecific plant-soil feedback through changes in the soil biological community of species A on species A and vice versa. αB and βA represent the heterospecific plant-soil feedback through changes in the soil biological community of species A on species B and vice versa.
图2 植物-土壤反馈两阶段实验设计图。在驯化阶段, 让物种A和物种B在同质土壤中生长一段时间, 以驯化出特定的土壤生物群落, 分别是土壤α和土壤β。在反馈阶段, 将物种A和物种B的新个体分别种植在由自身驯化的土壤(同种土壤)和由另一植物驯化的土壤(异种土壤)中, 生长一段时间后测量物种A和物种B在同种土壤中的生长表现(αA、βB)和异种土壤中的生长表现(βA、αB)。对照组是未经植物驯化或是经植物驯化后的灭菌土壤γ。物种A和物种B在对照土壤γ中的生长表现记作γA和γB。
Fig. 2 Two-phase experiments of plant-soil feedback. In the conditioning stage, species A and B are grown in homogeneous soil for a period of time, which results in species-specific soil biological communities, namely soil α and soil β, respectively. In the feedback stage, the new individuals of species A are planted in the conspecific soil conditioned by species A and the heterospecific soil conditioned by species B, and so are species B. After growing for a period of time, the performances of species A and B in the conspecific soil (αA, βB) and the heterospecific soil (βA, αB) are measured. Unconditioned or sterilized soil (soil γ) as a control. The performances of species A and B in the soil γ are recorded as γA and γB.
阶段 Phase | 研究方法 Research method | 影响因素 Influence factor |
---|---|---|
驯化阶段 Conditioning phase | 在温室、室外盆栽或大田中人工栽培特定植物/群落; 或是直接选取特定植物长期生长下的自然土壤 Cultivation of specific plants in a greenhouse, outdoor pot, or field plot; or the selection of natural soil under the long-term growth of specific plants | 植物的功能特性、丰度、物种组成和多样性、植物根系分泌物和凋落物的成分及数量等 Plant functional characteristics, abundance, species composition and diversity, component and quantity of plant root exudates and litters, etc. |
反馈阶段 Feedback phase | 比较植物在“自身驯化后的土壤”和“其他植物驯化后的土壤”中的生长差异 Compare the performance of plants growing in “own soil” and “foreign soil” | 土壤微生物群落组成及其特异性、土壤食物网中各功能群多样性和物种丰度等 The composition and specificity of soil microbial community, functional group diversity and species abundance in soil food web, etc. |
比较灭菌与未灭菌土壤中新种植的植物的生长表现 Compare the performance of newly planted plants growing in sterilized and unsterilized soil | ||
比较全土灭菌与全土灭菌+接种土壤微生物造成的植物生长差异 Compare the performance of plants growing in “sterilized whole-soil with soil microorganism inoculum” and “sterilized whole-soil” | ||
通过土壤杀真菌剂、杀细菌剂、杀线虫剂等探究土壤特定生物类群在植物-土壤反馈中所起的作用 Explore the role of soil specific biota group in plant-soil feedback by applying soil fungicides, bactericides, and nematicides | ||
采用湿筛法分离土壤, 将得到的大小不同的土壤有机体分别接种到灭菌土壤中来检验土壤中不同粒径大小的生物类群对植物-土壤反馈的影响 Separate soil by the wet sieving method and inoculate soil organisms of different sizes into sterilized soil to test the effects of different-sized soil biota groups on plant-soil feedback |
表1 植物-土壤反馈的研究方法及影响反馈结果的因素
Table 1 Research methods and factors influencing feedback results in plant-soil feedback
阶段 Phase | 研究方法 Research method | 影响因素 Influence factor |
---|---|---|
驯化阶段 Conditioning phase | 在温室、室外盆栽或大田中人工栽培特定植物/群落; 或是直接选取特定植物长期生长下的自然土壤 Cultivation of specific plants in a greenhouse, outdoor pot, or field plot; or the selection of natural soil under the long-term growth of specific plants | 植物的功能特性、丰度、物种组成和多样性、植物根系分泌物和凋落物的成分及数量等 Plant functional characteristics, abundance, species composition and diversity, component and quantity of plant root exudates and litters, etc. |
反馈阶段 Feedback phase | 比较植物在“自身驯化后的土壤”和“其他植物驯化后的土壤”中的生长差异 Compare the performance of plants growing in “own soil” and “foreign soil” | 土壤微生物群落组成及其特异性、土壤食物网中各功能群多样性和物种丰度等 The composition and specificity of soil microbial community, functional group diversity and species abundance in soil food web, etc. |
比较灭菌与未灭菌土壤中新种植的植物的生长表现 Compare the performance of newly planted plants growing in sterilized and unsterilized soil | ||
比较全土灭菌与全土灭菌+接种土壤微生物造成的植物生长差异 Compare the performance of plants growing in “sterilized whole-soil with soil microorganism inoculum” and “sterilized whole-soil” | ||
通过土壤杀真菌剂、杀细菌剂、杀线虫剂等探究土壤特定生物类群在植物-土壤反馈中所起的作用 Explore the role of soil specific biota group in plant-soil feedback by applying soil fungicides, bactericides, and nematicides | ||
采用湿筛法分离土壤, 将得到的大小不同的土壤有机体分别接种到灭菌土壤中来检验土壤中不同粒径大小的生物类群对植物-土壤反馈的影响 Separate soil by the wet sieving method and inoculate soil organisms of different sizes into sterilized soil to test the effects of different-sized soil biota groups on plant-soil feedback |
图3 植物-土壤反馈与植物群落演替。土壤生物对各演替阶段植物的反馈效应影响着植物演替过程中的物种替代。红色箭头表示土壤生物对植物的负反馈效应, 绿色箭头表示土壤生物对植物的正反馈效应。箭头粗细表示反馈效应的强弱。+, 积极影响; -, 消极影响。
Fig. 3 Plant-soil feedback and plant community succession. The feedback effect of soil organisms on plants at each succession stage affects the species substitution in the process of plant succession. The red arrow indicates the negative feedback effect of soil organisms on plants, and the green arrow indicates the positive feedback effect of soil organisms on plants. The thickness of the arrow indicates the strength of the feedback effect. +, positive influence; -, negative influence.
图4 植物-土壤反馈与植物入侵。外来入侵植物可以从原产地土传病原体导致的植物-土壤负反馈效应转变为入侵地土壤有益微生物或土壤养分介导的植物-土壤正反馈效应。红色箭头表示土壤生物对植物的负反馈效应, 绿色箭头表示土壤生物对植物的正反馈效应。箭头粗细表示反馈效应的强弱。黑色箭头表示具有影响。“+”表示积极影响。
Fig. 4 Plant-soil feedback and plant invasion. Invasive exotic plant species can switch from negative plant-soil feedback caused by soil-borne pathogens in their native range to positive feedback caused by beneficial soil microorganisms or soil nutrients in their invasive range. The red arrow indicates the negative feedback effect of soil organisms on plants and the green arrow indicates the positive feedback effect of soil organisms on plants. The thickness of the arrow indicates the strength of the feedback effect. The black arrow indicates having influence. “+” means positive influence.
图5 植物-土壤反馈介导的地上-地下多营养级生物互作。驯化阶段的地上或地下植食作用可能通过影响土壤生物群落组成, 从而对后续植物的生长表现或防御特性造成反馈作用。反馈阶段的地上或地下植食作用可能会影响反馈阶段植物的生长表现和防御特性。植物-土壤反馈效应会进一步影响地上植食动物的生长表现。
Fig. 5 Pant-soil feedback effects on above- and below-ground multitrophic interactions. The aboveground or belowground herbivory in the conditioning phase may cause feedback on the growth performance or defense characteristics of plants that grow later in the soil by affecting the composition of soil biological communities. The aboveground or belowground herbivory in the feedback phase may affect the growth performance and defense characteristics of plants in the feedback phase. The plant-soil feedback effect could further affect the growth performance of aboveground herbivores.
[1] |
Abrahão A, Marhan S, Boeddinghaus RS, Nawaz A, Wubet T, Höelzel N, Klaus VH, Kleinebecker T, Freitag M, Hamer U, Oliveira RS, Lambers H, Kandeler E (2022). Microbial drivers of plant richness and productivity in a grassland restoration experiment along a gradient of land-use intensity. New Phytologist, 236, 1936-1950.
DOI URL |
[2] |
Ampt EA, van Ruijven J, Zwart MP, Raaijmakers JM, Termorshuizen AJ, Mommer L (2022). Plant neighbours can make or break the disease transmission chain of a fungal root pathogen. New Phytologist, 233, 1303-1316.
DOI URL |
[3] |
Augspurger CK, Kelly CK (1984). Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia, 61, 211-217.
DOI PMID |
[4] |
Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH (2009). Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology & Biochemistry, 41, 606-610.
DOI URL |
[5] |
Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85-88.
DOI |
[6] |
Bagchi R, Swinfield T, Gallery RE, Lewis OT, Gripenberg S, Narayan L, Freckleton RP (2010). Testing the Janzen- Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecology Letters, 13, 1262-1269.
DOI URL |
[7] |
Bainard LD, Koch AM, Gordon AM, Klironomos JN (2012). Temporal and compositional differences of arbuscular mycorrhizal fungal communities in conventional monocropping and tree-based intercropping systems. Soil Biology & Biochemistry, 45, 172-180.
DOI URL |
[8] |
Bardgett RD, van der Putten WH, (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
DOI |
[9] |
Baxendale C, Orwin KH, Poly F, Pommier T, Bardgett RD (2014). Are plant-soil feedback responses explained by plant traits? New Phytologist, 204, 408-423.
DOI PMID |
[10] | Beals KK, Moore JAM, Kivlin SN, Bayliss SLJ, Lumibao CY, Moorhead LC, Patel M, Summers JL, Ware IM, Bailey JK, Schweitzer JA (2020). Predicting plant-soil feedback in the field: meta-analysis reveals that competition and environmental stress differentially influence PSF. Frontiers in Ecology and Evolution, 8, 191. DOI: 10.3389/fevo.2020.00191. |
[11] | Beckman NG, Dybzinski R, Tilman D (2023). Short-term plant-soil feedback experiment fails to predict outcome of competition observed in long-term field experiment. Ecology, 104, e3883. DOI: 10.1002/ecy.3883. |
[12] |
Bennett JA, Klironomos J (2019). Mechanisms of plant-soil feedback: interactions among biotic and abiotic drivers. New Phytologist, 222, 91-96.
DOI PMID |
[13] |
Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, 355, 181-184.
DOI PMID |
[14] |
Berthelot C, Blaudez D, Beguiristain T, Chalot M, Leyval C (2018). Co-inoculation of Lolium perenne with Funneliformis mosseae and the dark septate endophyte Cadophora sp. in a trace element-polluted soil. Mycorrhiza, 28, 301-314.
DOI |
[15] |
Bever JD (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465-473.
DOI PMID |
[16] |
Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010). Rooting theories of plant community ecology in microbial interactions. Trends in Ecology & Evolution, 25, 468-478.
DOI URL |
[17] |
Bever JD, Westover KM, Antonovics J (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85, 561-573.
DOI URL |
[18] |
Bezemer TM, van der Putten WH, Martens H, van de Voorde TFJ, Mulder PPJ, Kostenko O (2013). Above- and below- ground herbivory effects on below-ground plant-fungus interactions and plant-soil feedback responses. Journal of Ecology, 101, 325-333.
DOI URL |
[19] |
Blossey B, Nuzzo V, Dávalos A, Mayer M, Dunbar R, Landis DA, Evans JA, Minter B (2021). Residence time determines invasiveness and performance of garlic mustard (Alliaria petiolata) in North America. Ecology Letters, 24, 327-336.
DOI PMID |
[20] | Brinkman EP, van der Putten WH, Bakker EJ, Verhoeven KJF (2010). Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology, 98, 1063-1073. |
[21] | Cadot S, Gfeller V, Hu L, Singh N, Sánchez-Vallet A, Glauser G, Croll D, Erb M, van der Heijden MGA, Schlaeppi K (2021). Soil composition and plant genotype determine benzoxazinoid-mediated plant-soil feedbacks in cereals. Plant, Cell & Environment, 44, 3732-3744. |
[22] |
Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos J (2008). Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology, 89, 1043-1055.
PMID |
[23] |
Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004). Soil biota and exotic plant invasion. Nature, 427, 731-733.
DOI |
[24] |
Caruso T, Rillig MC (2023). A general stochastic model shows that plant-soil feedbacks can buffer plant species from extinction risks in unpredictable environments. Plant and Soil, 485, 45-56.
DOI |
[25] | Castillo-Garcia M, Alados CL, Ramos J, Moret D, Barrantes O, Pueyo Y (2022). Understanding herbivore-plant-soil feedbacks to improve grazing management on Mediterranean mountain grasslands. Agriculture, Ecosystems & Environment, 327, 107833. DOI: 10.1016/j.agee.2021.107833. |
[26] |
Chapin III FS, Walker LR, Fastie CL, Sharman LC (1994). Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs, 64, 149-175.
DOI URL |
[27] | Chen C, Chen HYH, Chen XL, Huang ZQ (2019a). Meta- analysis shows positive effects of plant diversity on microbial biomass and respiration. Nature Communications, 10, 1332. DOI: 10.1038/s41467-019-09258-y. |
[28] |
Chen D, van Kleunen M (2022). Invasional meltdown mediated by plant-soil feedbacks may depend on community diversity. New Phytologist, 235, 1589-1598.
DOI URL |
[29] |
Chen L, Swenson NG, Ji NN, Mi XC, Ren HB, Guo LD, Ma KP (2019b). Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science, 366, 124-128.
DOI URL |
[30] | Chung YA, Collins SL, Rudgers JA (2019a). Connecting plant-soil feedbacks to long-term stability in a desert grassland. Ecology, 100, e02756. DOI: 10.1002/ecy.2756. |
[31] |
Chung YA, Jumpponen A, Rudgers JA (2019b). Divergence in diversity and composition of root-associated fungi between greenhouse and field studies in a semiarid grassland. Microbial Ecology, 78, 122-135.
DOI |
[32] | Collins CD, Bever JD, Hersh MH (2020). Community context for mechanisms of disease dilution:insights from linking epidemiology and plant-soil feedback theory. Annals of the New York Academy of Sciences, 1469, 65-85. |
[33] |
Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010). Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330-332.
DOI PMID |
[34] |
Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y (2014). Testing predictions of the Janzen-Connell hypothesis: a meta- analysis of experimental evidence for distance- and density-dependent seed and seedling survival. Journal of Ecology, 102, 845-856.
PMID |
[35] | Connell JH (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in forest trees//den Boer PJ, Gradwell GR. Dynamics of Populations. Center for Agricultural Publishing and Documentation, Wageningen, the Netherlands. 298-312. |
[36] | Cortois R, Schröder-Georgi T, Weigelt A, van der Putten WH, de Deyn GB, (2016). Plant-soil feedbacks: role of plant functional group and plant traits. Journal of Ecology, 104, 1608-1617. |
[37] |
D’Angioli AM, Giles AL, Costa PB, Wolfsdorf G, Pecoral LLF, Verona L, Piccolo F, Sampaio AB, Schmidt IB, Rowland L, Lambers H, Kandeler E, Oliveira RS, Abrahão A (2022). Abandoned pastures and restored savannas have distinct patterns of plant-soil feedback and nutrient cycling compared with native Brazilian savannas. Journal of Applied Ecology, 59, 1863-1873.
DOI URL |
[38] | Dai GX (2019). The fallow system and the land system in the periods of warring states, Qin and Han. Journal of Social Sciences, (10), 125-144. |
[代国玺 (2019). 休耕制与战国秦汉的土地制度. 社会科学, (10), 125-144.] | |
[39] |
Davis EJ, Grove S, Haubensak KA, Parker IM (2021). A widespread nitrogen-fixing invader experiences negative soil feedbacks despite enhancing the abundance of beneficial soil microbes. Plant and Soil, 462, 257-271.
DOI |
[40] | de Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, Verhoef HA, Bezemer TM, van der Putten WH (2003). Soil invertebrate fauna enhances grassland succession and diversity. Nature, 422, 711-713. |
[41] |
de Long JR, Heinen R, Heinze J, Morriën E, Png GK, Sapsford SJ, Teste FP, Fry EL (2023). Plant-soil feedback: incorporating untested influential drivers and reconciling terminology. Plant and Soil, 485, 7-43.
DOI |
[42] |
Delory BM, Weidlich EWA, von Gillhaussen P, Temperton VM (2019). When history matters: the overlooked role of priority effects in grassland overyielding. Functional Ecology, 33, 2369-2380.
DOI URL |
[43] |
Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F (2021). High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576.
DOI |
[44] |
Diez JM, Dickie I, Edwards G, Hulme PE, Sullivan JJ, Duncan RP (2010). Negative soil feedbacks accumulate over time for non-native plant species. Ecology Letters, 13, 803-809.
DOI PMID |
[45] | Domínguez-Begines J, Ávila JM, García LV, Gómez-Aparicio L (2021). Disentangling the role of oomycete soil pathogens as drivers of plant-soil feedbacks. Ecology, 102, e03430. DOI: 10.1002/ecy.3430. |
[46] | Dong LJ, Ma LN, He WM (2021). Arbuscular mycorrhizal fungi help explain invasion success of Solidago canadensis. Applied Soil Ecology, 157, 103763. DOI: 10.1016/j.apsoil.2020.103763. |
[47] |
Dostálek T, Münzbergová Z, Kladivová A, Macel M (2016). Plant-soil feedback in native vs. invasive populations of a range expanding plant. Plant and Soil, 399, 209-220.
DOI URL |
[48] | Dudenhöeffer JH, Luecke NC, Crawford KM (2022). Changes in precipitation patterns can destabilize plant species coexistence via changes in plant-soil feedback. Nature Ecology & Evolution, 6, 546-554. |
[49] | Duell EB, Zaiger K, Bever JD, Wilson GWT (2019). Climate affects plant-soil feedback of native and invasive grasses: negative feedbacks in stable but not in variable environments. Frontiers in Ecology and Evolution, 7, 419. DOI: 10.3389/fevo.2019.00419. |
[50] |
Engelkes T, Morriën E, Verhoeven KJF, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WLM, van der Putten WH(2008). Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature, 456, 946-948.
DOI |
[51] |
Eppinga MB, Rietkerk M, Dekker SC, de Ruiter PC, van der Putten WH (2006). Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos, 114, 168-176.
DOI URL |
[52] |
Flory SL, Clay K (2013). Pathogen accumulation and long-term dynamics of plant invasions. Journal of Ecology, 101, 607-613.
DOI URL |
[53] | Forero LE, Kulmatiski A, Grenzer J, Norton JM (2021). Plant-soil feedbacks help explain biodiversity-productivity relationships. Communications Biology, 4, 789. DOI: 10.1038/s42003-021-02329-1. |
[54] |
Franco AR, Sousa NR, Ramos MA, Oliveira RS, Castro PML (2014). Diversity and persistence of ectomycorrhizal fungi and their effect on nursery-inoculated Pinus pinaster in a post-fire plantation in Northern Portugal. Microbial Ecology, 68, 761-772.
DOI URL |
[55] |
Friman J, Karssemeijer PN, Haller J, de Kreek K, van Loon JJA, Dicke M (2021). Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage-insect interactions through plant-soil feedback. New Phytologist, 232, 2475-2490.
DOI PMID |
[56] |
Fry EL, Johnson GN, Hall AL, Pritchard WJ, Bullock JM, Bardgett RD (2018). Drought neutralises plant-soil feedback of two mesic grassland forbs. Oecologia, 186, 1113-1125.
DOI PMID |
[57] |
Fujii S, Mori AS, Koide D, Makoto K, Matsuoka S, Osono T, Isbell F (2017). Disentangling relationships between plant diversity and decomposition processes under forest restoration. Journal of Applied Ecology, 54, 80-90.
DOI URL |
[58] |
Fukami T (2015). Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1-23.
DOI URL |
[59] |
Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008). Restoration through reassembly: plant traits and invasion resistance. Trends in Ecology & Evolution, 23, 695-703.
DOI URL |
[60] | Furey GN, Tilman D (2021). Plant biodiversity and the regeneration of soil fertility. Proceedings of the National Academy of Sciences of the United States of America, 118, e2111321118. DOI: 10.1073/pnas.2111321118. |
[61] |
Genre A, Lanfranco L, Perotto S, Bonfante P (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18, 649-660.
DOI |
[62] | Guo X, Wang P, Wang XJ, Li YM, Ji BM (2022). Specific plant mycorrhizal responses are linked to mycorrhizal fungal species interactions. Frontiers in Plant Science, 13, 930069. DOI: 10.3389/fpls.2022.930069. |
[63] | Hannula SE, Heinen R, Huberty M, Steinauer K, de Long JR, Jongen R, Bezemer TM (2021). Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 12, 5686. DOI: 10.1038/s41467-021-25971-z. |
[64] | Hassan K, Carrillo Y, Nielsen UN (2021). The effect of prolonged drought legacies on plant-soil feedbacks. Journal of Vegetation Science, 32, e13100. DOI: 10.1111/jvs.13100. |
[65] | Hassan K, Carrillo Y, Nielsen UN (2022). Prolonged drought causes negative plant-soil feedbacks in grassland species under field conditions. Soil Biology & Biochemistry, 172, 108772. DOI: 10.1016/j.soilbio.2022.108772. |
[66] | He JS, Liu ZP, Yao T, Sun SC, Lü Z, Hu XW, Cao GM, Wu XW, Li L, Bu HY, Zhu JX (2020). Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 38(17), 66-80. |
[贺金生, 刘志鹏, 姚拓, 孙书存, 吕植, 胡小文, 曹广民, 吴新卫, 李黎, 卜海燕, 朱剑霄 (2020). 青藏高原退化草地恢复的制约因子及修复技术. 科技导报, 38(17), 66-80.] | |
[67] |
Heinen R, Hannula SE, de Long JR, Huberty M, Jongen R, Kielak A, Steinauer K, Zhu F, Bezemer TM (2020). Plant community composition steers grassland vegetation via soil legacy effects. Ecology Letters, 23, 973-982.
DOI PMID |
[68] |
Heinen R, Thakur MP, de Fries JRH, Steinauer K, Vandenbrande S, Jongen R, Bezemer TM (2022). Foliar herbivory on plants creates soil legacy effects that impact future insect herbivore growth via changes in plant community biomass allocation. Functional Ecology, 36, 1047-1062.
DOI URL |
[69] |
Heinen R, van der Sluijs M, Biere A, Harvey JA, Bezemer TM (2018). Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects. Journal of Ecology, 106, 1217-1229.
DOI URL |
[70] |
Heinze J, Joshi J (2018). Plant-soil feedback effects can be masked by aboveground herbivory under natural field conditions. Oecologia, 186, 235-246.
DOI PMID |
[71] | Heinze J, Wacker A, Kulmatiski A (2020). Plant-soil feedback effects altered by aboveground herbivory explain plant species abundance in the landscape. Ecology, 101, e03023. DOI: 10.1007/s11258-020-01045-w. |
[72] | Hoestra H (1968). Replant Diseases of Apple in the Netherlands. PhD dissertation, Wageningen University, Wageningen, the Netherlands. |
[73] |
Hu J, Wei Z, Weidner S, Friman VP, Xu YC, Shen QR, Jousset A (2017). Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity- mediated ecosystem functioning. Soil Biology & Biochemistry, 113, 122-129.
DOI URL |
[74] | Hu LF, Robert CAM, Cadot S, Zhang X, Ye M, Li BB, Manzo D, Chervet N, Steinger T, van der Heijden MGA, Schlaeppi K, Erb M (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9, 2738. DOI: 10.1038/s41467-018-05122-7. |
[75] |
Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH, Yu JQ (2013). Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. Journal of Chemical Ecology, 39, 232-242.
DOI URL |
[76] |
Huberty M, Steinauer K, Heinen R, Jongen R, Hannula SE, Choi YH, Bezemer TM (2022). Temporal changes in plant-soil feedback effects on microbial networks, leaf metabolomics and plant-insect interactions. Journal of Ecology, 110, 1328-1343.
DOI URL |
[77] |
Ibañez TS, Wardle DA, Gundale MJ, Nilsson MC (2022). Effects of soil abiotic and biotic factors on tree seedling regeneration following a boreal forest wildfire. Ecosystems, 25, 471-487.
DOI |
[78] |
Janzen DH (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528.
DOI URL |
[79] |
Jia P, Liang JL, Yang SX, Zhang SC, Liu J, Liang ZW, Li FM, Zeng QW, Fang Z, Liao B, Shu WS, Cadotte MW, Li JT (2020). Plant diversity enhances the reclamation of degraded lands by stimulating plant-soil feedbacks. Journal of Applied Ecology, 57, 1258-1270.
DOI URL |
[80] |
Jiang J, Abbott KC, Baudena M, Eppinga MB, Umbanhowar JA, Bever JD (2020). Pathogens and mutualists as joint drivers of host species coexistence and turnover: implications for plant competition and succession. The American Naturalist, 195, 591-602.
DOI PMID |
[81] |
Jing JY, Bezemer TM, van der Putten WH(2015). Complementarity and selection effects in early and mid-successional plant communities are differentially affected by plant-soil feedback. Journal of Ecology, 103, 641-647.
DOI URL |
[82] |
Jing JY, Cong WF, Bezemer TM (2022). Legacies at work: plant-soil-microbiome interactions underpinning agricultural sustainability. Trends in Plant Science, 27, 781-792.
DOI PMID |
[83] |
Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012). Conspecific negative density dependence and forest diversity. Science, 336, 904-907.
DOI PMID |
[84] |
Kardol P, Bezemer TM, van der Putten WH(2006). Temporal variation in plant-soil feedback controls succession. Ecology Letters, 9, 1080-1088.
DOI PMID |
[85] |
Kardol P, Cornips NJ, Bakx-Schotman JMT, van der Putten WH(2007). Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecological Monographs, 77, 147-162.
DOI URL |
[86] | Ke PJ (2022). Water shifts the balance of coexistence. Nature Ecology & Evolution, 6, 496-497. |
[87] |
Ke PJ, Miki T, Ding TS (2015). The soil microbial community predicts the importance of plant traits in plant-soil feedback. New Phytologist, 206, 329-341.
DOI URL |
[88] |
Kong HG, Song GC, Ryu CM (2019). Inheritance of seed and rhizosphere microbial communities through plant-soil feedback and soil memory. Environmental Microbiology Reports, 11, 479-486.
DOI PMID |
[89] |
Koorem K, Snoek BL, Bloem J, Geisen S, Kostenko O, Manrubia M, Ramirez KS, Weser C, Wilschut RA, van der Putten WH(2020). Community-level interactions between plants and soil biota during range expansion. Journal of Ecology, 108, 1860-1873.
DOI PMID |
[90] |
Körner C, Stöcklin J, Reuther-Thiébaud L, Pelaez-Riedl S (2008). Small differences in arrival time influence composition and productivity of plant communities. New Phytologist, 177, 698-705.
DOI PMID |
[91] |
Kos M, Tuijl MAB, de Roo J, Mulder PPJ, Bezemer TM (2015). Species-specific plant-soil feedback effects on above-ground plant-insect interactions. Journal of Ecology, 103, 904-914.
DOI URL |
[92] |
Kostenko O, van de Voorde TFJ, Mulder PPJ, van der Putten WH, Bezemer TM (2012). Legacy effects of aboveground- belowground interactions. Ecology Letters, 15, 813-821.
DOI PMID |
[93] | Kowalski KP, Bacon C, Bickford W, Braun H, Clay K, Leduc-Lapierre M, Lillard E, McCormick MK, Nelson E, Torres M, White J, Wilcox DA (2015). Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Frontiers in Microbiology, 6, 95. DOI: 10.3389/fmicb.2015.00095. |
[94] | Koyama A, Dias T, Antunes PM (2022). Application of plant-soil feedbacks in the selection of crop rotation sequences. Ecological Applications, 32, e2501. DOI: 10.1002/eap.2501. |
[95] |
Koziol L, Bever JD (2015). Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology, 96, 1768-1774.
PMID |
[96] |
Koziol L, Bever JD (2017). The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. Journal of Applied Ecology, 54, 1301-1309.
DOI URL |
[97] | Koziol L, McKenna TP, Crews TE, Bever JD (2023). Native arbuscular mycorrhizal fungi promote native grassland diversity and suppress weeds 4 years following inoculation. Restoration Ecology, 31, e13772. DOI: 10.1111/rec.13772. |
[98] |
Kulmatiski A, Beard KH, Norton JM, Heavilin JE, Forero LE, Grenzer J (2017). Live long and prosper: plant-soil feedback, lifespan, and landscape abundance covary. Ecology, 98, 3063-3073.
DOI PMID |
[99] |
Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008). Plant-soil feedbacks: a meta-analytical review. Ecology Letters, 11, 980-992.
DOI PMID |
[100] | Kulmatiski A, Kardol P (2008). Getting plant-soil feedbacks out of the greenhouse: experimental and conceptual approaches//Lüttge Y, Beyschlag W, Murata J. Progress in Botany—Genetics Phsiology Systematics Ecology. Springer, Berlin. 69, 449-472. |
[101] |
Laliberté E, Lambers H, Burgess TI, Wright SJ (2015). Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytologist, 206, 507-521.
DOI PMID |
[102] |
Lambers H, Raven JA, Shaver GR, Smith SE (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23, 95-103.
DOI URL |
[103] |
Lankau RA, Nuzzo V, Spyreas G, Davis AS (2009). Evolutionary limits ameliorate the negative impact of an invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 106, 15362-15367.
DOI PMID |
[104] | Larios L, Suding KN (2015). Competition and soil resource environment alter plant-soil feedbacks for native and exotic grasses. AoB PLANTS, 7, plu077. DOI: 10.1093/aobpla/plu077. |
[105] |
Lee MR, Bernhardt ES, van Bodegom PM, Cornelissen JHC, Kattge J, Laughlin DC, Niinemets Ü, Peñuelas J, Reich PB, Yguel B, Wright JP (2017). Invasive species’ leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a meta-analysis. New Phytologist, 213, 128-139.
DOI URL |
[106] | Leigh GJ (2004). The World’s Greatest Fix: A History of Nitrogen and Agriculture. Oxford University Press, New York. |
[107] |
Lekberg Y, Bever JD, Bunn RA, Callaway RM, Hart MM, Kivlin SN, Klironomos J, Larkin BG, Maron JL, Reinhart KO, Remke M, van der Putten WH(2018). Relative importance of competition and plant-soil feedback, their synergy, context dependency and implications for coexistence. Ecology Letters, 21, 1268-1281.
DOI PMID |
[108] | Li B, Li YY, Wu HM, Zhang FF, Li CJ, Li XX, Lambers H, Li L (2016). Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 113, 6496-6501. |
[109] | Li CJ, Stomph TJ, Makowski D, Li HG, Zhang CC, Zhang FS, van der Werf W(2023). The productive performance of intercropping. Proceedings of the National Academy of Sciences of the United States of America, 120, e2201886120. DOI: 10.1073/pnas.2201886120. |
[110] | Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus- deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104, 11192-11196. |
[111] |
Li XF, Wang ZG, Bao XG, Sun JH, Yang SC, Wang P, Wang CB, Wu JP, Liu XR, Tian XL, Wang Y, Li JP, Wang Y, Xia HY, Mei PP, et al. (2021). Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 4, 943-950.
DOI |
[112] | Li XL, Zhang Z, Lü XT, Li YH, Jin K, van der Putten WH(2022). Soil aggregate microbiomes steer plant community overyielding in ungrazed and intensively grazed grassland soils. Journal of Environmental Management, 321, 115919. DOI: 10.1016/j.jenvman.2022.115919. |
[113] |
Li XL, Zhou J, Peng F, Zhong HT, Lambers H (2021). Temporal trends of plant nutrient-acquisition strategies with soil age and their ecological significance. Chinese Journal of Plant Ecology, 45, 714-727.
DOI URL |
[李孝龙, 周俊, 彭飞, 钟宏韬, Lambers H(2021). 植物养分捕获策略随成土年龄的变化及生态学意义. 植物生态学报, 45, 714-727.]
DOI |
|
[114] | Liang MX, Johnson D, Burslem DFRP, Yu SX, Fang M, Taylor JD, Taylor AFS, Helgason T, Liu XB (2020). Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nature Communications, 11, 2636. DOI: 10.1038/s41467-020-16507-y. |
[115] |
Liang MX, Liu XB, Gilbert GS, Zheng Y, Luo S, Huang FM, Yu SX (2016). Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi. Ecology Letters, 19, 1448-1456.
DOI PMID |
[116] | Liang MX, Liu XB, Parker IM, Johnson D, Zheng Y, Luo S, Gilbert GS, Yu SX (2019). Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Science Advances, 5, eaax5088. DOI: 10.1126/sciadv.aax5088. |
[117] |
Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2008). Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytologist, 177, 706-714.
DOI PMID |
[118] | Liu C, Zhuang JY, Wang J, Fan GH, Feng M, Zhang ST (2022). Soil bacterial communities of three types of plants from ecological restoration areas and plant-growth promotional benefits of Microbacterium invictum (strain X-18). Frontiers in Microbiology, 13, 926037. DOI: 10.3389/fmicb.2022.926037. |
[119] |
Liu XB, Liang MX, Etienne RS, Gilbert GS, Yu SX (2016). Phylogenetic congruence between subtropical trees and their associated fungi. Ecology and Evolution, 6, 8412-8422.
DOI PMID |
[120] |
Liu XB, Liang MX, Etienne RS, Wang YF, Staehelin C, Yu SX (2012a). Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecology Letters, 15, 111-118.
DOI URL |
[121] | Liu Y, Fang SQ, Chesson P, He FL (2015). The effect of soil-borne pathogens depends on the abundance of host tree species. Nature Communications, 6, 10017. DOI: 10.1038/ncomms10017. |
[122] |
Liu Y, Yu SX, Xie ZP, Staehelin C (2012b). Analysis of a negative plant-soil feedback in a subtropical monsoon forest. Journal of Ecology, 100, 1019-1028.
DOI URL |
[123] |
Liu YC, Liu XJ, Li GY, Yang ZL, Liu SR (2021). Herbivory effects on leaf litter decomposition vary with specific leaf area in temperate mixed deciduous forest. Land Degradation & Development, 32, 757-765.
DOI URL |
[124] | Liu YJ, Huang W, Yang Q, Zheng YL, Li SP, Wu H, Ju RT, Sun Y, Ding JQ (2022). Research advances of plant invasion ecology over past 10 years. Biodiversity Science, 30, 22438. DOI: 10.17520/biods.2022438. |
[刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清 (2022). 近十年植物入侵生态学重要研究进展. 生物多样性, 30, 22438. DOI: 10.17520/biods.2022438.] | |
[125] |
Lü XT, Hu YY, Wolf AA, Han XG (2019). Species richness mediates within-species nutrient resorption: implications for the biodiversity-productivity relationship. Journal of Ecology, 107, 2346-2352.
DOI URL |
[126] |
Lubin TK, Schultz P, Bever JD, Alexander HM (2019). Are two strategies better than one? Manipulation of seed density and soil community in an experimental prairie restoration. Restoration Ecology, 27, 1021-1031.
DOI URL |
[127] | Ma HK, Pineda A, van der Wurff AWG, Raaijmakers C, Bezemer TM (2017). Plant-soil feedback effects on growth, defense and susceptibility to a soil-borne disease in a cut flower crop: species and functional group effects. Frontiers in Plant Science, 8, 2127. DOI: 10.3389/fpls.2017.02127. |
[128] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL |
[129] |
Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752-755.
DOI |
[130] |
Mangla S, Callaway RM (2008). Exotic invasive plant accumulates native soil pathogens which inhibit native plants. Journal of Ecology, 96, 58-67.
DOI URL |
[131] | Manrubia M, van der Putten WH, Weser C ten Hooven FC, Martens H, Brinkman EP, Geisen S, Ramirez KS, Veen GFC (2019). Soil functional responses to drought under range-expanding and native plant communities. Functional Ecology, 33, 2402-2416. |
[132] | Mariotte P, Mehrabi Z, Bezemer TM, de Deyn GB, Kulmatiski A, Drigo B, Veen GFC, van der Heijden MGA, Kardol P (2018). Plant-soil feedback: bridging natural and agricultural sciences. Trends in Ecology & Evolution, 33, 129-142. |
[133] |
Maron JL, Marler M, Klironomos JN, Cleveland CC (2011). Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters, 14, 36-41.
DOI PMID |
[134] | Marti G, Erb M, Boccard J, Glauser G, Doyen GR, Villard N, Robert CAM, Turlings TCJ, Rudaz S, Wolfender JL (2013). Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant, Cell & Environment, 36, 621-639. |
[135] |
McCarthy-Neumann S, Kobe RK (2010). Conspecific and heterospecific plant-soil feedbacks influence survivorship and growth of temperate tree seedlings. Journal of Ecology, 98, 408-418.
DOI URL |
[136] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, et al. (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[137] | Meisner A, de Deyn GB, de Boer W, van der Putten WH (2013). Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proceedings of the National Academy of Sciences of the United States of America, 110, 9835-9838. |
[138] | Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud ML, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen HB, et al. (2017). Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349. DOI: 10.1038/ncomms14349. |
[139] |
Morriën E, van der Putten WH(2013). Soil microbial community structure of range-expanding plant species differs from co-occurring natives. Journal of Ecology, 101, 1093-1102.
DOI URL |
[140] |
Olsen RJ, Hensler RF, Attoe OJ, Witzel SA, Peterson LA (1970). Fertilizer nitrogen and crop rotation in relation to movement of nitrate nitrogen through soil profiles. Soil Science Society of America Journal, 34, 448-452.
DOI URL |
[141] |
Packer A, Clay K (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278-281.
DOI |
[142] |
Petermann JS, Fergus AJF, Turnbull LA, Schmid B (2008). Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology, 89, 2399-2406.
DOI PMID |
[143] | Phillips ML, Aronson EL, Maltz MR, Allen EB (2020). Native and invasive inoculation sources modify fungal community assembly and biomass production of a chaparral shrub. Applied Soil Ecology, 147, 103370. DOI: 10.1016/j.apsoil.2019.103370. |
[144] |
Pineda A, Kaplan I, Bezemer TM (2017). Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science, 22, 770-778.
DOI PMID |
[145] |
Pineda A, Kaplan I, Hannula SE, Ghanem W, Bezemer TM (2020). Conditioning the soil microbiome through plant- soil feedbacks suppresses an aboveground insect pest. New Phytologist, 226, 595-608.
DOI PMID |
[146] | Policelli N, Horton TR, Hudon AT, Patterson TR, Bhatnagar JM (2020). Back to roots: the role of ectomycorrhizal fungi in boreal and temperate forest restoration. Frontiers in Forests and Global Change, 3, 97. DOI: 10.3389/ffgc.2020.00097. |
[147] | Pugnaire FI, Morillo JA, Peñuelas J, Reich PB, Bardgett RD, Gaxiola A, Wardle DA, van der Putten WH(2019). Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science Advances, 5, eaaz1834. DOI: 10.1126/sciadv.aaz1834. |
[148] |
Quan Q, He NP, Zhang Z, Zhang YH, Guo Y (2015). Nitrogen enrichment and grazing accelerate vegetation restoration in degraded grassland patches. Ecological Engineering, 75, 172-177.
DOI URL |
[149] |
Raaijmakers JM, Kiers ET (2022). Rewilding plant microbiomes. Science, 378, 599-600.
DOI PMID |
[150] | Ramirez KS, Snoek LB, Koorem K, Geisen S, Bloem LJ ten Hooven F, Kostenko O, Krigas N, Manrubia M, Caković D, van Raaij D, Tsiafouli MA, Vreš B, Čelik T, Weser C, et al. (2019). Range-expansion effects on the belowground plant microbiome. Nature Ecology & Evolution, 3, 604-611. |
[151] |
Reinhart KO, Callaway RM (2004). Soil biota facilitate exotic Acer invasions in Europe and North America. Ecological Applications, 14, 1737-1745.
DOI URL |
[152] |
Reinhart KO, Packer A, van der Putten WH, Clay K (2003). Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecology Letters, 6, 1046-1050.
DOI URL |
[153] |
Reinhart KO, Tytgat T, van der Putten WH, Clay K (2010). Virulence of soil-borne pathogens and invasion by Prunus serotina. New Phytologist, 186, 484-495.
DOI PMID |
[154] |
Ren LX, Su SM, Yang XM, Xu YC, Huang QW, Shen QR (2008). Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biology & Biochemistry, 40, 834-844.
DOI URL |
[155] |
Reynolds HL, Packer A, Bever JD, Clay K (2003). Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology, 84, 2281-2291.
DOI URL |
[156] | Saleem M, Arshad M, Hussain S, Bhatti AS (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34, 635-648. |
[157] |
Schittko C, Runge C, Strupp M, Wolff S, Wurst S (2016). No evidence that plant-soil feedback effects of native and invasive plant species under glasshouse conditions are reflected in the field. Journal of Ecology, 104, 1243-1249.
DOI URL |
[158] | Schoonhoven LM, van Loon JJA, Dicke M (2005). Insect-plant Biology. Oxford University Press, New York. |
[159] | Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, Jackson BG, Pritchard WJ, de Long JR, Oakley S, Mason KE, Ostle NJ, Baggs EM, Johnson D, Fierer N, et al. (2018). Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances, 4, eaau4578. DOI: 10.1126/sciadv.aau4578. |
[160] |
Snyder AE, Harmon-Threatt AN (2019). Reduced water- availability lowers the strength of negative plant-soil feedbacks of two Asclepias species. Oecologia, 190, 425-432.
DOI |
[161] |
Spitzer CM, Wardle DA, Lindahl BD, Sundqvist MK, Gundale MJ, Fanin N, Kardol P (2022). Root traits and soil micro- organisms as drivers of plant-soil feedbacks within the sub-Arctic tundra meadow. Journal of Ecology, 110, 466-478.
DOI URL |
[162] | Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006). Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biology, 4, e140. DOI: 10.1371/journal.pbio.0040140. |
[163] | Strecker T, Barnard RL, Niklaus PA, Scherer-Lorenzen M, Weigelt A, Scheu S, Eisenhauer N (2015). Effects of plant diversity, functional group composition, and fertilization on soil microbial properties in experimental grassland. PLoS ONE, 10, e0125678. DOI: 10.1371/journal.pone.0125678. |
[164] |
Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392.
PMID |
[165] |
Sun JF, Rutherford S, Saif Ullah M, Ullah I, Javed Q, Rasool G, Ajmal M, Azeem A, Nazir MJ, Du DL (2022). Plant-soil feedback during biological invasions: effect of litter decomposition from an invasive plant (Sphagneticola trilobata) on its native congener (S. calendulacea). Journal of Plant Ecology, 15, 610-624.
DOI URL |
[166] |
Sun YY, Zhang QX, Zhao YP, Diao YH, Gui FR, Yang GQ (2021). Beneficial rhizobacterium provides positive plant-soil feedback effects to Ageratina adenophora. Journal of Integrative Agriculture, 20, 1327-1335.
DOI URL |
[167] | Tedersoo L, Bahram M, Zobel M (2020). How mycorrhizal associations drive plant population and community biology. Science, 367, eaba1223. DOI: 10.1126/science.aba1223. |
[168] |
Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017). Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 355, 173-176.
DOI PMID |
[169] |
Thakur MP, van der Putten WH, Wilschut RA, Veen GFC, Kardol P, van Ruijven J, Allan E, Roscher C, van Kleunen M, Bezemer TM (2021). Plant-soil feedbacks and temporal dynamics of plant diversity-productivity relationships. Trends in Ecology & Evolution, 36, 651-661.
DOI URL |
[170] |
Thion C, Cébron A, Beguiristain T, Leyval C (2013). Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: microbial interactions and PAH dissipation. Biodegradation, 24, 569-581.
DOI URL |
[171] |
Tian BL, Pei YC, Huang W, Ding JQ, Siemann E (2021). Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. The ISME Journal, 15, 1919-1930.
DOI URL |
[172] |
van de Voorde TFJ, van der Putten WH, Bezemer TM (2011). Intra- and interspecific plant-soil interactions, soil legacies and priority effects during old-field succession. Journal of Ecology, 99, 945-953.
DOI URL |
[173] |
van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N, de Vos B, Dietrich HP, Eichhorn J, Gehrmann J, Grebenc T, et al. (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. Nature, 558, 243-248.
DOI |
[174] |
van der Putten WH (2012). Climate change, aboveground- belowground interactions, and species’ range shifts. Annual Review of Ecology, Evolution, and Systematics, 43, 365-383.
DOI URL |
[175] |
van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, van de Voorde TFJ, Wardle DA (2013). Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101, 265-276.
DOI URL |
[176] | van der Putten WH, Bradford MA, Brinkman EP, van de Voorde TFJ, Veen GFC (2016). Where, when and how plant-soil feedback matters in a changing world. Functional Ecology, 30, 1109-1121. |
[177] |
van der Putten WH, van Dijk C, Peters BAM (1993). Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 362, 53-56.
DOI |
[178] |
van der Putten WH, Bezemer TM, Berendse F, Veenendaal EM (2010a). Plant-soil interactions in the expansion and native range of a poleward shifting plant species. Global Change Biology, 16, 380-385.
DOI URL |
[179] |
van der Putten WH, Bezemer TM, Tamis WLM, Berendse F, Veenendaal EM (2007). Reduced plant-soil feedback of plant species expanding their range as compared to natives. Journal of Ecology, 95, 1050-1057.
DOI URL |
[180] |
van der Putten WH, Bezemer TM, Veenendaal EM (2010b). Plant-soil feedback of native and range-expanding plant species is insensitive to temperature. Oecologia, 162, 1059-1069.
DOI URL |
[181] |
Vaughn KJ, Young TP (2015). Short-term priority over exotic annuals increases the initial density and longer-term cover of native perennial grasses. Ecological Applications, 25, 791-799.
DOI PMID |
[182] | Veen GFC, Fry EL ten Hooven FC, Kardol P, Morriën E, de Long JR(2019). The role of plant litter in driving plant-soil feedbacks. Frontiers in Environmental Science, 7, 168. DOI: 10.3389/fenvs.2019.00168. |
[183] |
Veresoglou SD, Li GC, Chen J, Johnson D (2022). Direction of plant-soil feedback determines plant responses to drought. Global Change Biology, 28, 3995-3997.
DOI URL |
[184] |
Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708.
DOI PMID |
[185] |
Wagg C, Bender SF, Widmer F, van der Heijden MGA(2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111, 5266-5270.
DOI PMID |
[186] | Walker LR (1999). Ecosystems of Disturbed Ground. Elsevier, Amsterdam, the Netherlands. |
[187] |
Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 13386-13391.
DOI PMID |
[188] |
Wang GZ, Bei SK, Li JP, Bao XG, Zhang JD, Schultz PA, Li HG, Li L, Zhang FS, Bever JD, Zhang JL (2021). Soil microbial legacy drives crop diversity advantage: linking ecological plant-soil feedback with agricultural intercropping. Journal of Applied Ecology, 58, 496-506.
DOI URL |
[189] |
Wang KD, Borrego EJ, Kenerley CM, Kolomiets MV (2020a). Oxylipins other than jasmonic acid are xylem-resident signals regulating systemic resistance induced by Trichoderma virens in maize. The Plant Cell, 32, 166-185.
DOI URL |
[190] |
Wang MG, Ruan WB, Kostenko O, Carvalho S, Hannula SE, Mulder PPJ, Bu FJ, van der Putten WH, Bezemer TM (2019). Removal of soil biota alters soil feedback effects on plant growth and defense chemistry. New Phytologist, 221, 1478-1491.
DOI PMID |
[191] |
Wang Y, Ni GY, Hou YP, Wang QK, Huang QQ (2020b). Plant-soil feedbacks under resource limitation may not contribute to the invasion by annual Asteraceae plants. Oecologia, 194, 165-176.
DOI |
[192] |
Wardle DA, Bonner KI, Barker GM (2002). Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology, 16, 585-595.
DOI URL |
[193] |
Warren RJ, Candeias M, Labatore A, Olejniczak M, Yang L (2019). Multiple mechanisms in woodland plant species invasion. Journal of Plant Ecology, 12, 201-209.
DOI |
[194] | Wei Z, Gu Y, Friman VP, Kowalchuk GA, Xu YC, Shen QR, Jousset A (2019). Initial soil microbiome composition and functioning predetermine future plant health. Science Advances, 5, eaaw0759. DOI: 10.1126/sciadv.aaw0759. |
[195] |
Wei Z, Jousset A (2017). Plant breeding goes microbial. Trends in Plant Science, 22, 555-558.
DOI PMID |
[196] |
Werner CM, Vaughn KJ, Stuble KL, Wolf K, Young TP (2016). Persistent asymmetrical priority effects in a California grassland restoration experiment. Ecological Applications, 26, 1624-1632.
DOI PMID |
[197] | Wilschut RA, van der Putten WH, Garbeva P, Harkes P, Konings W, Kulkarni P, Martens H, Geisen S (2019). Root traits and belowground herbivores relate to plant-soil feedback variation among congeners. Nature Communications, 10, 1564. DOI: 10.1038/s41467-019-09615-x. |
[198] | Wubs ERJ, van der Putten WH, Bosch M, Bezemer TM (2016). Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants, 2, 16107. DOI: 10.1038/nplants.2016.107. |
[199] |
Wubs ERJ, van der Putten WH, Mortimer SR, Korthals GW, Duyts H, Wagenaar R, Bezemer TM (2019). Single introductions of soil biota and plants generate long-term legacies in soil and plant community assembly. Ecology Letters, 22, 1145-1151.
DOI PMID |
[200] |
Xi NX, Bloor JMG, Chu CJ (2020). Soil microbes alter seedling performance and biotic interactions under plant competition and contrasting light conditions. Annals of Botany, 126, 1089-1098.
DOI PMID |
[201] | Xi NX, Crawford KM, de Long JR(2022). Plant landscape abundance and soil fungi modulate drought effects on plant-soil feedbacks. Oikos, 2022, e08836. DOI: 10.1111/oik.08836. |
[202] |
Xi NX, Zhang YY, Zhou SR (2023). Plant-soil feedbacks in community ecology. Chinese Journal of Plant Ecology, 47, 170-182.
DOI URL |
[席念勋, 张原野, 周淑荣 (2023). 群落生态学中的植物-土壤反馈研究. 植物生态学报, 47, 170-182.]
DOI |
|
[203] |
Xue W, Berendse F, Bezemer TM (2018a). Spatial heterogeneity in plant-soil feedbacks alters competitive interactions between two grassland plant species. Functional Ecology, 32, 2085-2094.
DOI URL |
[204] |
Xue W, Bezemer TM, Berendse F (2018b). Density- dependency and plant-soil feedback: former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks. Plant and Soil, 428, 441-452.
DOI |
[205] |
Yang Q, Carrillo J, Jin HY, Shang L, Hovick SM, Nijjer S, Gabler CA, Li B, Siemann E (2013). Plant-soil biota interactions of an invasive species in. its native and introduced ranges: implications for invasion success. Soil Biology & Biochemistry, 65, 78-85.
DOI URL |
[206] | Yang Q, Veen GFC, Wagenaar R, Manrubia M, ten Hooven FC, van der Putten WH(2022). Temporal dynamics of range expander and congeneric native plant responses during and after extreme drought events. Ecological Monographs, 92, e1529. DOI: 10.1002/ecm.1529. |
[207] |
Yang Q, Wei SJ, Shang L, Carrillo J, Gabler CA, Nijjer S, Li B, Siemann E (2015). Mycorrhizal associations of an invasive tree are enhanced by both genetic and environmental mechanisms. Ecography, 38, 1112-1118.
DOI URL |
[208] |
Yang XF, Kong CH (2017). Interference of allelopathic rice with paddy weeds at the root level. Plant Biology, 19, 584-591.
DOI PMID |
[209] | Young TP, Stuble KL, Balachowski JA, Werner CM (2017). Using priority effects to manipulate competitive relationships in restoration. Restoration Ecology, 25, S114-S123. |
[210] |
Yu HW, He YY, Zhang W, Chen L, Zhang JL, Zhang XB, Dawson W, Ding JQ (2022). Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives. New Phytologist, 236, 1140-1153.
DOI URL |
[211] |
Yu HX, Le Roux JJ, Jiang ZY, Sun F, Peng CL, Li WH (2021). Soil nitrogen dynamics and competition during plant invasion: insights from Mikania micrantha invasions in China. New Phytologist, 229, 3440-3452.
DOI URL |
[212] | Yu JQ, Du YS (2000). Soil-sickness problem in the sustainable development for the protected production of vegetables. Journal of Shenyang Agricultural University, 31, 124-126. |
[喻景权, 杜尧舜 (2000). 蔬菜设施栽培可持续发展中的连作障碍问题. 沈阳农业大学学报, 31, 124-126.] | |
[213] |
Zhang P, Li B, Wu JH, Hu SJ (2019). Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecology Letters, 22, 200-210.
DOI PMID |
[214] | Zhao WQ, Wang XH, Howard MM, Kou YP, Liu Q (2023). Functional shifts in soil fungal communities regulate differential tree species establishment during subalpine forest succession. Science of the Total Environment, 861, 160616. DOI: 10.1016/j.scitotenv.2022.160616. |
[215] |
Zhou XG, Liu J, Wu FZ (2017). Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil, 415, 507-520.
DOI URL |
[216] | Zhou XG, Ma HK, Guo H, Wei Z, Xu YC, Wu FZ, Shen QR (2022). Plant-soil feedback: a key theory for management of soil sickness. Science & Technology Review, 40(3), 32-40. |
[周新刚, 马海鲲, 郭辉, 韦中, 徐阳春, 吴凤芝, 沈其荣 (2022). 植物-土壤反馈理论及其在连作障碍管理中的应用. 科技导报, 40(3), 32-40.] | |
[217] |
Zhu F, Heinen R, van der Sluijs M, Raaijmakers C, Biere A, Bezemer TM (2018). Species-specific plant-soil feedbacks alter herbivore-induced gene expression and defense chemistry in Plantago lanceolata. Oecologia, 188, 801-811.
DOI |
[218] |
Zhu YY, Chen HR, Fan JH, Wang YY, Li Y, Chen JB, Fan JX, Yang SS, Hu LP, Leung H, Mew TW, Teng PS, Wang ZH, Mundt CC (2000). Genetic diversity and disease control in rice. Nature, 406, 718-722.
DOI |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[5] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[6] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[7] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[8] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[9] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[10] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[11] | 张慧, 曾文静, 龚新桃, 马泽清. 亚热带典型树种根毛特征及其与共生真菌的关系[J]. 植物生态学报, 2023, 47(1): 88-100. |
[12] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[13] | 单婷婷, 陈彤垚, 陈晓梅, 郭顺星, 王爱荣. 菌根真菌与兰科植物氮营养关系的研究进展[J]. 植物生态学报, 2022, 46(5): 516-528. |
[14] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[15] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19