植物生态学报 ›› 2023, Vol. 47 ›› Issue (2): 195-205.DOI: 10.17521/cjpe.2022.0004
所属专题: 入侵生态学
汪晶晶1, 王嘉浩2, 黄致云1, Vanessa Chiamaka OKECHUKW1, 胡蝶2, 祁珊珊2,*(), 戴志聪1,3, 杜道林1
收稿日期:
2022-01-05
接受日期:
2022-05-20
出版日期:
2023-02-20
发布日期:
2023-02-28
通讯作者:
*(基金资助:
WANG Jing-Jing1, WANG Jia-Hao2, HUANG Zhi-Yun1, Vanessa Chiamaka OKECHUKW1, HU Die2, QI Shan-Shan2,*(), DAI Zhi-Cong1,3, DU Dao-Lin1
Received:
2022-01-05
Accepted:
2022-05-20
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
摘要:
很多因素可以影响外来植物的入侵性, 其中内生菌可能扮演了极其重要的角色。为了探究内生固氮菌对入侵植物生长策略的影响, 本研究分别在高和低两种氮水平下, 种植接种和不接种内生固氮菌的入侵植物南美蟛蜞菊(Sphagneticola trilobata)和同属本地植物蟛蜞菊(S. calendulacea), 对比研究它们的生长和氮含量。从南美蟛蜞菊茎段分离出内生固氮菌Kosakonia sp. WTB-JS007, 发现其对南美蟛蜞菊和蟛蜞菊这两种植物生长策略的影响存在显著差异, 且这种差异不受氮水平的影响。在低氮处理下, 接种WTB-JS007对蟛蜞菊的生长及植株氮含量没有显著影响, 但显著提高了南美蟛蜞菊的地上生物量(30.48%), 促进了匍匐茎的伸长, 减少了地下生物量(56.58%), 并提高了植株总氮含量(47.51%)。类似地, 在高氮水平下, 内生固氮菌亦显著影响南美蟛蜞菊地上部分的生长, 但对蟛蜞菊生长的影响不显著。这些结果表明, 内生固氮菌对入侵和非入侵植物生长、生物量分配及氮获取的影响存在显著差异, 而这种生长策略的差异有利于入侵植物地上部分的快速生长与扩张, 从而提高其入侵性。
汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响. 植物生态学报, 2023, 47(2): 195-205. DOI: 10.17521/cjpe.2022.0004
WANG Jing-Jing, WANG Jia-Hao, HUANG Zhi-Yun, Vanessa Chiamaka OKECHUKW, HU Die, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Effects of endophytic nitrogen-fixing bacteria on the growth strategy of an invasive plant Sphagneticola trilobata under different nitrogen levels. Chinese Journal of Plant Ecology, 2023, 47(2): 195-205. DOI: 10.17521/cjpe.2022.0004
图1 固氮菌菌株WTB-JS007的鉴定。A, WTB-JS007在LB平板上的菌落形态。B, WTB-JS007扫描电镜图。C, 基于16S rRNA基因序列的WTB-JS007系统进化树。D, 用固氮引物(F1-nifH-3r)进行PCR扩增后的凝胶电泳图。E, 基于固氮引物扩增的固氮基因序列的WTB-JS007系统发育树。CK, 对照; Marker, 标记。
Fig. 1 Identification of nitrogen-fixing bacteria strain WTB-JS007. A, Colony morphology of WTB-JS007 on LB plate. B, Scanning electronic microscopy (SEM) of WTB-JS007. C, Phylogenetic tree of WTB-JS007 based on 16S rRNA gene sequence. D, Nitrogen fixation primer (F1-nifH-3r) PCR amplified gel electrophoresis. E, Phylogenetic tree of WTB-JS007 based on nitrogen fixation gene on the sequence amplified with nitrogen fixation primers. CK, control.
图2 南美蟛蜞菊和蟛蜞菊在低氮(Low-N)和正常氮(Nor-N)处理下不加菌(CK)或加菌(WTB-JS007)的叶面积(A)、茎长(B)、根数(C)、根长(D) (平均值±标准误, n = 4)。不同小写字母表示南美蟛蜞菊不同处理间存在显著差异(p < 0.05); 不同大写字母表示蟛蜞菊不同处理间存在显著差异(p < 0.05)。
Fig. 2 Leaf area (A), stem length (B), number of roots (C) and root length (D) of Sphagneticola trilobata and S. calendulacea without (CK) or with nitrogen-fixing bacteria (WTB-JS007) under low (Low-N) and normal (Nor-N) nitrogen (mean ± SE, n = 4). Different lowercase letters indicate significant differences (p < 0.05) among different treatments of S. trilobata; different uppercase letters indicate significant differences (p < 0.05) among different treatments of S. calendulacea.
图3 南美蟛蜞菊和蟛蜞菊在低氮(Low-N)和正常氮(Nor-N)处理下不加菌(CK)或加菌(WTB-JS007)的地上生物量(A)、地下生物量(B)、比叶面积(C)、根冠比(D) (平均值±标准误, n = 4)。不同小写字母表示南美蟛蜞菊不同处理间存在显著差异(p < 0.05); 不同大写字母表示蟛蜞菊不同处理间存在显著差异(p < 0.05)。
Fig. 3 Aboveground biomass (A), belowground biomass (B), specific leaf area (C) and root:shoot (D) of Sphagneticola trilobata and S. calendulacea without (CK) or with nitrogen-fixing bacteria (WTB-JS007) under low (Low-N) and normal (Nor-N) nitrogen (mean ± SE, n = 4). Different lowercase letters indicate significant differences (p < 0.05) among different treatments of S. trilobata; different uppercase letters indicate significant differences (p < 0.05) among different treatments of S. calendulacea.
图4 不同氮(低氮(Low-N)、正常氮(Nor-N))处理及不接种(CK)、接种内生固氮菌(WTB-JS007)处理下的南美蟛蜞菊和蟛蜞菊叶片氮含量(平均值±标准误, n = 4)。不同小写字母表示在低氮环境下不同处理间存在显著差异(p < 0.05); 不同大写字母表示在正常氮环境下不同处理间存在显著差异(p < 0.05)。
Fig. 4 Nitrogen content of Sphagneticola trilobata and S. calendulacea without (CK) or with nitrogen-fixing bacteria (WTB-JS007) under low (Low-N) and normal (Nor-N) nitrogen (mean ± SE, n = 4). Different lowercase letters indicate significant differences (p < 0.05) among different treatments under the low-nitrogen level; different uppercase letters indicate significant differences (p < 0.05) among different treatments under the normal nitrogen level.
图5 南美蟛蜞菊在内生固氮菌定植情况下生长策略的变化。
Fig. 5 Changes of the growth strategy of Sphagneticola trilobata under the colonization of endophytic nitrogen-fixing bacteria.
[1] |
Adomako MO, Xue W, Du DL, Yu FH (2022). Soil microbe- mediated N:P stoichiometric effects on Solidago canadensis performance depend on nutrient levels. Microbial Ecology, 83, 960-970.
DOI |
[2] |
Anas M, Liao F, Verma KK, Sarwar MA, Mahmood A, Chen ZL, Li Q, Zeng XP, Liu Y, Li YR (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53, 47.
DOI PMID |
[3] |
Balasundararajan V, Dananjeyan B (2019). Occurrence of diversified N-acyl homoserine lactone mediated biofilm- forming bacteria in rice rhizoplane. Journal of Basic Microbiology, 59, 1031-1039.
DOI PMID |
[4] |
Bernacchi CJ, Coleman JS, Bazzaz FA, McConnaughay KDM (2000). Biomass allocation in old-field annual species grown in elevated CO2 environments: no evidence for optimal partitioning. Global Change Biology, 6, 855-863.
DOI URL |
[5] |
Chen L, Liang ZN, Zhu H (2015). Research advances in the studies of plant entophytic. Biotechnology Bulletin, 31, 30-34.
DOI |
[陈龙, 梁子宁, 朱华 (2015). 植物内生菌研究进展. 生物技术通报, 31, 30-34.]
DOI |
|
[6] |
Chen MY, Zhu B, Lin L, Yang LT, Li YR, An QL (2014). Complete genome sequence of Kosakonia sacchari type strain SP1T. Standards in Genomic Sciences, 9, 1311-1318.
DOI URL |
[7] |
Cocking EC (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant and Soil, 252, 169-175.
DOI URL |
[8] | Dai ZC, Du DL, Si CC, Lin Y, Hao JL, Sun F (2009). A method to exactly measure the morphological quantity of leaf using Scanner and Image J Software. Guihaia, 29, 342-347. |
[戴志聪, 杜道林, 司春灿, 林英, 郝建良, 孙凤 (2009). 用扫描仪及Image J软件精确测量叶片形态数量特征的方法. 广西植物, 29, 342-347.] | |
[9] |
Dai ZC, Fu W, Wan LY, Cai HH, Wang N, Qi SS, Du DL (2016). Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Frontiers in Plant Science, 7, 706. DOI: 10.3389/fpls.2016.00706.
DOI |
[10] |
Dai ZC, Wan LY, Qi SS, Rutherford S, Ren GQ, Wan JSH, Du DL (2020). Synergy among hypotheses in the invasion process of alien plants: a road map within a timeline. Perspectives in Plant Ecology, Evolution and Systematics, 47, 125575. DOI: 10.1016/j.ppees.2020.125575.
DOI |
[11] |
Dipta B, Bhardwaj S, Kaushal M, Kirti S, Sharma R (2019). Obliteration of phosphorus deficiency in plants by microbial interceded approach. Symbiosis, 78, 163-176.
DOI |
[12] |
Fedorov DN, Ivanova EG, Doronina NV, Trotsenko IA (2008). A new system of degenerate oligonucleotide primers for detection and amplification of nifHD genes. Mikrobiologiia, 77, 286-288.
PMID |
[13] |
Franche C, Lindström K, Elmerich C (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321, 35-59.
DOI URL |
[14] |
Funk JL (2008). Differences in plasticity between invasive and native plants from a low resource environment. Journal of Ecology, 96, 1162-1173.
DOI URL |
[15] |
Funk JL (2013). The physiology of invasive plants in low-resource environments. Conservation Physiology, 1, cot026. DOI: 10.1093/conphys/cot026.
DOI |
[16] |
Hardoim PR, van Overbeek LS, van Elsas JD (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16, 463-471.
DOI PMID |
[17] | Hoagland DR, Arnon DI (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347, 23-32. |
[18] |
Javed Q, Sun JF, Azeem A, Jabran K, Du DL (2020). Competitive ability and plasticity of Wedelia trilobata (L.) under wetland hydrological variations. Scientific Reports, 10, 9431. DOI: 10.1038/s41598-020-66385-z.
DOI |
[19] |
Leishman MR, Haslehurst T, Ares A, Baruch Z (2007). Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytologist, 176, 635-643.
DOI PMID |
[20] | Li H, Liao D, Su JQ, Huang FY, Hong YW (2014). Diversity and function of endophytic bacteria in roots of exotic plant Spartina alterniflora. Chinese Journal of Applied and Environmental Biology, 20, 856-862. |
[李虎, 廖丹, 苏建强, 黄福义, 洪有为 (2014). 外来种互花米草根内细菌多样性及功能. 应用与环境生物学报, 20, 856-862.] | |
[21] | Li Q, Chen Q, He FR, Bharani M, Dai ZC, Qi SS, Du DL (2020). Arbuscular mycorrhizal fungi promote the growth of Wedelia trilobata and the absorption of insoluble phosphorus. Journal of Tropical and Subtropical Botany, 28, 339-346. |
[李琴, 陈琪, 贺芙蓉, Bharani M, 戴志聪, 祁珊珊, 杜道林 (2020). 丛枝菌根真菌促进南美蟛蜞菊生长及对难溶磷的吸收. 热带亚热带植物学报, 28, 339-346.] | |
[22] |
Littschwager J, Lauerer M, Blagodatskaya E, Kuzyakov Y (2010). Nitrogen uptake and utilisation as a competition factor between invasive Duchesnea indica and native Fragaria vesca. Plant and Soil, 331, 105-114.
DOI URL |
[23] | Liu YT, Dai ZC, Xue YL, Sun JF, Zhu F, Du DL (2013). Prediction of suitable area of an alien invasive species (Wedelia trilobata) in China. Guangdong Agricultural Sciences, 40(14), 174-178. |
[刘勇涛, 戴志聪, 薛永来, 孙见凡, 朱方, 杜道林 (2013). 外来入侵植物南美蟛蜞菊在中国的适生区预测. 广东农业科学, 40(14), 174-178.] | |
[24] |
Matzek V (2011). Superior performance and nutrient-use efficiency of invasive plants over non-invasive congeners in a resource-limited environment. Biological Invasions, 13, 3005-3014.
DOI URL |
[25] |
Mei C, Flinn BS (2010). The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents on Biotechnology, 4, 81-95.
PMID |
[26] |
Murashige T, Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
DOI URL |
[27] |
Noori F, Etesami H, Najafi Zarini H, Khoshkholgh-Sima NA, Hosseini Salekdeh G, Alishahi F (2018). Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non- rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotoxicology and Environmental Safety, 162, 129-138.
DOI URL |
[28] |
Oldroyd GED, Leyser O (2020). A plantʼs diet, surviving in a variable nutrient environment. Science, 368, eaba0196. DOI: 10.1126/science.aba0196.
DOI |
[29] |
Paini DR, Sheppard AW, Cook DC, de Barro PJ, Worner SP, Thomas MB. (2016). Global threat to agriculture from invasive species. Proceedings of the National Academy of Sciences of the United States of America, 113, 7575-7579.
DOI PMID |
[30] |
Pang F, Xia WK, He M, Qi SS, Dai ZC, Du DL (2020). Nitrogen-fixing bacteria alleviates competition between arbuscular mycorrhizal fungi and Solidago canadensis for nutrients under nitrogen limitation. Chinese Journal of Plant Ecology, 44, 782-790.
DOI URL |
[庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林 (2020). 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争. 植物生态学报, 44, 782-790.] | |
[31] |
Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Jeschke JM, Kühn I, Liebhold AM, Mandrak NE, Meyerson LA, et al. (2020). Scientists’ warning on invasive alien species. Biological Reviews of the Cambridge Philosophical Society, 95, 1511-1534.
DOI URL |
[32] |
Qi SS, Dai ZC, Miao SL, Zhai DL, Si CC, Huang P, Wang RP, Du DL (2014). Light limitation and litter of an invasive clonal plant, Wedelia trilobata, inhibit its seedling recruitment. Annals of Botany, 114, 425-433.
DOI URL |
[33] | Qi SS, He FR, Wang JJ, Li Q, Dai ZC, Du DL (2020). Effects of arbuscular mycorrhizal fungi on the growth and the competition of an invasive plant Wedelia trilobata. Microbiology China, 47, 3801-3810. |
[祁珊珊, 贺芙蓉, 汪晶晶, 李琴, 戴志聪, 杜道林 (2020). 丛枝菌根真菌对入侵植物南美蟛蜞菊生长及竞争力的影响. 微生物学通报, 47, 3801-3810.] | |
[34] |
Ren GQ, He FR, Sun JF, Hu WJ, Azeem A, Qi SS, Yang B, Cui MM, Jiang K, Du DL (2021). Resource conservation strategy helps explain patterns of biological invasion in a low-N environment. Biochemical Systematics and Ecology, 94, 104295. DOI: 10.1016/j.bse.2020.104205.
DOI |
[35] |
Ren GQ, Li Q, Li Y, Li J, Adomako MO, Dai ZC, Li GL, Wan LY, Zhang B, Zou CB, Ran Q, Du DL (2019). The enhancement of root biomass increases the competitiveness of an invasive plant against a co-occurring native plant under elevated nitrogen deposition. Flora, 261, 151486. DOI: 10.1016/j.flora.2019.151486.
DOI |
[36] |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
PMID |
[37] |
Rosenblueth M, Martínez-Romero E (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19, 827-837.
DOI PMID |
[38] |
Rout ME, Chrzanowski TH, Westlie TK, DeLuca TH, Callaway RM, Holben WE (2013). Bacterial endophytes enhance competition by invasive plants. American Journal of Botany, 100, 1726-1737.
DOI PMID |
[39] | Sambrook HC (1989). Molecular cloning : a laboratory manual. Cold Spring Harbor Perspectives in Biology, 10, 5-10. |
[40] |
Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2008). Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microbial Ecology, 55, 130-140.
PMID |
[41] |
Sardans J, Peñuelas J (2012). The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiology, 160, 1741-1761.
DOI PMID |
[42] |
Wan FH, Guo JY, Wang DH (2002). Alien invasive species in China: their damages and management strategies. Biodiversity Science, 10, 119-125.
DOI URL |
[万方浩, 郭建英, 王德辉 (2002). 中国外来入侵生物的危害与管理对策. 生物多样性, 10, 119-125.]
DOI |
|
[43] | Wang MN, Dai ZC, Qi SS, Wang XY, Du DL (2014). Main hypotheses and research progress of alien plant invasion mechanism. Jiangsu Agricultural Sciences, 42, 378-382. |
[王明娜, 戴志聪, 祁珊珊, 王晓莹, 杜道林 (2014). 外来植物入侵机制主要假说及其研究进展. 江苏农业科学, 42, 378-382.] | |
[44] |
Wang YJ, Chen D, Yan R, Yu FH, van Kleunen M (2019). Invasive alien clonal plants are competitively superior over co-occurring native clonal plants. Perspectives in Plant Ecology, Evolution and Systematics, 40, 125484. DOI: 10.1016/j.ppees.2019.125484.
DOI |
[45] |
Wang YJ, Müller-Schärer H, van Kleunen M, Cai AM, Zhang P, Yan R, Dong BC, Yu FH (2017). Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytologist, 216, 1072-1078.
DOI URL |
[46] |
Wu YM, Leng ZR, Li J, Jia H, Yan CL, Hong HL, Wang Q, Lu YY, Du DL (2022). Increased fluctuation of sulfur alleviates cadmium toxicity and exacerbates the expansion of Spartina alterniflora in coastal wetlands. Environmental Pollution, 292, 118399. DOI: 10.1016/j.envpol.2021.118399.
DOI |
[47] | Wu YQ, Hu YJ, Liao FL (2005). Wedelia trilobata—A species from introduced to potential invasive. Guihaia, 25, 413-418. |
[吴彦琼, 胡玉佳, 廖富林 (2005). 从引进到潜在入侵的植物——南美蟛蜞菊. 广西植物, 25, 413-418.] | |
[48] |
Yu WB, Li SP (2020). Modern coexistence theory as a framework for invasion ecology. Biodiversity Science, 28, 1362-1375.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[7] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[10] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[11] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[12] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[13] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[14] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[15] | 张金燕, 寸竹, 双升普, 洪杰, 孟珍贵, 陈军文. 阴生植物三七稳态和动态光合特性对氮水平的响应[J]. 植物生态学报, 2023, 47(3): 331-347. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19