植物生态学报 ›› 2019, Vol. 43 ›› Issue (2): 107-118.DOI: 10.17521/cjpe.2018.0272
闫鹏飞1,展鹏飞1,肖德荣1,王燚2,余瑞1,刘振亚1,王行1,*()
收稿日期:
2018-10-31
接受日期:
2019-01-30
出版日期:
2019-02-20
发布日期:
2019-06-04
通讯作者:
王行
基金资助:
YAN Peng-Fei1,ZHAN Peng-Fei1,XIAO De-Rong1,WANG Yi2,YU Rui1,LIU Zhen-Ya1,WANG Hang1,*()
Received:
2018-10-31
Accepted:
2019-01-30
Online:
2019-02-20
Published:
2019-06-04
Contact:
WANG Hang
Supported by:
摘要:
挺水植物的凋落物是湿地生态系统物质循环的重要组成部分, 阐明气候变暖以及生境差异对湿地挺水植物凋落物分解过程及叶际微生物的影响对揭示湿地生态系统关键物质循环过程具有重要意义。该研究以滇西北高原典型湿地优势挺水植物茭草(Zizania latifolia)为研究对象, 采用凋落物袋法研究了茭草在模拟增温(1.5-2.0 ℃)及不同生境(大气界面、水界面与土界面)下的质量残留率和叶际微生物数量、结构组成与功能代谢特征。研究发现: 模拟气候变暖及生境差异均显著影响凋落物的分解速率。经过一年的分解, 凋落物在模拟增温环境下的质量残留率为66.4%, 对照组的质量残留率为77.7%, 增温组分解常数(k)值是对照组的1.64倍, 而凋落物在水界面与土界面的质量残留率为42.2%和25.3%, 其k值分别为大气界面的3.63和5.25倍, 生境差异是影响湿地挺水植物凋落物分解速率的关键因素。模拟增温主要改变了凋落物叶际微生物的群落组成特征, 而生境变化主要影响叶际微生物的绝对数量、微生物多样性、群落结构组成以及功能代谢活性。处于土界面的凋落物叶际微生物具有最高的群落功能代谢活性及醇类碳源利用程度。不同处理之间的植物叶际微生物特征与凋落物分解速率具有较好的一致性, 为揭示湿地植物凋落物分解快慢的微生物驱动机制提供了重要的理论依据。
闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响. 植物生态学报, 2019, 43(2): 107-118. DOI: 10.17521/cjpe.2018.0272
YAN Peng-Fei, ZHAN Peng-Fei, XIAO De-Rong, WANG Yi, YU Rui, LIU Zhen-Ya, WANG Hang. Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function. Chinese Journal of Plant Ecology, 2019, 43(2): 107-118. DOI: 10.17521/cjpe.2018.0272
图1 茭草凋落物分解模拟增温与生境差异实验。A, 三种生境包括大气界面、水界面以及土界面。其中, 大气界面中的凋落物袋悬于PVC管上方距离地面1.2 m处; 水界面中的凋落物袋中放入乒乓球使凋落物袋始终悬浮于水中; 土界面中的凋落物袋通过PVC管将其固定在5.0 cm掩埋深度的底泥中。B, 开顶式生长室(OTC)的设计及运行。其中, 对照组无OTC装置, OTC增温组以直径为2.4 m的底座以及直径为2.0 m的开口所设计建造的阳光板为材料, 实现大气增温模拟。2014年12月至2015年12月全年实时采集(1次·h-1)对照组与OTC增温组中的气温数据, 实现1.5-2.0 ℃温度增幅。C, 研究对象为湿地挺水植物茭草的叶凋落物, 包括增温实验和生境差异实验(其中增温实验对照组和生境差异实验中大气界面的样品相同)。
Fig. 1 Experiment of simulated warming and habitat difference for litter decomposition of Zizania latifolia. A, Three habitats include air interface, water interface, and soil interface. Among them, litter bags under air decomposition were hang over the bamboo (1.2 m from the ground), litter bags under water decomposition were floated in the surface of water (with the aids of table tennis), and litter bags under soil decomposition were fixed by PVC tubes in the soils (5.0 cm in deep). B, The design and operation of Open-top Chamber (OTC). Among them, control group has no OTC devices, and OTC devices simulate rising temperature (warming group). The device was constructed by solar panels with 2.4 m base and 2.0 m opening in diameter. The temperatures between control and warming groups were recorded from December 2014 to December 2015 (once per hour). In warming treatment, the temperature has been raised by 1.5-2.0 ℃. C, The research object was a typical emergent wetland plant, Zizania latifolia. Its leaf litter was subjected to warming and habitat difference treatments.
图2 茭草叶凋落物质量残留率的季节性动态(平均值±标准误差, n = 3)。利用Post Hoc Tests进行两两比较分析, 不同小写字母代表处理之间的差异达到显著水平(p < 0.05)。
Fig. 2 Seasonal dynamics in mass remaining of leaf litter from Zizania latifolia (mean ± SE, n = 3). The different lowercase letters above error bars indicate significant differences between treatments by Post Hoc Tests (p < 0.05).
图3 茭草凋落物叶际微生物菌落平板计数(平均值±标准误差)。 *, p < 0.05; **, p < 0.01。
Fig. 3 Microbial colony counts in culture dish for leaf litter of Zizania latifolia (mean ± SE). *, p < 0.05; **, p < 0.01.
图4 茭草凋落物叶际细菌群落多样性指数(Chao1)及细菌在属分类水平上的群落结构特征。图中误差线为标准误差(n = 3), 利用Post Hoc Tests进行两两比较分析, 不同小写字母代表处理之间的差异达到显著水平(p < 0.05)。
Fig. 4 Diversity of bacterial community indicated by Chao1 index and the bacterial community composition at the genus level for leaf litter of Zizania latifolia. The error bars represent standard errors (n = 3), and the different lowercase letters above error bars indicate significant differences between treatments by Post Hoc Tests (p < 0.05).
图5 茭草凋落物叶际微生物碳源利用的平均颜色变化率(AWCD)值动态变化(培养时间为12-168 h)。图中误差线为标准误差(n = 3), 利用Post Hoc Tests进行两两比较分析, 不同小写字母代表处理之间的差异达到显著水平(p < 0.05)。
Fig. 5 Dynamics in average well color development (AWCD) value for carbon sources utilized by litter phyllospheric microorganisms of Zizania latifolia during an incubation period of 12-168 h. The error bars represent standard errors (n = 3), and the different lowercase letters above error bars indicate significant differences between treatments by Post Hoc Tests (p < 0.05).
图7 相似性分析比较对照组与增温组、大气界面与水界面、大气界面与土界面、水界面与土界面的微生物碳源利用差异贡献度热图。颜色变化(从蓝到红色)代表不同碳源对差异的相对贡献度变化(0到100%)。观测样品为72-96 h的碳源利用情况。
Fig. 7 Similarity analysis shows the contribution of different carbon sources to the dissimilarity between control vs. warming, air interface vs. water interface, air interface vs. soil interface, and water interface vs. soil interface, illustrated by heatmaps. The color (blue to red) represents the relative contribution of different carbon substrates (0-100%). The observations at 72-96 h incubation point were used for drawing the heatmaps.
[1] |
Berg B, McClaugherty C ( 1989). Nitrogen and phosphorus release from decomposing litter in relation to the disappearance of lignin. Canadian Journal of Botany, 67, 1148-1156.
DOI URL |
[2] |
Bonanomi G, Capodilupo M, Incerti G, Mazzoleni S ( 2015). Litter quality and temperature modulate microbial diversity effects on decomposition in model experiments. Community Ecology, 16, 167-177.
DOI URL |
[3] |
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello KE, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelly ST, Knights D, Koening JE, Ley RE, Lozupone GA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Rob K ( 2010). QIIME allows analysis of high-throghput community sequencing data. Nature, 7, 335-336.
DOI URL |
[4] | Chaudhary D, Kumar R, Sihag K, Rashmi & Kumari A ( 2017). Phyllospheric microflora and its impact on plant growth: A review. Agricultural Reviews, 38, 51-59. |
[5] |
Chen C, Xin K, Liu H, Cheng J, Shen XH, Wang Y, Zhang L ( 2017). Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Scientific Reports, 7, 41564. DOI: 10.1038/srep41564.
DOI URL |
[6] |
Chen YM, He RL, Deng CC, Yang WQ, Zhang J, Yang L, Liu Y ( 2015). Litter decomposition and lignocellulose enzyme activities of Actinothuidium hookeri and Cystopteris montana in alpine timberline ecotone of Western Sichuan, China. Chinese Journal of Applied Ecology, 26, 3251-3258.
DOI URL PMID |
[ 陈亚梅, 和润莲, 邓长春, 杨万勤, 张健, 杨林, 刘洋 ( 2015). 川西高山林线交错带两种地被物分解的木质纤维素酶活性特征. 应用生态学报, 26, 3251-3258.]
DOI URL PMID |
|
[7] |
Christoffer B, Mireia BF, Jarone P, Catherine L ( 2018). Response of microbial communities to changing climate conditions during summer cyanobacterial blooms in the Baltic Sea. Frontiers in Microbiology, 9, 1562. DOI: 10.3389/ fmicb.2018.01562.
DOI URL |
[8] |
Fan ZX, Bräuning A, Thomas A, Li JB, Cao KF ( 2011). Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961-2004. International Journal of Climatology, 31, 2078-2090.
DOI URL |
[9] |
Ferreira V, Raposeiro PM, Pereira A, Cruz AM, Costa AC, Graca M, Goncalves V ( 2016). Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biology, 61, 783-799.
DOI URL |
[10] |
Guo XH, Xiao DR, Tian K, Yu HZ ( 2013). Biomass production and litter decomposition of lakeshore plants in Napahai wetland, Northwestern Yunnan Plateau, China. Acta Ecologica Sinica , 33, 1425-1432.
DOI URL |
[ 郭绪虎, 肖德荣, 田昆, 余红忠 ( 2013). 滇西北高原纳帕海湿地湖滨带优势植物生物量及其凋落物分解. 生态学报, 33, 1425-1432.]
DOI URL |
|
[11] |
He XB, Song FQ, Zhang P, Lin YH, Tian XJ, Ren LL, Chen CL, Xiao N, Tan HX ( 2007). Variation in litter decomposition- temperature relationships between coniferous and broadleaf forests in Huangshan Mountain, China. Journal of Forestry Research, 18, 291-297.
DOI URL |
[12] |
Hobara S, Osono T, Hirose D, Noro K, Hirota M, Benner R ( 2014). The roles of microorganisms in litter decomposition and soil formation. Biogeochemistry, 118, 471-486.
DOI URL |
[13] |
Huang JX, Huang LM, Lin ZC, Chen GS ( 2010). Controlling factors of litter decomposition rate in China’s forests. Journal of Subtropical Resources and Environment , 5(3), 56-63.
DOI URL |
[ 黄锦学, 黄李梅, 林智超, 陈光水 ( 2010). 中国森林凋落物分解速率影响因素分析. 亚热带资源与环境学报, 5(3), 56-63.]
DOI URL |
|
[14] |
IPCC(Intergovernmental Panel on Climate Change)( 2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK.
DOI URL |
[15] |
Kuehn KA, Steiner D, Gessner MO ( 2004). Diel mineralization patterns of standing-dead plant litter: Implications for CO2 flux from wetlands. Ecology, 85, 2504-2518.
DOI URL |
[16] |
Kurten GL, Barkoh A ( 2016). Evaluation of community-level physiological profiling for monitoring microbial community function in aquaculture ponds. North American Journal of Aquaculture, 78, 34-44.
DOI URL |
[17] | Li Q, Zhou DW, Chen XY ( 2014). The accumulation, decomposition and ecological effects of above-ground litter in terrestrial ecosystem. Acta Ecologica Sinica , 34, 3807-3819. |
[ 李强, 周道玮, 陈笑莹 ( 2014). 地上枯落物的累积、分解及其在陆地生态系统中的作用. 生态学报, 34, 3807-3819.] | |
[18] | Li SS, Wang ZW, Yang JJ ( 2016). Changes in soil microbial communities during litter decomposition. Biodiversity Science , 24, 195-204. |
[ 李姗姗, 王正文, 杨俊杰 ( 2016). 凋落物分解过程中土壤微生物群落的变化. 生物多样性, 24, 195-204.] | |
[19] | Liu GF, Cornwell WK, Pan X, Ye D, Liu FH, Huang ZY, Dong M, Cornelissen JH ( 2015). Decomposition of 51 semidesert species from wide-ranging phylogeny is faster in standing and sand-buried than in surface leaf litters: Implications for carbon and nutrient dynamics. Plant and Soil, 396, 175-187. |
[20] | Marty C, Houle D, Gagnon C ( 2015). Variation in stocks and distribution of organic C in soils across 21 eastern Canadian temperate and boreal forests . Forest Ecology and Management, 345, 29-38. |
[21] | Moghadam FS, Zimmer M ( 2014). Effects of warming and nutrient enrichment on how grazing pressure affects leaf litter-colonizing bacteria. Journal of Environment Quality, 43, 851-858. |
[22] | Newell SY ( 2001). Fungal biomass and productivity in standing-decaying leaves of black needlerush (Juncus roemerianus). Marine & Freshwater Research, 52, 249-255. |
[23] | Ni XY, Yang WQ, Li H, Xu LY, He J, Tan B, Wu FZ ( 2017). The responses of early foliar litter humification to reduced snow cover during winter in an alpine forest. Canadian Journal of Science, 94, 453-461. |
[24] | Parker TC, Sanderman J, Holden RD, Blume-Werry G, Sjogersten S, Large D, Castro-Diaz M, Street LE, Subke JA, Wookey PA ( 2018). Exploring drivers of litter decomposition in a greening Arctic: Results from a transplant experiment across a tree-line. Ecology, 99, 2284-2294. |
[25] | Peng SL, Liu Q ( 2002). The dynamics of forest litter and its responses to global warming. Acta Ecologica Sinica , 22, 1534-1544. |
[ 彭少麟, 刘强 ( 2002). 森林凋落物动态及其对全球变暖的响应. 生态学报, 22, 1534-1544.] | |
[26] | Saura-Mas S, Estiarte M, Peñuelas J, Lloret F ( 2012). Effects of climate change on leaf litter decomposition across post-fire plant regenerative groups. Environmental & Experimental Botany, 77, 274-282. |
[27] | Song P, Zhang NL, Ma KP, Guo JX ( 2014). Impacts of global warming on litter decomposition. Acta Ecologica Sinica , 34, 1327-1339. |
[ 宋飘, 张乃莉, 马克平, 郭继勋 ( 2014). 全球气候变暖对凋落物分解的影响. 生态学报, 34, 1327-1339.] | |
[28] | Song XZ, Jiang H, Zhang HL, Yu SQ, Zhou GM, Ma YD, Chang SX ( 2008). A review on the effects of global environment change on litter decomposition. Acta Ecologica Sinica , 28, 4414-4423. |
[ 宋新章, 江洪, 张慧玲, 余树全, 周国模, 马元丹, Scott X. Chang ( 2008). 全球环境变化对森林凋落物分解的影响. 生态学报, 28, 4414-4423.] | |
[29] | Song Y, Gu XR, Yan HY, Mao WT, Wu XL, Wan YX ( 2014). Dynamics of microbes and enzyme activities during litter decomposition of Pinus Massoniana forest in mid-subtropical area. Environmental Science, 35, 1151-1158. |
[ 宋影, 辜夕容, 严海元, 毛文韬, 吴雪莲, 万宇轩 ( 2014). 中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态. 环境科学, 35, 1151-1158.] | |
[30] | Sørensen J, Nybroe O ( 2004). Pseudomonas. Springer, Boston, USA. 303-324. |
[31] | Sun ZG, Liu JS ( 2007). Development in study of wetland litter decomposition and its responses to global change. Acta Ecologica Sinica , 27, 1606-1618. |
[ 孙志高, 刘景双 ( 2007). 湿地枯落物分解及其对全球变化的响应. 生态学报, 27, 1606-1618.] | |
[32] | Tang SS, Yang WQ, Yin R, Xiong L, Wang HP, Wang B, Zhang Y, Peng YJ, Chen QS ( 2014). Spatial characteristics in decomposition rate of foliar litter and controlling factors in Chinese forest ecosystems. Chinese Journal of Plant Ecology , 38, 529-539. |
[ 唐仕姗, 杨万勤, 殷睿, 熊莉, 王海鹏, 王滨, 张艳, 彭艳君, 陈青松 ( 2014). 中国森林生态系统凋落叶分解速率的分布特征及其控制因子. 植物生态学报, 38, 529-539.] | |
[33] | Veronica F, Chauvet E ( 2011). Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia, 167, 279-291. |
[34] | Wang FY ( 1989). Forest litter quality research review. Advances in Ecology , 2, 82-89. |
[ 王凤友 ( 1989). 森林凋落量研究综述. 生态学进展, 2, 82-89.] | |
[35] | Wang YH, Gong JR, Liu M, Huang YM, Yan X, Zhang ZY, Xu S, Luo QP ( 2015). Effects of grassland-use on soil respiration and litter decomposition. Chinese Journal of Plant Ecology , 39, 239-248. |
[ 王忆慧, 龚吉蕊, 刘敏, 黄永梅, 晏欣, 张梓瑜, 徐沙, 罗亲普 ( 2015). 草地利用方式对土壤呼吸和凋落物分解的影响. 植物生态学报, 39, 239-248.] | |
[36] | Wang Z, Cao GQ, Zhang YQ, Zhang HY, Wang F, Chen AL ( 2017). Responses of metabolism diversity of topsoil microbial to the litterfall addition in Cunninghamia laneolata plantation. Journal of Forest and Environment, 37, 148-154. |
[ 王珍, 曹光球, 张月全, 张海燕, 王飞, 陈爱玲 ( 2017). 凋落物配比对杉木土壤微生物碳代谢多样性的影响. 森林与环境学报, 37, 148-154.] | |
[37] | Warskow AL, Juni E ( 1972). Nutritional requirements of Acinetobacter strains isolated from soil, water, and sewage. Journal of Bacteriology, 112, 1014-1016. |
[38] | Wierzchos J, Casero MC, Artieda O, Ascaso C ( 2018). Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Current Opinion in Microbiology, 43, 124-131. |
[39] | Wu FZ, Yang WQ, Zhang J, Deng RJ ( 2010). Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140. |
[40] | Xu XF, Tian HQ, Wan SQ ( 2007). Climate warming impacts on carbon cycling in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version), 31, 175-188. |
[ 徐小峰, 田汉勤, 万师强 ( 2007). 气候变暖对陆地生态系统碳循环的影响. 植物生态学报, 31, 175-188.] | |
[41] | Xu ZF, Yin HJ, Zhao CZ, Cao G, Wan ML, Liu Q ( 2009). A review of response of litter decomposition in terrestrial ecosystems to global warming. Journal of Plant Ecology , 33, 1208-1219. |
[ 徐振锋, 尹华军, 赵春章, 曹刚, 万名利, 刘庆 ( 2009). 陆地生态系统凋落物分解对全球气候变暖的响应. 植物生态学报, 33, 1208-1219.] | |
[42] | Yang WQ, Deng RJ, Zhang J ( 2007). Forest litter decomposition and its responses to global climate change. Chinese Journal of Applied Ecology , 18, 2889-2895. |
[ 杨万勤, 邓仁菊, 张健 ( 2007). 森林凋落物分解及其对全球气候变化的响应. 应用生态学报, 18, 2889-2895.] | |
[43] | Yang XH, Peng LJ, Li SY, Wang SZ ( 2013). Effect of mangrove leaf litter decomposition on soil dissolved organic matter. Ecology and Environmental Sciences , 22, 924-930. |
[ 杨秀虹, 彭琳婧, 李适宇, 王诗忠 ( 2013). 红树植物凋落叶分解对土壤可溶性有机质的影响. 生态环境学报, 22, 924-930.] | |
[44] | Yue K, Yang WQ, Peng Y, Huang CP, Zhang C, Wu FZ ( 2016). Effects of streams on lignin degradation during foliar litter decomposition in an alpine forest. Chinese Journal of Plant Ecology , 40, 893-901. |
[ 岳楷, 杨万勤, 彭艳, 黄春萍, 张川, 吴福忠 ( 2016). 高寒森林溪流对凋落叶分解过程中木质素降解的影响. 植物生态学报, 40, 893-901.] | |
[45] | Zhang J, Zhai FF, Zhang JH, Sun FB, Zhang HJ, Mao ZG ( 2010). The behavior of anaerobic fermentation in the technique of alcohol fermentation cooperate with methane fermentation. Journal of Food Science & Biotechnology , 29, 276-281. |
[ 张静, 翟芳芳, 张建华, 孙付保, 张宏健, 毛忠贵 ( 2010). 酒精沼气双发酵偶联中厌氧沼气的发酵行为. 食品与生物技术学报, 29, 276-281.] | |
[46] | Zhang XN, Liu ZY, Li LP, Wang H, Zhang Y, Sun M, Xiao DR ( 2017). Effect of experimental warming on the decomposition of litter from dominant lakeside plants in a typical wetland of Northwestern Yunnan Plateau, China. Acta Ecologica Sinica , 37, 7811-7820. |
[ 张晓宁, 刘振亚, 李丽萍, 王行, 张贇, 孙梅, 肖德荣 ( 2017). 大气增温对滇西北高原典型湿地湖滨带优势植物凋落物质量衰减的影响. 生态学报, 37, 7811-7820.] | |
[47] | Zheng H, Ouyang ZY, Fang ZG, Zhao TQ ( 2004). Application of BIOLOG to study on soil microbial community functional diversity. Acta Pedologica Sinica , 41, 456-461. |
[ 郑华, 欧阳志云, 方治国, 赵同谦 ( 2004). BIOLOG在土壤微生物群落功能多样性研究中的应用. 土壤学报, 41, 456-461.] |
[1] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[2] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[3] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[4] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[5] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[6] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[7] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[8] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[9] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[10] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
[11] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[12] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[13] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[14] | 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163. |
[15] | 杨丽丽, 龚吉蕊, 刘敏, 杨波, 张子荷, 罗亲普, 翟占伟, 潘琰. 氮沉降对草地凋落物分解的影响研究进展[J]. 植物生态学报, 2017, 41(8): 894-913. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19