植物生态学报 ›› 2021, Vol. 45 ›› Issue (6): 573-582.DOI: 10.17521/cjpe.2021.0068
所属专题: 入侵生态学
• 综述 • 下一篇
秦文超1,2,3,4, 陶至彬3,5, 王永健6, 刘艳杰7, 黄伟3,5,*()
收稿日期:
2021-03-02
接受日期:
2021-05-10
出版日期:
2021-06-20
发布日期:
2021-09-09
通讯作者:
ORCID: *黄伟: 0000-0003-3760-6084(huangwei0519@wbgcas.cn)
作者简介:
*(huangwei0519@wbgcas.cn)
基金资助:
QIN Wen-Chao1,2,3,4, TAO Zhi-Bin3,5, WANG Yong-Jian6, LIU Yan-Jie7, HUANG Wei3,5,*()
Received:
2021-03-02
Accepted:
2021-05-10
Online:
2021-06-20
Published:
2021-09-09
Contact:
HUANG Wei
Supported by:
摘要:
全球变化背景下, 诸如营养、水分等资源的波动是非稳态的, 往往以脉冲的形式出现, 呈现出频率低、强度高和持续时间短的特征。资源脉冲往往会打破植物群落固有的平衡状态, 进而影响全球变化的另一重要组分——外来植物入侵。目前, 全球变化对外来植物入侵影响的研究往往关注资源的稳态变化, 忽略了资源的波动性, 特别是脉冲的作用。该文通过综述资源脉冲对外来植物入侵影响的研究, 简要评述了资源脉冲的形成原因、类型及影响, 讨论了不同类型的资源脉冲对外来植物入侵的作用。此外, 该文根据现有的研究进展提出了一些未来可能的研究方向, 如资源脉冲的不同属性, 多种资源脉冲交互作用对植物入侵的影响及其机制等。
秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望. 植物生态学报, 2021, 45(6): 573-582. DOI: 10.17521/cjpe.2021.0068
QIN Wen-Chao, TAO Zhi-Bin, WANG Yong-Jian, LIU Yan-Jie, HUANG Wei. Research progress and prospect on the impacts of resource pulses on alien plant invasion. Chinese Journal of Plant Ecology, 2021, 45(6): 573-582. DOI: 10.17521/cjpe.2021.0068
图1 全球变化背景下生态系统中可利用资源水平的两种变化形式。A, 资源稳态变化——资源的变化维持稳定状态。B, 资源脉冲——资源的变化存在较大的波动性。
Fig. 1 Two types of variations of the available resources in the ecosystem under global change. A, Stabilized variation—The variation of resources maintains a stabilized state. B, Resource pulse—The variation of resources with great fluctuation.
图3 资源脉冲对个体、种群、群落和生态系统影响的相关文献数量。
Fig. 3 Number of related literatures of the effects of resource pulses on individual, population, community and ecosystem.
[1] |
Allington GRH, Koons DN, Morgan Ernest SK, Schutzenhofer MR, Valone TJ (2013). Niche opportunities and invasion dynamics in a desert annual community. Ecology Letters, 16, 158-166.
DOI PMID |
[2] | Alpert P, Bone E, Holzapfel C (2000). Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 52-66. |
[3] |
Besaw LM, Thelen GC, Sutherland S, Metlen K, Callaway RM (2011). Disturbance, resource pulses and invasion: short-term shifts in competitive effects, not growth responses, favour exotic annuals. Journal of Applied Ecology, 48, 998-1006.
DOI URL |
[4] |
Blumenthal DM, Chimner RA, Welker JM, Morgan JA (2008). Increased snow facilitates plant invasion in mixed grass prairie. New Phytologist, 179, 440-448.
DOI URL |
[5] |
Blumenthal DM, Kray JA, Ortmans W, Ziska LH, Pendall E (2016). Cheatgrass is favored by warming but not CO2 enrichment in a semi-arid grassland. Global Change Biology, 22, 3026-3038.
DOI PMID |
[6] |
Bogdziewicz M, Crone EE, Steele MA, Zwolak R (2017). Effects of nitrogen deposition on reproduction in a masting tree: benefits of higher seed production are trumped by negative biotic interactions. Journal of Ecology, 105, 310-320.
DOI URL |
[7] |
Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010a). Predicting plant invasions in an era of global change. Trends in Ecology & Evolution, 25, 310-318.
DOI URL |
[8] |
Bradley BA, Wilcove DS, Oppenheimer M (2010b). Climate change increases risk of plant invasion in the Eastern United States. Biological Invasions, 12, 1855-1872.
DOI URL |
[9] | Brown KA, Gurevitch J (2004). Long-term impacts of logging on forest diversity in Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 101, 6045-6049. |
[10] |
Campbell BD, Grime JP (1989). A comparative study of plant responsiveness to the duration of episodes of mineral nutrient enrichment. New Phytologist, 112, 261-267.
DOI URL |
[11] |
Capinha C, Essl F, Seebens H, Moser D, Pereira HM (2015). The dispersal of alien species redefines biogeography in the Anthropocene. Science, 348, 1248-1251.
DOI PMID |
[12] |
Charbonneau NC, Fahrig L (2004). Influence of canopy cover and amount of open habitat in the surrounding landscape on proportion of alien plant species in forest sites. Écoscience, 11, 278-281.
DOI URL |
[13] |
Chen D, Xiong H, Lin CG, He W, Zhang ZW, Wang H, Wang YJ (2019). Clonal integration benefits invasive alien plants under water variability in a native community. Journal of Plant Ecology, 12, 574-582.
DOI |
[14] |
Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 53, 65-75.
DOI URL |
[15] |
Chytrý M, Wild J, Pyšek P, Jarošík V, Dendoncker N, Reginster I, Pino J, Maskell LC, Vilà M, Pergl J, Kühn I, Spangenberg JH, Settele J (2012). Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Global Ecology and Biogeography, 21, 75-87.
DOI URL |
[16] |
Craine JM, Dybzinski R (2013). Mechanisms of plant competition for nutrients, water and light. Functional Ecology, 27, 833-840.
DOI URL |
[17] |
Davis MA, Grime JP, Thompson K (2000). Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology, 88, 528-534.
DOI URL |
[18] |
Davis MA, Pelsor M (2001). Experimental support for a resource-based mechanistic model of invasibility. Ecology Letters, 4, 421-428.
DOI URL |
[19] |
Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, Gonzalez P, Grosholz ED, Ibañez I, Miller LP, Sorte CJB, Tatem AJ (2016). Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 7, 12485. DOI: 10.1038/ncomms12485.
DOI URL |
[20] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074.
PMID |
[21] |
Ens E, Hutley LB, Rossiter-Rachor NA, Douglas MM, Setterfield SA (2015). Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia. Frontiers in Plant Science, 6,560. DOI: 10.3389/fpls.2015.00560.
DOI |
[22] |
Eziz A, Yan Z, Tian D, Han W, Tang Z, Fang J (2017). Drought effect on plant biomass allocation: a meta-analysis. Ecology and Evolution, 7, 11002-11010.
DOI URL |
[23] |
Felton AJ, Smith MD (2017). Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160142. DOI: 10.1098/rstb.2016.0142.
DOI URL |
[24] |
Frevola DM, Hovick SM (2019). The independent effects of nutrient enrichment and pulsed nutrient delivery on a common wetland invader and its native conspecific. Oecologia, 191, 447-460.
DOI URL |
[25] |
Fridley JD (2012). Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature, 485, 359-362.
DOI URL |
[26] |
Funk JL (2008). Differences in plasticity between invasive and native plants from a low resource environment. Journal of Ecology, 96, 1162-1173.
DOI URL |
[27] |
Funk JL (2013). The physiology of invasive plants in low- resource environments. Conservation Physiology, 1. DOI: 10.1093/conphys/cot026.
DOI |
[28] |
Funk JL, Vitousek PM (2007). Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 1079-1081.
DOI URL |
[29] |
Ghazoul J, Burivalova Z, Garcia-Ulloa J, King LA (2015). Conceptualizing forest degradation. Trends in Ecology & Evolution, 30, 622-632.
DOI URL |
[30] |
Gilliam FS (2006). Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 94, 1176-1191.
DOI URL |
[31] |
Goldberg DE, Rajaniemi T, Gurevitch J, Stewart-Oaten A (1999). Empirical approaches to quantifying interaction intensity: competition and facilitation along productivity gradients. Ecology, 80, 1118-1131.
DOI URL |
[32] | Grant PR, Grant BR, Keller LF, Petren K (2000). Effects of El Niño events on Darwin’s finch productivity. Ecology, 81, 2442-2457. |
[33] | Gratton C, Denno RF (2003). Inter-year carryover effects of a nutrient pulse on Spartina plants, herbivores, and natural enemies. Ecology, 84, 2692-2707. |
[34] |
Hallett LM, Shoemaker LG, White CT, Suding KN (2019). Rainfall variability maintains grass-forb species coexistence. Ecology Letters, 22, 1658-1667.
DOI PMID |
[35] |
Harpole WS, Potts DL, Suding KN (2007). Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biology, 13, 2341-2348.
DOI URL |
[36] |
Harpole WS, Sullivan LL, Lind EM, Firn J, Adler PB, Borer ET, Chase J, Fay PA, Hautier Y, Hillebrand H, MacDougall AS, Seabloom EW, Williams R, Bakker JD, Cadotte MW, et al. (2016). Addition of multiple limiting resources reduces grassland diversity. Nature, 537, 93-96.
DOI URL |
[37] |
Hobbs RJ, Yates S, Mooney HA (2007). Long-term data reveal complex dynamics in grassland in relation to climate and disturbance. Ecological Monographs, 77, 545-568.
DOI URL |
[38] |
Holt RD (2008). Theoretical perspectives on resource pulses. Ecology, 89, 671-681.
DOI URL |
[39] |
Jabran K, Doğan MN (2020). Elevated CO2, temperature and nitrogen levels impact growth and development of invasive weeds in the Mediterranean region. Journal of the Science of Food and Agriculture, 100, 4893-4900.
DOI URL |
[40] |
Jentsch A, White P (2019). A theory of pulse dynamics and disturbance in ecology. Ecology, 100, e02734. DOI: 10.1002/ecy.2734.
DOI |
[41] |
Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811-821.
DOI URL |
[42] | Knüsel S, Conedera M, Bugmann H, Wunder J (2019). Low litter cover, high light availability and rock cover favour the establishment of Ailanthus altissima in forests in southern Switzerland. NeoBiota, 46, 91-116. |
[43] |
Kreyling J, Beierkuhnlein C, Ellis L, Jentsch A (2008). Invasibility of grassland and heath communities exposed to extreme weather events-additive effects of diversity resistance and fluctuating physical environment. Oikos, 117, 1542-1554.
DOI URL |
[44] |
LaForgia ML, Harrison SP, Latimer AM (2020). Invasive species interact with climatic variability to reduce success of natives. Ecology, 101, e03022. DOI: 10.1002/ecy.3022.
DOI |
[45] |
Larson DL, Anderson PJ, Newton W (2001). Alien plant invasion in mixed-grass prairie: effects of vegetation type and anthropogenic disturbance. Ecological Applications, 11, 128-141.
DOI URL |
[46] |
Letnic M, Tamayo B, Dickman CR (2005). The responses of mammals to La Niña (El Niño Southern Oscillation)- associated rainfall, predation, and wildfire in central Australia. Journal of Mammalogy, 86, 689-703.
DOI URL |
[47] |
Liu S, Streich J, Borevitz JO, Rice KJ, Li T, Li B, Bradford KJ (2019). Environmental resource deficit may drive the evolution of intraspecific trait variation in invasive plant populations. Oikos, 128, 171-184.
DOI URL |
[48] |
Liu Y, Oduor AMO, Zhang Z, Manea A, Tooth IM, Leishman MR, Xu X, van Kleunen M (2017). Do invasive alien plants benefit more from global environmental change than native plants? Global Change Biology, 23, 3363-3370.
DOI URL |
[49] |
Liu Y, van Kleunen M (2017). Responses of common and rare aliens and natives to nutrient availability and fluctuations. Journal of Ecology, 105, 1111-1122.
DOI URL |
[50] |
Liu Y, Zhang X, van Kleunen M (2018). Increases and fluctuations in nutrient availability do not promote dominance of alien plants in synthetic communities of common natives. Functional Ecology, 32, 2594-2604.
DOI URL |
[51] |
Lü XT, Han XG (2010). Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 327, 481-491.
DOI URL |
[52] |
Mallakpour I, Villarini G (2017). Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA. Theoretical and Applied Climatology, 130, 345-363.
DOI URL |
[53] |
Meehl GA, Tebaldi C (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994-997.
DOI URL |
[54] | Niinemets Ü, Valladares F, Ceulemans R (2003). Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive Ilex aquifolium co-occurring at two contrasting European sites. Plant, Cell & Environment, 26, 941-956. |
[55] |
Nowlin WH, Vanni MJ, Yang LH (2008). Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology, 89, 647-659.
DOI URL |
[56] |
Noy-Meir I (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4, 25-51.
DOI URL |
[57] |
Oshima K, Takahashi K (2020). Forest disturbances promote invasion of alien herbaceous plants: a comparison of abundance and plant traits between alien and native species in thinned and unthinned stands. Biological Invasions, 22, 2749-2762.
DOI URL |
[58] |
Osone Y, Yazaki K, Masaki T, Ishida A (2014). Responses to nitrogen pulses and growth under low nitrogen availability in invasive and native tree species with differing successional status. Journal of Plant Research, 127, 315-328.
DOI PMID |
[59] |
Ostfeld RS, Keesing F (2000). Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends in Ecology & Evolution, 15, 232-237.
DOI URL |
[60] |
Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB (2016). Global threat to agriculture from invasive species. Proceedings of the National Academy of Sciences of the United States of America, 113, 7575-7579.
DOI PMID |
[61] |
Palacio-López K, Gianoli E (2011). Invasive plants do not display greater phenotypic plasticity than their native or non-invasive counterparts: a meta-analysis. Oikos, 120, 1393-1401.
DOI URL |
[62] |
Parepa M, Fischer M, Bossdorf O (2013). Environmental variability promotes plant invasion. Nature Communications, 4, 1604. DOI: 10.1038/ncomms2632.
DOI URL |
[63] |
Parepa M, Kahmen A, Werner RA, Fischer M, Bossdorf O (2019). Invasive knotweed has greater nitrogen-use efficiency than native plants: evidence from a 15N pulse-chasing experiment. Oecologia, 191, 389-396.
DOI URL |
[64] | Polis GA, Hurd SD, Jackson CT, Piñero FS (1997). El Niño effects on the dynamics and control of an island ecosystem in the Gulf of California. Ecology, 78, 1884-1897. |
[65] |
Post AK, Knapp AK (2020). The importance of extreme rainfall events and their timing in a semi-arid grassland. Journal of Ecology, 108, 2431-2443.
DOI URL |
[66] |
Prevéy JS, Seastedt TR (2014). Seasonality of precipitation interacts with exotic species to alter composition and phenology of a semi-arid grassland. Journal of Ecology, 102, 1549-1561.
DOI URL |
[67] |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
DOI URL |
[68] | Rosenzweig ML (2001). The four questions: What does the introduction of exotic species do to diversity? Evolutionary Ecology Research, 3, 361-367. |
[69] |
Sage RF (2020). Global change biology: a primer. Global Change Biology, 26, 3-30.
DOI URL |
[70] |
Schmidt KA (2003). Linking frequencies of acorn masting in temperate forests to long-term population growth rates in a songbird: the veery (Catharus fuscescens). Oikos, 103, 548-558.
DOI URL |
[71] |
Seebens H, Bacher S, Blackburn TM, Capinha C, Dawson W, Dullinger S, Genovesi P, Hulme PE, van Kleunen M, Kühn I, Jeschke JM, Lenzner B, Liebhold AM, Pattison Z, Pergl J, Pyšek P, Winter M, Essl F (2021). Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 27, 970-982.
DOI URL |
[72] |
Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti- Grapow L, et al. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435. DOI: 10.1038/ncomms14435.
DOI PMID |
[73] |
Shen XY, Peng SL, Chen BM, Pang JX, Chen LY, Xu HM, Hou YP (2011). Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biological Invasions, 13, 869-881.
DOI URL |
[74] |
Sheppard CS, Stanley MC (2014). Does elevated temperature and doubled CO2 increase growth of three potentially invasive plants? Invasive Plant Science and Management, 7, 237-246.
DOI URL |
[75] | Sinclair ARE, Krebs CJ (2002). Complex numerical responses to top-down and bottom-up processes in vertebrate populations. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357, 1221-1231. |
[76] |
Smith LM (2013). Extended leaf phenology in deciduous forest invaders: mechanisms of impact on native communities. Journal of Vegetation Science, 24, 979-987.
DOI URL |
[77] |
Sun J, Javed Q, Azeem A, Ullah MS, Rasool G, Du D (2020). Addition of phosphorus and nitrogen support the invasiveness of Alternanthera Philoxeroides under water stress. CLEAN-Soil, Air, Water, 48, 2000059. DOI: 10.1002/clen.202000059.
DOI |
[78] |
Valliere JM, Irvine IC, Santiago L, Allen EB (2017). High N, dry: experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought. Global Change Biology, 23, 4333-4345.
DOI PMID |
[79] |
van Kleunen M, Bossdorf O, Dawson W (2018). The ecology and evolution of alien plants. Annual Review of Ecology, Evolution, and Systematics, 49, 25-47.
DOI URL |
[80] |
van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, et al. (2015). Global exchange and accumulation of non-native plants. Nature, 525, 100-103.
DOI URL |
[81] |
van Kleunen M, Weber E, Fischer M (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
DOI PMID |
[82] |
Vetter VMS, Kreyling J, Dengler J, Apostolova I, Arfin-Khan MAS, Berauer BJ, Berwaers S, de Boeck HJ, Nijs I, Schuchardt MA, Sopotlieva D, von Gillhausen P, Wilfahrt PA, Zimmermann M, Jentsch A (2020). Invader presence disrupts the stabilizing effect of species richness in plant community recovery after drought. Global Change Biology, 26, 3539-3551.
DOI URL |
[83] |
Vitousek PM (1992). Global environmental change: an introduction. Annual Review of Ecology and Systematics, 23, 1-14.
DOI URL |
[84] | Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996). Biological invasions as global environmental change. American Scientist, 84, 468-478. |
[85] | Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997). Human domination of Earthʼs ecosystems//Marzluff JM, Shulenberger E, Endlicher W, Alberti M, Bradley G, Ryan C, Simon U, ZumBrunnen C. Urban Ecology. Springer, Boston. |
[86] |
Walker GA, Robertson MP, Gaertner M, Gallien L, Richardson DM (2017). The potential range of Ailanthus altissima (tree of heaven) in South Africa: the roles of climate, land use and disturbance. Biological Invasions, 19, 3675-3690.
DOI URL |
[87] |
Weber MJ, Brown ML (2019). Recipient ecosystem productivity influences effects of resource pulses in mesocosms. Hydrobiologia, 827, 183-199.
DOI URL |
[88] |
Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215.
DOI URL |
[89] |
Wolkovich EM, Cleland EE (2011). The phenology of plant invasions: a community ecology perspective. Frontiers in Ecology and the Environment, 9, 287-294.
DOI URL |
[90] |
Wolkovich EM, Davies TJ, Schaefer H, Cleland EE, Cook BI, Travers SE, Willis CG, Davis CC (2013). Temperature- dependent shifts in phenology contribute to the success of exotic species with climate change. American Journal of Botany, 100, 1407-1421.
DOI URL |
[91] |
Yang LH (2004). Periodical cicadas as resource pulses in North American forests. Science, 306, 1565-1567.
DOI URL |
[92] |
Yang LH (2006). Interactions between a detrital resource pulse and a detritivore community. Oecologia, 147, 522-532.
DOI URL |
[93] |
Yang LH, Bastow JL, Spence KO, Wright AN (2008). What can we learn from resource pulses? Ecology, 89, 621-634.
DOI URL |
[94] |
Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wright AN, Spence KO (2010). A meta-analysis of resource pulse- consumer interactions. Ecological Monographs, 80, 125-151.
DOI URL |
[95] |
Zelikova TJ, Hufbauer RA, Reed SC, Wertin T, Fettig C, Belnap J (2013). Eco-evolutionary responses of Bromus tectorum to climate change: implications for biological invasions Ecology and Evolution, 3, 1374-1387.
DOI URL |
[96] |
Zhao CY, Liu YY, Shi XP, Wang YJ (2020). Effects of soil nutrient variability and competitor identify on growth and co-existence among invasive alien and native clonal plants. Environmental Pollution, 261, 113894. DOI: 10.1016/j.envpol.2019.113894.
DOI URL |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[3] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[4] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[5] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[6] | 林秦文, 于胜祥, 唐赛春, 崔夏, 高信芬, 王焕冲, 刘全儒, 马金双. 中国外来归化植物的编目现状及有关问题[J]. 植物生态学报, 2021, 45(11): 1275-1280. |
[7] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[8] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[9] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[10] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[11] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[12] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[13] | 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用[J]. 植物生态学报, 2020, 44(4): 436-448. |
[14] | 唐金琦, 郭小城, 鲁新瑜, 刘明超, 张海艳, 冯玉龙, 孔德良. 外来入侵植物对本地植物菌根真菌的影响及其机制[J]. 植物生态学报, 2020, 44(11): 1095-1112. |
[15] | 许光耀, 李洪远, 莫训强, 孟伟庆. 中国归化植物组成特征及其时空分布格局分析[J]. 植物生态学报, 2019, 43(7): 601-610. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19