植物生态学报 ›› 2023, Vol. 47 ›› Issue (5): 618-628.DOI: 10.17521/cjpe.2022.0187
所属专题: 凋落物
收稿日期:
2022-04-06
接受日期:
2022-09-05
出版日期:
2023-05-20
发布日期:
2023-02-24
通讯作者:
*(kyleyuechina@163.com)
作者简介:
李慧璇: ORCID:0009-0004-4907-6601
基金资助:
LI Hui-Xuan, MA Hong-Liang(), YIN Yun-Feng, GAO Ren
Received:
2022-04-06
Accepted:
2022-09-05
Online:
2023-05-20
Published:
2023-02-24
Supported by:
摘要:
为最大程度模拟森林凋落物分解实际状况, 探究亚热带天然阔叶林凋落物的分解动态特征, 该研究采用凋落物分解“三明治”法, 在野外原位分解的凋落物上, 平均间隔3个月在积累的凋落物上铺设一层尼龙网(60目, 1.2 m × 1.95 m)。3年后共获取11层不同分解程度的凋落物, 分析其活性和惰性碳、氮含量变化。结果表明: 1)在整个分解过程中, 活性、惰性碳参与分解的时间不同, 水溶性有机碳最早开始释放, 持续释放时间长(295 d); 惰性碳分解滞后(4层, 422 d); 而酸水解有机碳可能在分解中受二者的影响, 变化波动大。2)与碳相比, 氮在整个分解阶段的动态更为复杂, 表现出明显的周期性, 即固持(1-3层, 90-295 d)—释放(4-6层, 422-670 d)—固持(7-11层, 802-1 200 d)。3)凋落物原状分解有利于氮的截留和保存。一方面, 分解前期上层凋落物中的活性物质受淋溶作用在下层积累, 从而降低淋失的风险; 另一方面, 分解后期惰性碳氮偏向于底层积累, 利于碳氮的固存。可见, 森林凋落物的自然分解状态有利于凋落物惰性碳氮更好地归还土壤。因此, 在森林管理中要注重凋落物层的保护, 让其在自然状态下分解, 助力土壤碳氮的稳定与保留。
李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征. 植物生态学报, 2023, 47(5): 618-628. DOI: 10.17521/cjpe.2022.0187
LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest. Chinese Journal of Plant Ecology, 2023, 47(5): 618-628. DOI: 10.17521/cjpe.2022.0187
分解时间 Decomposition duration (d) | 生物量 Biomass (g·m-2) | 含水量 Water content (%) | 酸碱度 pH | 总碳含量 TC content (g·kg-1) | 总氮含量 TN content (g·kg-1) | 碳氮比 C:N |
---|---|---|---|---|---|---|
90 | 116.80 ± 18.09bc | 17.76 ± 0.82e | 4.64 ± 0.20bc | 478.29 ± 3.92a | 9.68 ± 0.60ab | 49.54 ± 3.20ab |
207 | 301.13 ± 65.49a | 21.95 ± 3.48de | 4.94 ± 0.17a | 467.66 ± 5.12a | 9.34 ± 1.58abc | 51.03 ± 8.35ab |
295 | 69.46 ± 10.93de | 22.35 ± 0.75de | 4.86 ± 0.34ab | 464.02 ± 4.88a | 10.20 ± 0.44a | 45.56 ± 2.23abc |
422 | 81.20 ± 19.92cd | 25.59 ± 1.26cde | 4.56 ± 0.23cd | 396.55 ± 30.02b | 7.55 ± 0.90de | 53.14 ± 8.70a |
556 | 150.83 ± 36.47b | 19.89 ± 3.99de | 4.54 ± 0.22cd | 377.68 ± 37.88bc | 7.34 ± 0.80e | 52.26 ± 11.14a |
670 | 34.16 ± 8.47ef | 22.38 ± 4.91de | 4.50 ± 0.08cd | 329.20 ± 26.86d | 7.64 ± 0.64de | 39.95 ± 7.18bc |
802 | 21.49 ± 3.99f | 28.66 ± 6.07cd | 4.45 ± 0.07cde | 359.91 ± 30.40bcd | 9.00 ± 1.19abcd | 40.66 ± 7.86bc |
912 | 27.99 ± 6.40ef | 32.49 ± 7.95bc | 4.28 ± 0.13de | 332.31 ± 26.56d | 9.25 ± 1.09abc | 36.35 ± 6.22c |
1 012 | 12.10 ± 2.75f | 39.09 ± 7.47b | 4.37 ± 0.04cde | 326.27 ± 1.93d | 9.38 ± 0.31abc | 34.80 ± 1.23c |
1 096 | 23.15 ± 5.08f | 40.69 ± 6.48b | 4.30 ± 0.03de | 349.11 ± 24.64cd | 8.01 ± 0.54cde | 43.35 ± 5.36abc |
1 200 | 15.21 ± 2.35f | 54.22 ± 7.45a | 4.17 ± 0.05e | 349.51 ± 3.59cd | 8.45 ± 0.71bcde | 42.54 ± 5.27abc |
平均值 Mean | 77.59 | 29.55 | 4.51 | 384.59 | 8.71 | 44.47 |
表1 不同分解时间凋落物生物量、含水量、pH、总碳、总氮含量及碳氮比(平均值±标准差)
Table 1 Biomass, water content, pH, total carbon (TC), total nitrogen (TN) content and C:N of litter at different decomposition durations (mean ± SD)
分解时间 Decomposition duration (d) | 生物量 Biomass (g·m-2) | 含水量 Water content (%) | 酸碱度 pH | 总碳含量 TC content (g·kg-1) | 总氮含量 TN content (g·kg-1) | 碳氮比 C:N |
---|---|---|---|---|---|---|
90 | 116.80 ± 18.09bc | 17.76 ± 0.82e | 4.64 ± 0.20bc | 478.29 ± 3.92a | 9.68 ± 0.60ab | 49.54 ± 3.20ab |
207 | 301.13 ± 65.49a | 21.95 ± 3.48de | 4.94 ± 0.17a | 467.66 ± 5.12a | 9.34 ± 1.58abc | 51.03 ± 8.35ab |
295 | 69.46 ± 10.93de | 22.35 ± 0.75de | 4.86 ± 0.34ab | 464.02 ± 4.88a | 10.20 ± 0.44a | 45.56 ± 2.23abc |
422 | 81.20 ± 19.92cd | 25.59 ± 1.26cde | 4.56 ± 0.23cd | 396.55 ± 30.02b | 7.55 ± 0.90de | 53.14 ± 8.70a |
556 | 150.83 ± 36.47b | 19.89 ± 3.99de | 4.54 ± 0.22cd | 377.68 ± 37.88bc | 7.34 ± 0.80e | 52.26 ± 11.14a |
670 | 34.16 ± 8.47ef | 22.38 ± 4.91de | 4.50 ± 0.08cd | 329.20 ± 26.86d | 7.64 ± 0.64de | 39.95 ± 7.18bc |
802 | 21.49 ± 3.99f | 28.66 ± 6.07cd | 4.45 ± 0.07cde | 359.91 ± 30.40bcd | 9.00 ± 1.19abcd | 40.66 ± 7.86bc |
912 | 27.99 ± 6.40ef | 32.49 ± 7.95bc | 4.28 ± 0.13de | 332.31 ± 26.56d | 9.25 ± 1.09abc | 36.35 ± 6.22c |
1 012 | 12.10 ± 2.75f | 39.09 ± 7.47b | 4.37 ± 0.04cde | 326.27 ± 1.93d | 9.38 ± 0.31abc | 34.80 ± 1.23c |
1 096 | 23.15 ± 5.08f | 40.69 ± 6.48b | 4.30 ± 0.03de | 349.11 ± 24.64cd | 8.01 ± 0.54cde | 43.35 ± 5.36abc |
1 200 | 15.21 ± 2.35f | 54.22 ± 7.45a | 4.17 ± 0.05e | 349.51 ± 3.59cd | 8.45 ± 0.71bcde | 42.54 ± 5.27abc |
平均值 Mean | 77.59 | 29.55 | 4.51 | 384.59 | 8.71 | 44.47 |
图1 不同分解时间的凋落物酸水解有机碳(AOC) (A), 酸水解总氮(ATN)、酸水解无机氮(AIN)、酸水解有机氮(AON) (B), 总碳(TC)、惰性碳(RC) (C), 总氮(TN)、惰性氮(RN) (D)含量的动态变化(平均值±标准差)。不同小写字母表示不同分解时间差异显著(p < 0.05)。
Fig. 1 Dynamic of acid hydrolyzed organic carbon (AOC) (A); acid hydrolyzed total nitrogen (ATN), acid hydrolyzed inorganic nitrogen (AIN) and acid hydrolyzed organic nitrogen (AON) (B); total carbon (TC) and recalcitrant carbon (RC) (C); total nitrogen (TN) and recalcitrant nitrogen (RN) (D) contents in litter at different decomposition durations (mean ± SD). Different lowercase letters indicate the significant differences among the different decomposition durations (p < 0.05).
图2 不同分解时间凋落物活性、惰性碳氮含量之间的Pearson相关关系。AIN, 酸水解无机氮; AOC, 酸水解有机碳; AON, 酸水解有机氮; ATN, 酸水解总氮; RC, 惰性碳; RN, 惰性氮; TC, 总碳; TN, 总氮; WAA, 游离氨基酸; WAN, 水溶性铵态氮; WNN, 水溶性硝态氮; WOC, 水溶性有机碳; WON, 水溶性有机氮; WTN, 水溶性总氮。数值为相关系数, 星号表示显著相关(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。
Fig. 2 Pearson correlation between labile and recalcitrant carbon and nitrogen contents in litter at different decomposition durations. AIN, acid hydrolyzed inorganic nitrogen; AOC, acid hydrolyzed organic carbon; AON, acid hydrolyzed organic nitrogen; ATN, acid hydrolyzed total nitrogen; RC, recalcitrant carbon; RN, recalcitrant nitrogen; TC, total carbon; TN, total nitrogen; WAA, free amino acid; WAN, water-soluble ammonium nitrogen; WNN, water-soluble nitrate nitrogen; WOC, water-soluble organic carbon; WON, water-soluble organic nitrogen; WTN, water-soluble total nitrogen. The value is correlation coefficient, and asterisks denote significant correlations (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
图3 不同分解时间的凋落物水溶性有机碳(WOC) (A), 水溶性总氮(WTN)、水溶性有机氮(WON)、游离氨基酸(WAA) (B), 水溶性硝态氮(WNN)、水溶性铵态氮(WAN) (C)含量的动态变化(平均值±标准差)。不同小写字母表示不同分解时间差异显著(p < 0.05)。
Fig. 3 Dynamics of water-soluble organic carbon (WOC) (A); water-soluble total nitrogen (WTN), water-soluble organic nitrogen (WON) and free amino acid (WAA) (B); water-soluble nitrate nitrogen (WNN) and water-soluble ammonium nitrogen (WAN) (C) contents in litter at different decomposition durations (mean ± SD). Different lowercase letters indicate the significant differences among the different decomposition durations (p < 0.05).
[1] |
Alarcón-Gutiérrez E, Floch C, Augur C, Le Petit J, Ziarelli F, Criquet S (2009). Spatial variations of chemical composition, microbial functional diversity, and enzyme activities in a Mediterranean litter (Quercus ilex L.) profile. Pedobiologia, 52, 387-399.
DOI URL |
[2] |
Baietto A, Hirigoyen A, Hernández J, del Pino A (2021). Comparative dynamics of nutrient release through litter decomposition in Eucalyptus grandis Hill ex Maiden and Pinus taeda L. stands. Forests, 12, 1227. DOI: 10.3390/ f12091227.
DOI |
[3] |
Binkley D (2002). Ten-year decomposition in a loblolly pine forest. Canadian Journal of Forest Research, 32, 2231-2235.
DOI URL |
[4] | Chen JL, Zhang SJ, Li LD, Gu X, Liu ZD, Wang LF, Fang X (2020). Stock and nutrient characteristics of litter layer at different vegetation restoration stages in subtropical region, China. Acta Ecologica Sinica, 40, 4073-4086. |
[陈金磊, 张仕吉, 李雷达, 辜翔, 刘兆丹, 王留芳, 方晰 (2020). 亚热带不同植被恢复阶段林地凋落物层现存量和养分特征. 生态学报, 40, 4073-4086.] | |
[5] | Chen T, Xi M, Kong FL, Li Y, Pang LH (2016). A review on litter decomposition and influence factors. Chinese Journal of Ecology, 35, 1927-1935. |
[陈婷, 郗敏, 孔范龙, 李悦, 庞立华 (2016). 枯落物分解及其影响因素. 生态学杂志, 35, 1927-1935.] | |
[6] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI PMID |
[7] |
Don A, Kalbitz K (2005). Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biology & Biochemistry, 37, 2171-2179.
DOI URL |
[8] |
Fang YT, Liu DW, Zhu FF, Tu Y, Li SL, Huang SN, Quan Z, Wang A (2020). Applications of nitrogen stable isotope techniques in the study of nitrogen cycling in terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 373-383.
DOI URL |
[方运霆, 刘冬伟, 朱飞飞, 图影, 李善龙, 黄韶楠, 全智, 王盎 (2020). 氮稳定同位素技术在陆地生态系统氮循环研究中的应用. 植物生态学报, 44, 373-383.]
DOI |
|
[9] | Gu YJ, Li YM, Tao QY, Wang L (2020). Comparison on early decomposition process of forest litter from litter bag and natural environment. Journal of Zhejiang Forestry Science and Technology, 40(6), 1-8. |
[谷永建, 李玉梅, 陶千冶, 旺罗 (2020). 网袋埋藏和自然环境下测定森林凋落物早期分解过程的比较. 浙江林业科技, 40(6), 1-8.] | |
[10] |
Hoppe B, Purahong W, Wubet T, Kahl T, Bauhus J, Arnstadt T, Hofrichter M, Buscot F, Krüger D (2016). Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Diversity, 77, 367-379.
DOI URL |
[11] |
Jorgensen JR, Wells CG, Metz LJ (1980). Nutrient changes in decomposing loblolly pine forest floor. Soil Science Society of America Journal, 44, 1307-1314.
DOI URL |
[12] | Krishna MP, Mohan M (2017). Litter decomposition in forest ecosystems: a review. Energy, Ecology & Environment, 2, 236-249. |
[13] |
Li S, Gurmesa GA, Zhu W, Gundersen P, Zhang S, Xi D, Huang S, Wang A, Zhu F, Jiang Y, Zhu J, Fang Y (2019). Fate of atmospherically deposited NH4+ and NO3- in two temperate forests in China: temporal pattern and redistribution. Ecological Applications, 29, e01920. DOI: 10.1002/eap.1920.
DOI |
[14] | Li W, Liu XF, Chen GS, Zhao BJ, Qiu X, Yang YS (2016). Effects of litter manipulation on soil respiration in the natural forests and plantations of Castanopsis carlesii in mid-subtropical China. Scientia Silvae Sinicae, 52(11), 11-18. |
[李伟, 刘小飞, 陈光水, 赵本嘉, 邱曦, 杨玉盛 (2016). 凋落物对中亚热带米槠天然林和人工林土壤呼吸的影响. 林业科学, 52(11), 11-18.] | |
[15] | Li YF, Guo YL, Li XK, Li DX, Wang B, Chen T, Lu F, Xiang WS, Huang FZ, Liu SY, Li JX, Wen SJ, Lu SH (2022). Analysis of the leaf litter decomposition rate and nutrient content in karst seasonal rainforest in southwest Guangxi. Acta Geoscientica Sinica, 43, 483-490. |
[李雨菲, 郭屹立, 李先琨, 李冬兴, 王斌, 陈婷, 陆芳, 向悟生, 黄甫昭, 刘晟源, 李健星, 文淑均, 陆树华 (2022). 桂西南喀斯特季节性雨林凋落叶分解速率和养分含量特征分析. 地球学报, 43, 483-490.] | |
[16] | Lin KM, Zhang ZQ, Ye FM, Lin Y, Li QS (2010). Dynamic analysis of decomposition characteristics and content change of nutrient elements of leaf litter of Cunninghamia lanceolata, Phoebe bournei and Schima superba under C. lanceolata artificial forest. Journal of Plant Resources and Environment, 19(2), 34-39. |
[林开敏, 章志琴, 叶发茂, 林艳, 李卿叁 (2010). 杉木人工林下杉木、楠木和木荷叶凋落物分解特征及营养元素含量变化的动态分析. 植物资源与环境学报, 19(2), 34-39.] | |
[17] | Liu BW, Zhang L, Wu FZ, Ni XY, Xu ZF, Tan B, Yue K (2020). Dynamics of water-soluble matters during leaf litter decomposition under different habitats in an alpine forest. Chinese Journal of Ecology, 39, 1130-1140. |
[刘博文, 张丽, 吴福忠, 倪祥银, 徐振锋, 谭波, 岳楷 (2020). 高寒森林不同生境凋落叶分解过程中水溶性组分动态特征. 生态学杂志, 39, 1130-1140.] | |
[18] | Liu XW, Liu J (2012). N and P dynamic of Phragmites australis and Typha angustata litter in Dawen River Wetland during the decomposition. Journal of Qingdao Agricultural University (Natural Science), 29, 289-293. |
[柳新伟, 刘君 (2012). 大汶河湿地香蒲和芦苇分解过程中N、P动态研究. 青岛农业大学学报(自然科学版), 29, 289-293.] | |
[19] | Niu XY, Sun XM, Chen DS, Zhang SG (2020). Characteristics of microbial community in litter relative to stand of Larix kaempferi different in development stage. Acta Pedologica Sinica, 57, 1471-1482. |
[牛小云, 孙晓梅, 陈东升, 张守攻 (2020). 不同发育阶段日本落叶松人工林枯落物层微生物群落特征. 土壤学报, 57, 1471-1482.] | |
[20] | Pan SH, Cheng YQ, Du H, Yang YN, Wang YQ, Zhang CF (2019). Litter decomposition and DOC release during forest succession in Greater Khingan Mountains. Journal of Southwest Forestry University (Natural Sciences), 39(5), 75-83. |
[潘思涵, 程宇琪, 杜浩, 杨宇娜, 王雨晴, 张成福 (2019). 大兴安岭森林演替过程中凋落物分解与DOC释放研究. 西南林业大学学报(自然科学版), 39(5), 75-83.] | |
[21] |
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
DOI URL |
[22] |
Pastorelli R, Paletto A, Agnelli AE, Lagomarsino A, De Meo I (2020). Microbial communities associated with decomposing deadwood of downy birch in a natural forest in Khibiny Mountains (Kola Peninsula, Russian Federation). Forest Ecology and Management, 455, 117643. DOI: 10.1016/j.foreco.2019.117643.
DOI |
[23] |
Purahong W, Wubet T, Krüger D, Buscot F (2018). Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. The ISME Journal, 12, 289-295.
DOI URL |
[24] | Qin QQ, Wang HY, Zheng YL, Lei XD (2021). Spatial distribution characteristics of litter nutrients in temperate spruce- fir mixed forests. Journal of Beijing Forestry University, 43(3), 73-84. |
[秦倩倩, 王海燕, 郑永林, 雷相东 (2021). 温带云冷杉混交林凋落物养分的空间分布特征. 北京林业大学学报, 43(3), 73-84.] | |
[25] | Qin SJ, Liu JS, Zhou WM, Cheng L (2008). Dynamics of initial decomposition of Calamagrostis angustifolia litter in Sanjiang Plain of China. Chinese Journal of Applied Ecology, 19, 1217-1222. |
[秦胜金, 刘景双, 周旺明, 程莉 (2008). 三江平原小叶章湿地枯落物初期分解动态. 应用生态学报, 19, 1217-1222.] | |
[26] |
Qualls RG (2016). Long-term (13 years) decomposition rates of forest floor organic matter on paired coniferous and deciduous watersheds with contrasting temperature regimes. Forests, 7, 231. DOI: 10.3390/f7100231.
DOI |
[27] |
Qualls RG, Takiyama A, Wershaw RL (2003). Formation and loss of humic substances during decomposition in a pine forest floor. Soil Science Society of America Journal, 67, 899-909.
DOI URL |
[28] | Wang JK, Xu YD, Ding F, Gao XD, Li SY, Sun LJ, An TT, Pei JB, Li M, Wang Y, Zhang WJ, Ge Z (2019). Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review. Acta Pedologica Sinica, 56, 528-540. |
[汪景宽, 徐英德, 丁凡, 高晓丹, 李双异, 孙良杰, 安婷婷, 裴久渤, 李明, 王阳, 张维俊, 葛壮 (2019). 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 56, 528-540.] | |
[29] |
Wang LF, Chen YM, Zhou Y, Zheng HF, Xu ZF, Tan B, You CM, Zhang L, Li H, Guo L, Wang LX, Huang YY, Zhang J, Liu Y (2021). Litter chemical traits strongly drove the carbon fractions loss during decomposition across an alpine treeline ecotone. Science of the Total Environment, 753, 142287. DOI: 10.1016/j.scitotenv.2020.142287.
DOI |
[30] | Xu LY, Yang WQ, Li H, Ni XY, He J, Wu FZ (2014). Effects of forest gap on soluble nitrogen and soluble phosphorus of foliar litter decomposition in an alpine forest. Journal of Soil and Water Conservation, 28, 214-221. |
[徐李亚, 杨万勤, 李晗, 倪祥银, 何洁, 吴福忠 (2014). 高山森林林窗对凋落物分解过程中水溶性氮和磷的影响. 水土保持学报, 28, 214-221.] | |
[31] |
Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H (2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of northwest Guangxi. Chinese Journal of Plant Ecology, 39, 682-693.
DOI URL |
[曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 (2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.]
DOI |
|
[32] | Zhang C, Yang WQ, Yue K, Huang CP, Peng Y, Wu FZ (2015). Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alpine forest streams. Chinese Journal of Applied Ecology, 26, 1601-1608. |
[张川, 杨万勤, 岳楷, 黄春萍, 彭艳, 吴福忠 (2015). 高山森林溪流冬季不同时期凋落物分解中水溶性氮和磷的动态特征. 应用生态学报, 26, 1601-1608.] | |
[33] | Zhang JH, Tang ZY, Shen HH, Fang JY (2017). Responses of growth and litterfall production to nitrogen addition treatments from common shrublands in Mt. Dongling, Beijing, China. Chinese Journal of Plant Ecology, 41, 71-80. |
[张建华, 唐志尧, 沈海花, 方精云 (2017). 北京东灵山地区常见灌丛生长及凋落物生产对氮添加的响应. 植物生态学报, 41, 71-80.]
DOI |
|
[34] | Zhang XP, Wang XP, Zhu B, Zong ZJ, Peng CH, Fang JY (2008). Litter fall production in relation to environmental factors in northeast China’s forests. Chinese Journal of Plant Ecology, 32, 1031-1040. |
[张新平, 王襄平, 朱彪, 宗占江, 彭长辉, 方精云 (2008). 我国东北主要森林类型的凋落物产量及其影响因素. 植物生态学报, 32, 1031-1040.] | |
[35] | Zhao HY, Geng YQ, Yang Y, Zhou HJ, Zhang HL, Wang L, Zhao GL (2016). Enzyme activities in litter of Pinus tabulaeformis and Acer truncatum forests in lower mountain area, Beijing. Journal of Central South University of Forestry & Technology, 36(6), 23-28. |
[赵恒毅, 耿玉清, 杨英, 周红娟, 张海兰, 王玲, 赵广亮 (2016). 北京低山区油松林和元宝枫林凋落物酶活性研究. 中南林业科技大学学报, 36(6), 23-28.] | |
[36] | Zheng JQ, Guo RH, Li DS, Li D, Li JG, Zhu BK, Han SJ (2016). Effects of nitrogen deposition and drought on litter decomposition in a temperate forest. Journal of Beijing Forestry University, 38(4), 21-28. |
[郑俊强, 郭瑞红, 李东升, 李东, 李金功, 朱保坤, 韩士杰 (2016). 氮沉降和干旱对阔叶红松林凋落物分解的影响. 北京林业大学学报, 38(4), 21-28.] |
[1] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[2] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[3] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[4] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[5] | 朱华. 云南常绿阔叶林的植被地理研究[J]. 植物生态学报, 2021, 45(3): 224-241. |
[6] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[7] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[8] | 李鑫豪, 田文东, 李润东, 靳川, 蒋燕, 郝少荣, 贾昕, 田赟, 查天山. 北京松山落叶阔叶林生态系统水热通量对环境因子的响应[J]. 植物生态学报, 2021, 45(11): 1191-1202. |
[9] | 李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣. 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类[J]. 植物生态学报, 2020, 44(3): 236-247. |
[10] | 王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣. 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响[J]. 植物生态学报, 2020, 44(10): 1015-1027. |
[11] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[12] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[13] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[14] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[15] | 王雪, 陈光水, 闫晓俊, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 贾林巧, 熊德成, 黄锦学. 亚热带常绿阔叶林89种木本植物一级根直径的变异[J]. 植物生态学报, 2019, 43(11): 969-978. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19