植物生态学报 ›› 2014, Vol. 38 ›› Issue (6): 550-561.DOI: 10.3724/SP.J.1258.2014.00051
收稿日期:
2014-02-28
接受日期:
2014-04-14
出版日期:
2014-02-28
发布日期:
2014-06-10
通讯作者:
吴福忠
基金资助:
HE Jie,YANG Wan-Qin,NI Xiang-Yin,LI Han,XU Li-Ya,WU Fu-Zhong()
Received:
2014-02-28
Accepted:
2014-04-14
Online:
2014-02-28
Published:
2014-06-10
Contact:
WU Fu-Zhong
摘要:
亚高山森林冬季不同厚度雪被斑块下显著的冻融格局差异可能对凋落物分解过程中钾(K)和钠(Na)的动态具有重要影响, 然而已有研究还不足以清晰地认识这一过程。以川西亚高山森林6种代表性树种凋落物为研究对象, 采用凋落物网袋法, 探讨冬季不同厚度雪被斑块下雪被形成期、覆盖期和融化期凋落物分解过程中K和Na元素释放或富集的特征。整个雪被覆盖时期, 6种凋落物分解过程中Na均表现为富集特征, 且以覆盖期最为明显; 而K表现为释放特征, 以雪被融化期释放率最大。相对于其他雪被斑块, 厚型和中型雪被斑块下凋落物K释放率相对较高; 除康定柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum)外, 其他物种凋落物在厚型和中型雪被斑块下Na富集率较高。同时, 统计分析结果表明, 物种和雪被显著影响冬季不同关键时期凋落物K和Na元素动态。除红桦(Betula albosinensis)和方枝柏(Sabina saltuaria)凋落物外, 温度因子与凋落物K和Na动态变化呈显著正相关。这些结果表明气候变暖情景下冬季雪被覆盖的减小将抑制亚高山森林冬季凋落物分解过程中K和Na元素的释放, 但是释放程度受凋落物质量和雪被覆盖时期的显著影响。
何洁,杨万勤,倪祥银,李晗,徐李亚,吴福忠. 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响. 植物生态学报, 2014, 38(6): 550-561. DOI: 10.3724/SP.J.1258.2014.00051
HE Jie,YANG Wan-Qin,NI Xiang-Yin,LI Han,XU Li-Ya,WU Fu-Zhong. Effects of snow patch on the dynamics of potassium and sodium during litter decomposition in winter in a subalpine forest of western Sichuan. Chinese Journal of Plant Ecology, 2014, 38(6): 550-561. DOI: 10.3724/SP.J.1258.2014.00051
物种 Species | C (g·kg-1) | N (g·kg-1) | P (g·kg-1) | K (g·kg-1) | Na (mg·kg-1) |
---|---|---|---|---|---|
康定柳 Salix paraplesia | 452.3 ± 16.5a | 11.5 ± 0.3a | 1.1 ± 0.0a | 18.3 ± 0.2a | 21.0 ± 0.7a |
红桦 Betula albosinensis | 496.9 ± 14.5b | 13.4 ± 0.2b | 0.9 ± 0.0b | 3.4 ± 0.0b | 36.7 ± 1.8b |
高山杜鹃 Rhododendron lapponicum | 502.9 ± 16.0b | 6.7 ± 0.2c | 1.1 ± 0.1a | 3.8 ± 0.0c | 15.9 ± 0.8c |
岷江冷杉 Abies faxoniana | 505.6 ± 29.6b | 8.8 ± 0.0d | 1.1 ± 0.1ac | 6.5 ± 0.2d | 30.6 ± 1.2d |
方枝柏 Sabina saltuaria | 516.4 ± 17.7bc | 8.8 ± 0.1d | 1.2 ± 0.1cd | 5.7 ± 0.0e | 39.0 ± 5.7b |
四川红杉 Larix mastersiana | 543.5 ± 6.3c | 8.6 ± 0.4d | 1.3 ± 0.0d | 6.3 ± 0.1d | 22.3 ± 2.3a |
表1 康定柳、红桦、高山杜鹃、岷江冷杉、方枝柏和四川红杉凋落物中元素的初始值(平均值±标准偏差)
Table 1 Initial nutrient concentrations in litter of Salix paraplesia, Betula albosinensis, Rhododendron lapponicum, Abies faxoniana, Sabina saltuaria and Larix mastersiana (mean ± SD)
物种 Species | C (g·kg-1) | N (g·kg-1) | P (g·kg-1) | K (g·kg-1) | Na (mg·kg-1) |
---|---|---|---|---|---|
康定柳 Salix paraplesia | 452.3 ± 16.5a | 11.5 ± 0.3a | 1.1 ± 0.0a | 18.3 ± 0.2a | 21.0 ± 0.7a |
红桦 Betula albosinensis | 496.9 ± 14.5b | 13.4 ± 0.2b | 0.9 ± 0.0b | 3.4 ± 0.0b | 36.7 ± 1.8b |
高山杜鹃 Rhododendron lapponicum | 502.9 ± 16.0b | 6.7 ± 0.2c | 1.1 ± 0.1a | 3.8 ± 0.0c | 15.9 ± 0.8c |
岷江冷杉 Abies faxoniana | 505.6 ± 29.6b | 8.8 ± 0.0d | 1.1 ± 0.1ac | 6.5 ± 0.2d | 30.6 ± 1.2d |
方枝柏 Sabina saltuaria | 516.4 ± 17.7bc | 8.8 ± 0.1d | 1.2 ± 0.1cd | 5.7 ± 0.0e | 39.0 ± 5.7b |
四川红杉 Larix mastersiana | 543.5 ± 6.3c | 8.6 ± 0.4d | 1.3 ± 0.0d | 6.3 ± 0.1d | 22.3 ± 2.3a |
图1 不同关键时期雪被覆盖厚度的变化(平均值±标准偏差)。SP1, 厚雪被斑块; SP2, 中雪被斑块; SP3, 薄雪被斑块。
Fig. 1 Changes in the thickness of snow patches in different critical periods (mean ± SD). SP1, thick snow patch; SP2, moderate snow patch; SP3, thin snow patch.
图2 川西亚高山森林不同雪被斑块下凋落物温度和气温动态。SP1, 厚雪被斑块; SP2, 中雪被斑块; SP3, 薄雪被斑块; SP4, 无雪被斑块。
Fig. 2 The dynamics of litter and air temperatures under different snow patches in the subalpine forest of western Sichuan. SP1, thick snow patch; SP2, moderate snow patch; SP3, thin snow patch; SP4, absence of snow patch.
图3 不同雪被斑块下凋落物分解过程中K含量的动态变化(平均值±标准偏差, n = 3)。IS, 初始时期; SC, 雪被覆盖期; SF, 雪被形成期; SM, 雪被融化期。SP1, 厚雪被斑块; SP2, 中雪被斑块; SP3, 薄雪被斑块; SP4, 无雪被斑块。不同小写字母表示同一关键时期不同雪被斑块间差异显著(p < 0.05)。
Fig. 3 Dynamics of K concentration in litter during decomposition under different snow patches (mean ± SD, n = 3). IS, initial stage; SC, snow cover stage; SF, snow formation stage; SM, snow melt stage. SP1, thick snow patch; SP2, moderate snow patch; SP3, thin snow patch; SP4, absence of snow patch. Different lowercase letters indicate significant differences (p < 0.05) among different snow patches within the same critical periods.
图4 不同雪被斑块下凋落物分解过程中Na含量动态变化(平均值±标准偏差, n = 3)。图注同图3。
Fig. 4 Dynamics of Na concentration in litter during decomposition under different snow patches (mean ± SD, n = 3). See Fig. 3 for notes.
图5 不同关键时期各雪被斑块下凋落物分解过程中的K释放率(平均值±标准偏差, n = 3)。图注同图3。FT, 冻融时期。
Fig. 5 Rate of K release from litter during decomposition under different snow patches in different critical periods (mean ± SD, n = 3). See Fig. 3 for notes. FT, freeze-thaw period.
图6 不同关键时期各雪被斑块下凋落物分解过程中Na释放率(平均值±标准偏差, n=3)。图注同图3。FT, 冻融时期。
Fig. 6 Rate of Na release from litter during decomposition under different snow patches in different critical periods (mean ± SD, n = 3). See Fig. 3 for notes. FT, freeze-thaw period.
图7 不同关键时期各雪被斑块下凋落物每天的K和Na释放速率(n = 3)。IS, 初始时期; SC, 雪被覆盖期; SF, 雪被形成期; SM, 雪被融化期。SP1, 厚雪被斑块; SP2, 中雪被斑块; SP3, 薄雪被斑块; SP4, 无雪被斑块。*表示不同雪被斑块间差异显著(p < 0.05)。
Fig. 7 Rates of daily K and Na release from litter under different snow patches in different critical periods (n = 3). IS, initial stage; SC, snow cover stage; SF, snow formation stage; SM, snow melt stage. SP1, thick snow patch; SP2, moderate snow patch; SP3, thin snow patch; SP4, absence of snow patch. * indicates significant differences among different snow patches (p < 0.05).
康定柳 Salix paraplesia | 四川红杉 Larix mastersiana | 岷江冷杉 Abies faxoniana | 高山杜鹃 Rhododendron lapponicum | 红桦 Betula albosinensis | 方枝柏 Sabina saltuaria | |
---|---|---|---|---|---|---|
K释放率 Rate of K release | 0.630** | 0.401* | 0.780** | 0.711** | 0.555** | 0.732** |
K释放速率 Daily rate of K release | 0.712** | 0.334* | 0.780** | 0.731** | 0.654** | 0.805** |
Na释放率 Rate of Na release | 0.767** | 0.424** | 0.703** | 0.817** | -0.706** | -0.087 |
Na释放速率 Daily rate of Na release | 0.838** | 0.399* | 0.774** | 0.885** | -0.861** | -0.202 |
表2 雪被覆盖时期各树种凋落物元素释放率、释放速率与凋落物日平均温度的相关分析(n = 36)
Table 2 Correlations of the rate and daily rate of element release with daily mean litter temperature in different tree species during the snow cover period (n = 36)
康定柳 Salix paraplesia | 四川红杉 Larix mastersiana | 岷江冷杉 Abies faxoniana | 高山杜鹃 Rhododendron lapponicum | 红桦 Betula albosinensis | 方枝柏 Sabina saltuaria | |
---|---|---|---|---|---|---|
K释放率 Rate of K release | 0.630** | 0.401* | 0.780** | 0.711** | 0.555** | 0.732** |
K释放速率 Daily rate of K release | 0.712** | 0.334* | 0.780** | 0.731** | 0.654** | 0.805** |
Na释放率 Rate of Na release | 0.767** | 0.424** | 0.703** | 0.817** | -0.706** | -0.087 |
Na释放速率 Daily rate of Na release | 0.838** | 0.399* | 0.774** | 0.885** | -0.861** | -0.202 |
K释放率 Rate of K release | Na释放率 Rate of Na release | |||||||
---|---|---|---|---|---|---|---|---|
SF | SC | SM | FT | SF | SC | SM | FT | |
A | 4.114* | 7.785** | 5.894** | 5.378** | 222.571** | 78.155** | 13.751** | 104.938** |
B | 164.946** | 24.376** | 22.351** | 106.188** | 984.280** | 1146.744** | 743.108** | 1979.735** |
C | 7.676** | 10.262** | 17.226** | 10.350** | 123.474** | 32.632** | 63.561** | 44.114** |
表3 不同关键时期雪被和物种与各阶段元素释放率双因素方差分析结果(n = 72)
Table 3 Summary of two-way ANOVA on the effects of snow patch and species on the rate of element release in different critical periods (n = 72)
K释放率 Rate of K release | Na释放率 Rate of Na release | |||||||
---|---|---|---|---|---|---|---|---|
SF | SC | SM | FT | SF | SC | SM | FT | |
A | 4.114* | 7.785** | 5.894** | 5.378** | 222.571** | 78.155** | 13.751** | 104.938** |
B | 164.946** | 24.376** | 22.351** | 106.188** | 984.280** | 1146.744** | 743.108** | 1979.735** |
C | 7.676** | 10.262** | 17.226** | 10.350** | 123.474** | 32.632** | 63.561** | 44.114** |
[1] |
Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449.
DOI URL |
[2] |
Aerts R (2006). The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713-724.
DOI URL |
[3] |
Balasubramanian D, Arunachalam K, Das AK, Arunachalam A (2012). Decomposition and nutrient release of Eichhornia crassipes (Mart.) Solms. under different trophic conditions in wetlands of eastern Himalayan foothills. Ecological Engineering, 44, 111-122.
DOI URL |
[4] |
Baptist F, Yoccoz NG, Choler P (2010). Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant and Soil, 328, 397-410.
DOI URL |
[5] |
Batty LC, Younger PL (2007). The effect of pH on plant litter decomposition and metal cycling in wetland mesocosms supplied with mine drainage. Chemosphere, 66, 158-164.
DOI URL |
[6] | Berg B, McClaugherty C (2003). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer, New York. |
[7] | Berg B, Staaf H (1981). Leaching, accumulation and release of nitrogen in decomposing forest litter. In: Clark FE, Rosswall T eds. Ecological Bulletins 33. Terrestrial Nitrogen Cycles. Swedish Natural Science Research Council, Stockholm. 163-178. |
[8] |
Bragazza L, Siffi C, Iacumin P, Gerdol R (2007). Mass loss and nutrient release during litter decay in peatland: the role of microbial adaptability to litter chemistry. Soil Biology & Biochemistry, 39, 257-267.
DOI URL |
[9] |
Cotrufo MF, Ineson P (1995). Effects of enhanced atmospheric CO2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula pendula Roth. and Picea sitchensis (Bong.) Carr. Plant and Soil, 170, 267-277.
DOI URL |
[10] | Deng RJ, Yang WQ, Feng RF, Hu JL, Qin JL, Xiong XJ (2009). Mass loss and element release of litter in the subalpine forest over one freeze-thaw season. Acta Ecologica Sinica, 29, 5730-5735. (in Chinese with English abstract) |
[ 邓仁菊, 杨万勤, 冯瑞芳, 胡建利, 秦嘉励, 熊雪晶 (2009). 季节性冻融期间亚高山森林凋落物的质量损失及元素释放. 生态学报, 29, 5730-5735.] | |
[11] |
Edmonds RL, Tuttle KM (2010). Red alder leaf decomposition and nutrient release in alder and conifer riparian patches in western Washington, USA. Forest Ecology and Management, 259, 2375-2381.
DOI URL |
[12] | Edwards AC, Scalenghe R, Freppaz M (2007). Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quaternary International, 162- 163, 172-181. |
[13] |
Gosz JR, Likens GE, Bormann FH (1973). Nutrient release from decomposing leaf and branch litter in the hubbard brook forest, new hampshire. Ecological Monographs, 43, 173-191.
DOI URL |
[14] |
He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest. Chinese Journal of Plant Ecology, 37, 306-316. (in Chinese with English abstract)
DOI URL |
[ 何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
DOI URL |
|
[15] |
Hu X, Wu N, Wu Y, Zuo WQ, Guo HX, Wang JN (2012). Effects of snow cover on the decomposition and nutrient dynamics of Sibiraea angustata leaf litter in western Sichuan plateau, Southwest China. Chinese Journal of Applied Ecology, 23, 1226-1232. (in Chinese with English abstract)
URL PMID |
[ 胡霞, 吴宁, 吴彦, 左万庆, 郭海霞, 王金牛 (2012). 川西高原季节性雪被覆盖对窄叶鲜卑花凋落物分解和养分动态的影响. 应用生态学报, 23, 1226-1232.]
URL PMID |
|
[16] |
Jacob M, Weland N, Platner C, Schaefer M, Leuschner C, Thomas FM (2009). Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. Soil Biology & Biochemistry, 41, 2122-2130.
DOI URL |
[17] |
Kaila A, Asam ZZ, Sarkkola S, Xiao LW, Laurén A, Vasander H, Nieminen M (2012). Decomposition of harvest residue needles on peatlands drained for forestry―Implications for nutrient and heavy metal dynamics. Forest Ecology and Management, 277, 141-149.
DOI URL |
[18] |
Li HT, Yu GR, Li JY, Liang T, Chen YR (2007). Dynamics of litter decomposition and phosphorus and potassium release in Jinggang Mountain region of Jiangxi Province, China. Chinese Journal of Applied Ecology, 18, 233-240. (in Chinese with English abstract)
URL PMID |
[ 李海涛, 于贵瑞, 李家永, 梁涛, 陈永瑞 (2007). 井冈山森林凋落物分解动态及磷、钾释放速率. 应用生态学报, 18, 233-240.]
URL PMID |
|
[19] |
Liu JL, Wu FZ, Yang WQ, Shi PL, Wang A, Yang YL, Wu ZC (2013). Effect of seasonal freeze-thaw cycle on net nitrogen mineralization of soil organic layer in the subalpine/alpine forests of western Sichuan, China. Acta Ecologica Sinica, 33, 32-37.
DOI URL |
[20] | Liu RL, Li WM, Yang WQ, Tan B, Wang WJ, Xu ZF, Wu FZ (2013). Contributions of soil fauna to litter decomposition in alpine/subalpine forests. Chinese Journal of Applied Ecology, 24, 3354-3360. (in Chinese with English abstract) |
[ 刘瑞龙, 李维民, 杨万勤, 谭波, 王文君, 徐振锋, 吴福忠 (2013). 土壤动物对川西高山/亚高山森林凋落物分解的贡献. 应用生态学报, 24, 3354-3360.] | |
[21] |
Maisto G, de Marco A, Meola A, Sessa L, Virzo de Santo A (2011). Nutrient dynamics in litter mixtures of four Mediterranean maquis species decomposing in situ. Soil Biology & Biochemistry, 43, 520-530.
DOI URL |
[22] |
Nykvist N (1961). Leaching and decomposition of litter. III. Experiments on leaf litter of Betula verrucosa. Oikos, 12, 249-263.
DOI URL |
[23] |
Ribeiro C, Madeira M, Araújo MC (2002). Decomposition and nutrient release from leaf litter of Eucalyptus globulus grown under different water and nutrient regimes. Forest Ecology and Management, 171, 31-41.
DOI URL |
[24] |
Saccone P, Morin S, Baptist F, Bonneville JM, Colace MP, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clément JC (2013). The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant and Soil, 363, 215-229.
DOI URL |
[25] |
Schmidt SK, Lipson DA (2004). Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant and Soil, 259, 1-7.
DOI URL |
[26] |
Scott NA, Binkley D (1997). Foliage litter quality and annual net N mineralization: comparison across North American forest sites. Oecologia, 111, 151-159.
URL PMID |
[27] | Tagliavini M, Tonon G, Scandellari F, Quiñones A, Palmieri S, Menarbin G, Gioacchini P, Masia A (2007). Nutrient recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in an orchard. Agriculture, Ecosystems & Environment, 118, 191-200. |
[28] |
Tan B, Wu FZ, Yang WQ, He XH (2014). Snow removal alters soil microbial biomass and enzyme activity in a Tibetan alpine forest. Applied Soil Ecology, 76, 34-41.
DOI URL |
[29] |
Tan B, Wu FZ, Yang WQ, Yu S, Liu L, Wang A, Yang YL (2013). Seasonal dynamics of soil fauna in the subalpine and alpine forests of west Sichuan at different altitudes. Acta Ecologica Sinica, 33, 12-22.
DOI URL |
[30] |
Tian G, Kang BT, Brussaard L (1992). Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions—decomposition and nutrient release. Soil Biology & Biochemistry, 24, 1051-1060.
DOI URL |
[31] | Vitousek PM (2004). Nutrient Cycling and Limitation: Hawai’i as a Model System. Princeton University Press, Princeton. |
[32] | Wang J, Huang JH (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica, 25, 375-380. (in Chinese with English abstract) |
[ 王瑾, 黄建辉 (2001). 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较. 植物生态学报, 25, 375-380.] | |
[33] | Wang XH, Huang JJ, Yan ER (2004). Leaf litter decomposition of commen trees in Tiantong. Acta Phytoecologica Sinica, 28, 457-467. (in Chinese with English abstract) |
[ 王希华, 黄建军, 闫恩荣 (2004). 天童国家森林公园常见植物凋落叶分解的研究. 植物生态学报, 28, 457-467.] | |
[34] |
Wei YY, Wu ZC, Yang WQ, Wu FZ (2013). Fine root decomposition dynamics during freeze-thaw season in the subalpine /alpine forests. Scientia Silvae Sinicae, 49(8), 21-28. (in Chinese with English abstract)
DOI URL |
[ 魏圆云, 武志超, 杨万勤, 吴福忠 (2013). 季节性冻融期亚高山/高山森林细根分解动态. 林业科学, 49(8), 21-28.]
DOI URL |
|
[35] |
Withington CL, Sanford Jr RL (2007). Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone. Soil Biology & Biochemistry, 39, 68-75.
DOI URL |
[36] | Wu FZ, Wang KY, Yang WQ, Lu YJ, Qiao YZ (2005). Effects of Fargesia denudata density on seasonal changes in litter nutrient concentrations and their potential retranslocation. Acta Phytoecologica Sinica, 29, 537-542. (in Chinese with English abstract) |
[ 吴福忠, 王开运, 杨万勤, 鲁叶江, 乔匀周 (2005). 密度对缺苞箭竹凋落物生物元素动态及其潜在转移能力的影响. 植物生态学报, 29, 537-542.] | |
[37] |
Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140.
DOI URL |
[38] |
Xia L, Wu FZ, Yang WQ (2011). Contribution of soil fauna to mass loss of Abies faxoniana leaf litter during the freeze-thaw season. Chinese Journal of Plant Ecology, 35, 1127-1135. (in Chinese with English abstract)
DOI URL |
[ 夏磊, 吴福忠, 杨万勤 (2011). 季节性冻融期间土壤动物对岷江冷杉凋落叶质量损失的贡献. 植物生态学报, 35, 1127-1135.]
DOI URL |
|
[39] |
Yang WQ, Deng RJ, Zhang J (2007). Forest litter decomposition and its responses to global climate change. Chinese Journal of Applied Ecology, 18, 2889-2895. (in Chinese with English abstract)
URL PMID |
[ 杨万勤, 邓仁菊, 张健 (2007). 森林凋落物分解及其对全球气候变化的响应. 应用生态学报, 18, 2889-2895.]
URL PMID |
|
[40] | Zeng F, Qiu ZJ, Xu XY (2010). Review on forest litter decomposition. Ecology and Environmental Sciences, 19, 239-243. (in Chinese with English abstract) |
[ 曾锋, 邱治军, 许秀玉 (2010). 森林凋落物分解研究进展. 生态环境学报, 19, 239-243.] |
[1] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[2] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[3] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[4] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[5] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[6] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[7] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[8] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[9] | 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163. |
[10] | 郭彩虹, 杨万勤, 吴福忠, 徐振锋, 岳楷, 倪祥银, 袁吉, 杨帆, 谭波. 川西亚高山森林林窗对凋落枝早期分解的影响[J]. 植物生态学报, 2018, 42(1): 28-37. |
[11] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[12] | 杨丽丽, 龚吉蕊, 刘敏, 杨波, 张子荷, 罗亲普, 翟占伟, 潘琰. 氮沉降对草地凋落物分解的影响研究进展[J]. 植物生态学报, 2017, 41(8): 894-913. |
[13] | 杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟. 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响[J]. 植物生态学报, 2016, 40(8): 748-759. |
[14] | 李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 胡义. 亚高山森林林窗对凋落物分解过程中半纤维素动态的影响[J]. 植物生态学报, 2015, 39(3): 229-238. |
[15] | 王忆慧, 龚吉蕊, 刘敏, 黄永梅, 晏欣, 张梓瑜, 徐沙, 罗亲普. 草地利用方式对土壤呼吸和凋落物分解的影响[J]. 植物生态学报, 2015, 39(3): 239-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19