植物生态学报 ›› 2021, Vol. 45 ›› Issue (2): 144-153.DOI: 10.17521/cjpe.2020.0273
所属专题: 凋落物
范琳杰1,2,4, 李成道1,2,4, 李向义1,3,*(), Henry J. SUN5, 林丽莎1,2,3, 刘波6
收稿日期:
2020-08-10
接受日期:
2020-10-12
出版日期:
2021-02-20
发布日期:
2021-03-09
通讯作者:
ORCID: *李向义: 0000-0001-7210-6339(lixy@ms.xjb.ac.cn)
基金资助:
Fan Lin-Jie1,2,4, LI Cheng-Dao1,2,4, LI Xiang-Yi1,3,*(), Henry J. SUN5, LIN Li-Sha1,2,3, LIU Bo6
Received:
2020-08-10
Accepted:
2020-10-12
Online:
2021-02-20
Published:
2021-03-09
Contact:
LI Xiang-Yi
Supported by:
摘要:
极端干旱区由于降水稀少, 植被盖度低, 太阳辐射强烈, 以及土壤稳定性差, 导致其凋落物周转不同于非干旱区。为探究极端干旱区凋落物分解规律, 该研究利用凋落物分解袋法, 以塔克拉玛干沙漠南缘沙漠-绿洲过渡带优势物种花花柴(Karelinia caspia)、骆驼刺(Alhagi sparsifolia)和胡杨(Populus euphratica)凋落叶为研究对象, 设置不同的沙土掩埋处理: 地表、2 cm和15 cm埋深, 以模拟自然条件下凋落物分解环境, 测定分解过程中凋落物质量和水溶性盐的变化特征。结果表明: 极端干旱区凋落物分解速率与凋落物初始碳(C)含量、氮(N)含量、C:N和木质素含量的关系与非干旱区存在较大差异, 在地表处理下, 木质素含量越高, 质量损失越快。不同分解环境下凋落物质量和水溶性盐损失具有显著差异, 与15 cm埋深相比, 地表和2 cm埋深处理显著增加了凋落物的质量损失和水溶性盐总量损失。地表处理增加了凋落物分解前期的水溶性盐溶解量。该研究表明, 极端干旱区凋落物分解的驱动机制具有独特性, 由于降水稀少, 土壤微生物的活性较低, 掩埋深度不是驱动凋落物分解的主要因素, 极端干旱区凋落物的分解主要受其他非生物过程如太阳光辐射的影响。
范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响. 植物生态学报, 2021, 45(2): 144-153. DOI: 10.17521/cjpe.2020.0273
Fan Lin-Jie, LI Cheng-Dao, LI Xiang-Yi, Henry J. SUN, LIN Li-Sha, LIU Bo. Effects of sand burial on litter decomposition rate and salt content dynamics in an extremely arid region. Chinese Journal of Plant Ecology, 2021, 45(2): 144-153. DOI: 10.17521/cjpe.2020.0273
物种 Species | C (g·kg-1) | N (g·kg-1) | C:N | 纤维素 Cellulose (%) | 半纤维素 Semi-cellulose (%) | 木质素 Lignin (%) | 水溶性盐 Water-soluble salt (%) |
---|---|---|---|---|---|---|---|
花花柴 Karelinia caspia | 367.4 ± 1.07b | 4.65 ± 0.07b | 79.07 ± 1.20b | 24.9 ± 1.4b | 14.3 ± 1.9a | 14.7 ± 0.8a | 18.1 ± 0.6a |
骆驼刺 Alhagi sparsifolia | 419.4 ± 0.58a | 11.75 ± 0.60a | 35.87 ± 1.83c | 28.1 ± 0.7b | 2.8 ± 0.3b | 10.7 ± 0.3b | 11.8 ± 0.3b |
胡杨 Populus euphratica | 413.8 ± 0.70a | 3.57 ± 0.24b | 116.94 ± 7.68a | 35.7 ± 0.2a | 14.2 ± 1.2a | 12.9 ± 1.3a | 5.5 ± 0.1c |
表1 极端干旱区3种叶凋落物的初始化学组成(平均值±标准误)
Table 1 Initial leaf litter chemical composition of the three species in extremely arid region (mean ± SE)
物种 Species | C (g·kg-1) | N (g·kg-1) | C:N | 纤维素 Cellulose (%) | 半纤维素 Semi-cellulose (%) | 木质素 Lignin (%) | 水溶性盐 Water-soluble salt (%) |
---|---|---|---|---|---|---|---|
花花柴 Karelinia caspia | 367.4 ± 1.07b | 4.65 ± 0.07b | 79.07 ± 1.20b | 24.9 ± 1.4b | 14.3 ± 1.9a | 14.7 ± 0.8a | 18.1 ± 0.6a |
骆驼刺 Alhagi sparsifolia | 419.4 ± 0.58a | 11.75 ± 0.60a | 35.87 ± 1.83c | 28.1 ± 0.7b | 2.8 ± 0.3b | 10.7 ± 0.3b | 11.8 ± 0.3b |
胡杨 Populus euphratica | 413.8 ± 0.70a | 3.57 ± 0.24b | 116.94 ± 7.68a | 35.7 ± 0.2a | 14.2 ± 1.2a | 12.9 ± 1.3a | 5.5 ± 0.1c |
图2 极端干旱区不同分解时间的凋落物质量残留率(平均值±标准误)。A, 花花柴。B, 骆驼。C, 胡杨。不同小写字母表示处理间的差异达到显著水平(p < 0.05)。
Fig. 2 Ratio of remaining litter mass at different times of decomposition in extremely arid region (mean ± SE). A, Karelinia caspia. B, Alhagi sparsifolia. C, Populus euphratica. Different lowercase letters indicate that the significant differences between treatments (p < 0.05).
图3 极端干旱区不同掩埋处理下凋落物分解速率常数(k)(平均值±标准误)。不同小写字母表示相同处理下不同物种间的差异达到显著水平(p < 0.05)。
Fig. 3 Values of the litter decomposition constant (k) for different burial treatments in extremely arid region (mean ± SE). Different lowercase letters indicate significant differences between species under the same treatments (p < 0.05).
图4 极端干旱区不同分解时间的凋落物水溶性盐残留率(平均值±标准误)。A, 花花柴。B, 骆驼刺。C, 胡杨。不同小写字母表示处理间的差异达到显著水平(p < 0.05)。
Fig. 4 Ratio of litter water-soluble salt residue at different times of decomposition in extremely arid region (mean ± SE). A, Karelinia caspia. B, Alhagi sparsifolia. C, Populus euphratica. Different lowercase letters indicate significant differences between treatments (p < 0.05).
图5 极端干旱区凋落物质量残留与水溶性盐残留的关系。A, 地表。B, 2 cm埋深。C, 15 cm埋深。实线表示质量残留与水溶性盐残留关系的拟合曲线, 虚线表示y = x (1:1)。
Fig. 5 Relationships between litter mass and water-soluble salt residue in extremely arid region. A, Surface. B, 2 cm depth. C, 15 cm depth. The solid line represents the fitting curve of the relationship, and the dotted line represents y = x (1:1).
图6 极端干旱区不同分解时间的凋落物水溶性盐溶解量(平均值±标准误)。A, 花花柴。B, 骆驼刺。C, 胡杨。不同小写字母表示处理间的差异达到显著水平(p < 0.05)。
Fig. 6 Litter dissolved water-soluble salt at different times of decomposition in extremely arid region (mean ± SE). A, Karelinia caspia. B, Alhagi sparsifolia. C, Populus euphratica. Different lowercase letters indicate significant differences between treatments (p < 0.05).
图7 极端干旱区3种凋落物在不同处理条件下水溶性盐残留(平均值±标准误)。不同小写字母表示不同处理间的差异达到显著水平(p < 0.05)。
Fig. 7 Ratio of litter water-soluble salt residue of three species under different treatments in extremely arid region (mean ± SE). Different lowercase letters indicate significant differences between treatments (p < 0.05).
[1] | An GX, Zeng FJ, Sun XW, Liu B, Liu Z, Zhang XL (2011). Soil water conditions under various vegetations in southern fringe of Takelamakan Desert. Bulletin of Soil and Water Conservation, 31,63-67. |
[ 安桂香, 曾凡江, 孙旭伟, 刘波, 刘镇, 张晓蕾 (2011). 塔克拉玛干沙漠南缘不同植被区土壤水分状况研究. 水土保持通报, 31,63-67.] | |
[2] |
Austin AT, Araujo PI, Leva PE (2009). Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology, 90,2642-2647.
PMID |
[3] |
Austin AT, Ballare CL (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107,4618-4622.
DOI PMID |
[4] |
Austin AT, Vivanco L (2006). Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 442,555-558.
PMID |
[5] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing.257-263. |
[ 鲍士旦 (2000). 土壤农化分析. 中国农业出版社, 北京.257-263.] | |
[6] |
Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133(1-2),13-22.
DOI URL |
[7] | Berg B, Laskowski R (2006). Litter decomposition: a guide to carbon and nutrient turnover//Luo Y. Advances in Ecological Research. Academic Press, London. |
[8] |
Day TA, Zhang ET, Ruhland CT (2007). Exposure to solar UV-B radiation accelerates mass and lignin loss of Larrea tridentata litter in the Sonoran Desert . Plant Ecology, 193,185-194.
DOI URL |
[9] |
Dong ZW, Zhao Y, Lei JQ, Xi YQ (2018). Distribution pattern and influencing factors of soil salinity at Tamarix cones in the Taklimakan Desert. Chinese Journal of Plant Ecology, 42,873-884.
DOI URL |
[ 董正武, 赵英, 雷加强, 喜银巧 (2018). 塔克拉玛干沙漠不同区域柽柳沙包土壤盐分分布特征及其影响因素. 植物生态学报, 42,873-884.]
DOI |
|
[10] |
Eswaran H, van den Berg E, Reich P (1993). Organic carbon in soils of the world. Soil Science Society of America Journal, 57,192-194.
DOI URL |
[11] |
Fu S, Zou X, Coleman D (2009). Highlights and perspectives of soil biology and ecology research in China. Soil Biology & Biochemistry, 41,868-876.
DOI URL |
[12] |
Gallardo A, Merino J (1993). Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology, 74,152-161.
DOI URL |
[13] |
Gallo ME, Sinsabaugh RL, Cabaniss SE (2006). The role of ultraviolet radiation in litter decomposition in arid ecosystems. Applied Soil Ecology, 34,82-91.
DOI URL |
[14] |
Georgiou CD, Sun HJ, McKay CP, Grintzalis K, Papapostolou I, Zisimopoulos D, Panagiotidis K, Zhang G, Koutsopoulou E, Christidis GE, Margiolaki I (2015). Evidence for photochemical production of reactive oxygen species in desert soils. Nature Communications, 6,7100. DOI: 10.1038/ncomms8100.
DOI URL |
[15] |
Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6,751-765.
DOI URL |
[16] | He YH, Liu XP, Xie ZK (2015). Enrichment of soil salinity and nutrients under desertification shrub Reaumuria soongorica. Journal of Arid Land Resources and Environment, 29(3),115-119. |
[ 何玉惠, 刘新平, 谢忠奎 (2015). 红砂灌丛对土壤盐分和养分的富集作用. 干旱区资源与环境, 29(3),115-119.] | |
[17] | Heitner C, Scaiano JC (1993). Photochemistry of Lignocellulosic Materials. American Chemical Society, Washington DC. |
[18] | Jia L, An LZ (2004). Studies of desalting ability and desalting structure in Karelinia caspica. Acta Botanica Boreali- occidentalia Sinica, 24,510-515. |
[ 贾磊, 安黎哲 (2004). 花花柴脱盐能力及脱盐结构研究. 西北植物学报, 24,510-515.] | |
[19] |
Jiao J, Zou H, Jia Y, Wang N (2009). Research progress on the effects of soil erosion on vegetation. Acta Ecologica Sinica, 29(2),85-91.
DOI URL |
[20] | Li CD, LI XY, Sun HJ, LI L, Lin LS (2019). Decomposition characteristics of Karelinia caspia, Alhagi sparsifolia and Populus euphratica leaves in extremely arid areas. Journal of Desert Research, 39(2),193-201. |
[ 李成道, 李向义, Sun HJ, 李磊, 林丽莎 (2019). 极端干旱区花花柴( Karelinia caspia)、骆驼刺( Alhagi sparsifolia)和胡杨( Populus euphratica)叶片凋落物分解特征. 中国沙漠, 39(2),193-201.] | |
[21] | Li CJ, Wang SJ, Xie YJ, Sun YQ, Ye YL, Zhang H (2017). Exploitation and utilization situation of halophyte resources in Xinjiang. Journal of Anhui Agricultural Sciences, 45(23),1-5. |
[ 李从娟, 王世杰, 谢贻军, 孙永强, 叶艳丽, 张恒 (2017). 新疆盐生植物资源及开发利用. 安徽农业科学, 45(23),1-5.] | |
[22] |
Liu GF, Cornwell WK, Pan X, Ye D, Liu FH, Huang ZY, Dong M, Cornelissen JHC (2015). Decomposition of 51 semidesert species from wide-ranging phylogeny is faster in standing and sand-buried than in surface leaf litters: implications for carbon and nutrient dynamics. Plant and Soil, 396,175-187.
DOI URL |
[23] | Liu JH, Wang XQ, Ma Y, Tan FZ (2016). Spatial variation of soil salinity on Tamarix ramosissima nebkhas and iterdune in oasis-desert ecotone. Journal of Desert Research, 36(1),181-189. |
[ 刘进辉, 王雪芹, 马洋, 谭凤翥 (2016). 绿洲沙漠过渡带柽柳( Tamarix ramosissima)灌丛沙堆-丘间地系统土壤盐分含量特征. 中国沙漠, 36(1),181-189.] | |
[24] | Liu Q (2014). The Environmental Change Revealed by the Material Composition of the Tamarix cone Sedimentary in the Southern Region of the Taklimakan Desert. PhD dissertation, Hebei Normal University, Shijiazhuang. |
[ 刘倩 (2014). 红柳沙包物质组成揭示的塔克拉玛干沙漠南缘地区环境变化. 博士学位论文, 河北师范大学, 石家庄.] | |
[25] | Liu SR, Hu RG, Cai GC (2012). Effects of enhanced UV-B radiation on terrestrial ecosystem carbon cycle: a review. Chinese Journal of Applied Ecology, 23,1992-1998. |
[ 柳淑蓉, 胡荣桂, 蔡高潮 (2012). UV-B辐射增强对陆地生态系统碳循环的影响. 应用生态学报, 23,1992-1998.] | |
[26] | Luo Y, Hu SJ, Wang XF, Tian CY, Yin CH (2012). A new method to determine soil soluble salt using electrical conductivity index. Acta Pedologica Sinica, 49,1257-1261. |
[ 罗毅, 胡顺军, 王兴繁, 田长彦, 尹传华 (2012). 一种电导率指标测可溶性盐分含量新方法. 土壤学报, 49,1257-1261.] | |
[27] |
Ma Y, Wang XQ, Zhang B, Liu JH, Han ZY, Tang GL (2014). Effects of wind erosion and sand burial on water relations and photosynthesis in Alhagi sparsifolia in the southern edge of the Taklimakan Desert. Chinese Journal of Plant Ecology, 38,491-498.
DOI URL |
[ 马洋, 王雪芹, 张波, 刘进辉, 韩章勇, 唐钢梁 (2014). 风蚀和沙埋对塔克拉玛干沙漠南缘骆驼刺水分和光合作用的影响. 植物生态学报, 38,491-498.]
DOI |
|
[28] | Mao DL, Lei JQ, Li SY, Lui GJ, Zheng ZH, Xue Jie (2015). Spatial differentiation of physico-chemical properties of surface sand materials in the oasis-desert ecotone in Cele, Xinjiang, China. Journal of Desert Research, 35(1),136-144. |
[ 毛东雷, 雷加强, 李生宇, 刘国军, 郑则浩, 薛杰 (2015). 新疆策勒绿洲-沙漠过渡带地表沙物质理化性质空间差异. 中国沙漠, 35(1),136-144.] | |
[29] |
Martínez-Yrízar A, Núñez S, Búrquez A (2007). Leaf litter decomposition in a southern Sonoran Desert ecosystem, northwestern Mexico: effects of habitat and litter quality. Acta Oecologica, 32,291-300.
DOI URL |
[30] |
Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2012). Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 93,770-782.
PMID |
[31] |
Olson JS (1963). Energy storage and the balance of producers and decomposition in ecological systems. Ecology, 44,322-331.
DOI URL |
[32] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315,361-364.
DOI URL |
[33] |
Pauli F (1964). Soil fertility problem in arid and semi-arid lands. Nature, 204,1286-1288.
DOI URL |
[34] |
Pucheta E, Llanos M, Meglioli C, Gaviorno M, Ruiz M, Parera C (2006). Litter decomposition in a sandy Monte desert of western Argentina: influences of vegetation patches and summer rainfall. Austral Ecology, 31,808-816.
DOI URL |
[35] |
Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B: Chemical and Physical Meteorology, 44(2),81-99.
DOI URL |
[36] |
Rath KM, Rousk J (2015). Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biology & Biochemistry, 81,108-123.
DOI URL |
[37] |
Rubino M, Dungait JAJ, Evershed RP, Bertolini T, de Angelis P, D'Onofrio A, Lagomarsino A, Lubritto C, Merola A, Terrasi F, Cotrufo MF (2010). Carbon input belowground is the major C flux contributing to leaf litter mass loss: evidences from a13C labelled-leaf litter experiment . Soil Biology & Biochemistry, 42,1009-1016.
DOI URL |
[38] |
Schreeg LA, Mack MC, Turner BL (2013). Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology, 94,94-105.
PMID |
[39] |
Taylor BR, Parkinson D, Parsons WFJ (1989). Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70,97-104.
DOI URL |
[40] |
Throop HL, Archer SR (2007). Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland. Ecological Applications, 17,1809-1823.
DOI URL |
[41] | Throop HL, Archer SR (2009). Resolving the dryland decomposition conundrum: some new perspectives on potential drivers//Lüttge U, Beyschlag W, Büdel B, Francis D. Progress in Botany. Springer-Verlag, Berlin, Heidelberg.171-194. |
[42] |
Vivanco L, Austin AT (2006). Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia, 150,97-107.
PMID |
[43] | Xia XC, Cao QY, Wang FB, Lei JQ, Zhao YJ (2005). Significance of studying age layers of Tamarix ramosissima sand-hillock in Lop Nur region, Xinjiang. Arid Land Geography, 28,565-568. |
[ 夏训诚, 曹琼英, 王富葆, 雷加强, 赵元杰 (2005). 罗布泊地区红柳沙包年层的研究意义. 干旱区地理, 28,565-568.] | |
[44] | Xu J, Chen YJ, Liu JZ (2020). Research progress of the effects of halophyte shrubs on spatial distribution of soil nutrients and salts and their mechanisms. Journal of Anhui Agricultural Sciences, 48(1),19-23. |
[ 许婕, 陈永金, 刘加珍 (2020). 盐生植物灌丛对土壤养分和盐分空间分布的影响及其机制研究进展. 安徽农业科学, 48(1),19-23.] | |
[45] | Yin CH, Feng G, Tian CY, Bai DS, Zhang FS (2007). Influence of tamarisk shrub on the distribution of soil salinity and moisture on the edge of Taklamakan desert. China Environmental Science, 27,670-675. |
[ 尹传华, 冯固, 田长彦, 白灯莎, 张福锁 (2007). 塔克拉玛干沙漠边缘柽柳对土壤水盐分布的影响. 中国环境科学, 27,670-675.] | |
[46] | Zeng JQ (2017). Advances in forest litter research. Protection Forest Science and Technology, (S1),80-83. |
[ 曾加芹 (2017). 森林凋落物研究开展. 防护林科技, (S1),80-83.] | |
[47] | Zhao YJ, Che GH, Liu H, Zeng J, Xia XC (2016). C and N content in organic matter of Tamarix cone and climatic and environmental change in southern region of Taklimakan desert. Arid Land Geography, 39,461-467. |
[ 赵元杰, 车高红, 刘辉, 曾佳, 夏训诚 (2016). 塔克拉玛干沙漠南缘红柳沙包有机质碳氮含量与气候环境变化. 干旱区地理, 39,461-467.] | |
[48] | Zhou L, Li Y, Tang LS, Huang G (2011). Roles of photodegradation in litter decomposition. Chinese Journal of Ecology, 30,2045-2052. |
[ 周丽, 李彦, 唐立松, 黄刚 (2011). 光降解在凋落物分解中的作用. 生态学杂志, 30,2045-2052.] |
[1] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[2] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[3] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[4] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[5] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[6] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[7] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[8] | 董正武, 赵英, 雷加强, 喜银巧. 塔克拉玛干沙漠不同区域柽柳沙包土壤盐分分布特征及其影响因素[J]. 植物生态学报, 2018, 42(8): 873-884. |
[9] | 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163. |
[10] | 杨丽丽, 龚吉蕊, 刘敏, 杨波, 张子荷, 罗亲普, 翟占伟, 潘琰. 氮沉降对草地凋落物分解的影响研究进展[J]. 植物生态学报, 2017, 41(8): 894-913. |
[11] | 杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟. 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响[J]. 植物生态学报, 2016, 40(8): 748-759. |
[12] | 孙宝玉, 韩广轩, 陈亮, 初小静, 邢庆会, 吴立新, 朱书玉. 模拟增温对黄河三角洲滨海湿地非生长季土壤呼吸的影响[J]. 植物生态学报, 2016, 40(11): 1111-1123. |
[13] | 王忆慧, 龚吉蕊, 刘敏, 黄永梅, 晏欣, 张梓瑜, 徐沙, 罗亲普. 草地利用方式对土壤呼吸和凋落物分解的影响[J]. 植物生态学报, 2015, 39(3): 239-248. |
[14] | 朱绪超, 袁国富, 邵明安, 易小波, 杜涛. 塔里木河下游河岸带植被的空间结构特征[J]. 植物生态学报, 2015, 39(11): 1053-1061. |
[15] | 何洁,杨万勤,倪祥银,李晗,徐李亚,吴福忠. 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响[J]. 植物生态学报, 2014, 38(6): 550-561. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19