植物生态学报 ›› 2018, Vol. 42 ›› Issue (1): 28-37.DOI: 10.17521/cjpe.2017.0186
所属专题: 凋落物
郭彩虹,杨万勤,吴福忠,徐振锋,岳楷,倪祥银,袁吉,杨帆,谭波()
出版日期:
2018-01-20
发布日期:
2018-01-18
通讯作者:
谭波
基金资助:
GUO Cai-Hong,YANG Wan-Qin,WU Fu-Zhong,XU Zhen-Feng,YUE Kai,NI Xiang-Yin,YUAN Ji,YANG Fan,TAN Bo()
Online:
2018-01-20
Published:
2018-01-18
Contact:
Bo TAN
Supported by:
摘要:
林窗调控的土壤水热环境和分解者群落结构可能深刻影响凋落物分解过程, 已有的研究结果具有不确定性。为了解高海拔森林林窗面积对凋落枝分解的影响, 采用凋落物分解袋法, 于2012-2016年冬季和生长季节, 研究了川西亚高山森林255-290 m 2(FG1)、153-176 m 2(FG2)、38-46 m 2(FG3) 3种面积林窗和林下对岷江冷杉(Abies faxoniana)凋落枝质量损失的影响。结果显示: 林窗面积大小显著改变了林窗和林下的雪被厚度、温度和冻融循环频次; 雪被厚度和温度以FG1林窗最高, 林下最低; FG1、FG2、FG3林窗和林下枝条分解4年后的质量残留率分别为59.9%、59.5%、62.1%和55.3%, 分解系数k值分别为0.127、0.131、0.120和0.135, 95%分解时间分别为23.6、22.7、25.0和22.2 a; 与林下相比, 林窗显著增加了第一年和第二年生长季节的质量损失速率, 降低了第一年和第四年冬季的枝条质量损失速率; 林窗大小对质量损失速率的影响随分解时期变化差异明显, 质量损失速率在第一年和第三年冬季随林窗面积增大而增大, 在第三年生长季节随林窗面积增大而降低; 枝条质量损失的比例在第一年最高, 随林窗面积增加而增加, 且冬季高于生长季节。综上所述, 林窗环境变化深刻影响亚高山森林凋落枝分解, 但这种影响随林窗面积和分解时间有所差异。
郭彩虹, 杨万勤, 吴福忠, 徐振锋, 岳楷, 倪祥银, 袁吉, 杨帆, 谭波. 川西亚高山森林林窗对凋落枝早期分解的影响. 植物生态学报, 2018, 42(1): 28-37. DOI: 10.17521/cjpe.2017.0186
GUO Cai-Hong, YANG Wan-Qin, WU Fu-Zhong, XU Zhen-Feng, YUE Kai, NI Xiang-Yin, YUAN Ji, YANG Fan, TAN Bo. Effects of forest gap size on initial decomposition of twig litter in the subalpine forest of western Sichuan, China. Chinese Journal of Plant Ecology, 2018, 42(1): 28-37. DOI: 10.17521/cjpe.2017.0186
林窗类型 Gap type | 林窗面积(m2) Area of gap | 林窗形成木 Species of gap maker | 林窗边界木 Species of gap border | 林窗形成方式 Causes of gap |
---|---|---|---|---|
FG1 | 255-290 | 岷江冷杉, 高度以20-30 m为主, 胸径以40-70 cm居多 Abies faxoniana with height and diameter at breast height ranging between 20 and 30 m and between 40 and 70 cm, respectively | 岷江冷杉、红桦, 高度以20-30 m为主, 胸径以40-60 cm居多 Abies faxoniana and Betula albo-sinensis with height and diameter at breast height ranging between 20 and 30 m and between 40 and 60 cm, respectively | 折干, 枯立 Breakage at trunk, standing death |
FG2 | 153-176 | |||
FG3 | 38-46 |
表1 川西亚高山森林林窗基本性质
Table 1 Basic characteristics of forest gaps in the subalpine forest of western Sichuan
林窗类型 Gap type | 林窗面积(m2) Area of gap | 林窗形成木 Species of gap maker | 林窗边界木 Species of gap border | 林窗形成方式 Causes of gap |
---|---|---|---|---|
FG1 | 255-290 | 岷江冷杉, 高度以20-30 m为主, 胸径以40-70 cm居多 Abies faxoniana with height and diameter at breast height ranging between 20 and 30 m and between 40 and 70 cm, respectively | 岷江冷杉、红桦, 高度以20-30 m为主, 胸径以40-60 cm居多 Abies faxoniana and Betula albo-sinensis with height and diameter at breast height ranging between 20 and 30 m and between 40 and 60 cm, respectively | 折干, 枯立 Breakage at trunk, standing death |
FG2 | 153-176 | |||
FG3 | 38-46 |
有机碳(g·kg-1) Organic carbon (C) | 总氮(g·kg-1) Total nitrogen (N) | 总磷(g·kg-1) Total phosphorus (P) | 木质素(%) Lignin | 纤维素(%) Cellulose | 碳:氮 C:N | 碳:磷 C:P | 氮:磷 N:P | 木质素:氮 Lignin:N |
---|---|---|---|---|---|---|---|---|
441.8 ± 10.7 | 8.11 ± 0.20 | 0.7 ± 0.1 | 32.4 ± 1.7 | 23.8 ± 1.2 | 54.4 ± 0.9 | 657.4 ± 21.4 | 12.1 ± 0.4 | 41.7 ± 0.8 |
表2 岷江冷杉凋落枝初始质量特征(平均值±标准误差, n = 5)
Table 2 Initial quality in twig litter of Abies faxoniana (mean ± SE, n = 5)
有机碳(g·kg-1) Organic carbon (C) | 总氮(g·kg-1) Total nitrogen (N) | 总磷(g·kg-1) Total phosphorus (P) | 木质素(%) Lignin | 纤维素(%) Cellulose | 碳:氮 C:N | 碳:磷 C:P | 氮:磷 N:P | 木质素:氮 Lignin:N |
---|---|---|---|---|---|---|---|---|
441.8 ± 10.7 | 8.11 ± 0.20 | 0.7 ± 0.1 | 32.4 ± 1.7 | 23.8 ± 1.2 | 54.4 ± 0.9 | 657.4 ± 21.4 | 12.1 ± 0.4 | 41.7 ± 0.8 |
图1 川西亚高山森林不同面积林窗和郁闭林下的雪被厚度(平均值±标准误差)。不同小写字母代表林窗间差异显著。FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, 郁闭林下。
Fig. 1 Snow depths associated with the forest gaps and the closed canopy in the subalpine forest of Western Sichuan (mean ± SE). Different lowercase letters indicate significant differences among the three forest gaps and the closed canopy. FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, closed canopy.
图2 川西亚高山森林不同面积林窗和郁闭林下地表平均温度和冻融循环频次(平均值±标准误差)。不同小写字母代表林窗间差异显著。FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, 郁闭林下。1W, 第1年冬季; 1GS, 第1年生长季节; 2W, 第2年冬季; 2GS, 第2年生长季节; 3W, 第3年冬季; 3GS, 第3年生长季节; 4W, 第4年冬季; 4GS, 第4年生长季节。
Fig. 2 Mean surface temperature and frequency of freeze-thaw cycles in the litterbag associated with the forest gaps and the closed canopy in the subalpine forest of Western Sichuan (mean ± SE). Different lowercase letters indicate significant differences among the three forest gaps and the closed canopy. FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, closed canopy. 1W, the first winter; 1GS, the first growing season; 2W, the second winter; 2GS, the second growing season; 3W, the third winter; 3GS, the third growing season; 4W, the fourth winter; 4GS, the fourth growing season.
图3 川西亚高山森林不同面积林窗和郁闭林下凋落枝持水能力(平均值±标准误差)。不同小写字母代表林窗间差异显著。FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, 郁闭林下。1W, 第1年冬季; 1GS, 第1年生长季节; 2W, 第2年冬季; 2GS, 第2年生长季节; 3W, 第3年冬季; 3GS, 第3年生长季节; 4W, 第4年冬季; 4GS, 第4年生长季节。
Fig. 3 Water holding capacity of twig litter associated with the forest gaps and the closed canopy in the subalpine forest of Western Sichuan (mean ± SE). Different lowercase letters indicate significant differences among the three forest gaps and the closed canopy. FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, closed canopy. 1W, the first winter; 1GS, the first growing season; 2W, the second winter; 2GS, the second growing season; 3W, the third winter; 3GS, the third growing season; 4W, the fourth winter; 4GS, the fourth growing season.
图4 川西亚高山森林不同面积林窗和郁闭林下凋落枝质量残留率。不同小写字母代表林窗间差异显著。FG1, 255- 290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, 郁闭林下。R2adj, 调整决定系数。
Fig. 4 Mass remaining of twig litter associated with the forest gaps and the closed canopy in the subalpine forest of Western Sichuan. Different lowercase letters indicate significant differences among the three forest gaps and the closed canopy. FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, closed canopy. R2adj, adjusted coefficient of determination.
林窗类型 Gap type | 回归方程 Regression equation | 分解系数k Decomposition constant k | 调整决定系数 Adjusted coefficient of determination | 半分解时间 Time of half decomposition (a) | 95%分解时间 Time of 95% decomposition (a) | 显著性 Significance |
---|---|---|---|---|---|---|
FG1 | y = 91.53e-0.127t | 0.127 | 0.773 | 5.458 | 23.588 | p < 0.001 |
FG2 | y = 95.55e-0.131t | 0.131 | 0.786 | 5.291 | 22.868 | p < 0.001 |
FG3 | y = 95.55e-0.120t | 0.120 | 0.764 | 5.776 | 24.964 | p < 0.001 |
CC | y = 95.55e-0.135t | 0.135 | 0.758 | 5.134 | 22.191 | p < 0.001 |
表3 不同面积林窗和郁闭林下凋落枝分解特征分解系数、相关系数、半分解和95%分解时间
Table 3 Decomposition constant, adjusted correlation coefficient, and time of 50% and 95% decomposition of twig litter in different forest gaps and the closed canopy
林窗类型 Gap type | 回归方程 Regression equation | 分解系数k Decomposition constant k | 调整决定系数 Adjusted coefficient of determination | 半分解时间 Time of half decomposition (a) | 95%分解时间 Time of 95% decomposition (a) | 显著性 Significance |
---|---|---|---|---|---|---|
FG1 | y = 91.53e-0.127t | 0.127 | 0.773 | 5.458 | 23.588 | p < 0.001 |
FG2 | y = 95.55e-0.131t | 0.131 | 0.786 | 5.291 | 22.868 | p < 0.001 |
FG3 | y = 95.55e-0.120t | 0.120 | 0.764 | 5.776 | 24.964 | p < 0.001 |
CC | y = 95.55e-0.135t | 0.135 | 0.758 | 5.134 | 22.191 | p < 0.001 |
图5 川西亚高山森林不同面积林窗和郁闭林下凋落枝每30天的质量损失速率(平均值±标准误差)。FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, 郁闭林下。1W, 第1年冬季; 1GS, 第1年生长季节; 2W, 第2年冬季; 2GS, 第2年生长季节; 3W, 第3年冬季; 3GS, 第3年生长季节; 4W, 第4年冬季; 4GS, 第4年生长季节。
Fig. 5 Mass loss rate per 30 days of twig litter associated with the forest gaps and the closed canopy in the subalpine forest of Western Sichuan (mean ± SE). FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, closed canopy. 1W, the first winter; 1GS, the first growing season; 2W, the second winter; 2GS, the second growing season; 3W, the third winter; 3GS, the third growing season; 4W, the fourth winter; 4GS, the fourth growing season.
图6 川西亚高山森林不同面积林窗和郁闭林下各关键时期凋落枝质量损失比例。FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, 郁闭林下。1W, 第1年冬季; 1GS, 第1年生长季节; 2W, 第2年冬季; 2GS, 第2年生长季节; 3W, 第3年冬季; 3GS, 第3年生长季节; 4W, 第4年冬季; 4GS, 第4年生长季节。
Fig. 6 Percentage of mass loss at different sampling stages associated with different forest gaps and the closed canopy in the subalpine forest of Western Sichuan. FG1, 255-290 m2; FG2, 153-176 m2; FG3, 38-46 m2; CC, closed canopy. 1W, the first winter; 1GS, the first growing season; 2W, the second winter; 2GS, the second growing season; 3W, the third winter; 3GS, the third growing season; 4W, the fourth winter; 4GS, the fourth growing season.
[1] |
Adair EC, Parton WJ, Grosso SJD, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC ( 2008). Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biology, 14, 2636-2660.
DOI URL |
[2] |
Aerts R ( 1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystem: A triangular relationship. Oikos, 79, 439-449.
DOI URL |
[3] |
Aerts R ( 2006). The freezer defrosting: Global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713-724.
DOI URL |
[4] |
Arunachalam A, Arunachalam K ( 2000). Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India. Plant and Soil, 223, 187-195.
DOI URL |
[5] |
Baptist F, Yoccoz, NG, Choler P ( 2010). Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant and Soil, 328, 397-410.
DOI URL |
[6] | Berg B, McClaugherty C ( 2014). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 3rd edn. Springer, New York. |
[7] |
Cha S, Chae HM, Lee SH, Shim JK ( 2017). Branch wood decomposition of tree species in a deciduous temperate forest in Korea. Forests, 8, 176.
DOI URL |
[8] | Chen BL, Dong XB, Cui L, Tang GH ( 2015). Changes of litter hydrological capacity in low-quality forest in Daxing’ an mountains after ecological reformation. Journal of Northeast Forestry University, 43, 72-77. |
[ 陈百灵, 董希斌, 崔莉, 唐国华 ( 2015). 大兴安岭低质林生态改造后枯落物水文效应变化. 东北林业大学学报, 43, 72-77.] | |
[9] |
Christenson LM, Mitchell MJ, Groffman PM, Lovett GM ( 2010). Winter climate implications for decomposition in northeastern forests, comparisons change of sugar maple litter with herbivore fecal. Global Change Biology, 16, 2589-2601.
DOI URL |
[10] |
Denslow JS, Ellison AM, Sanford RE ( 1998). Tree fall gap size effects on above- and below-ground processes in a tropical wet forest. Journal of Ecology, 86, 597-609.
DOI URL |
[11] | Devi WM, Singh TB, Devi LJ ( 2012). Monthly changes of collembolan population under the gradients of moisture, organic carbon and nitrogen contents in a sub-tropical forest soil. Journal of Experimental Sciences, 2, 10-12. |
[12] |
Fu CK, Yang WQ, Tan B, Xu ZF, Zhang Y, Yang JP, Ni XY, Wu FZ ( 2017). Seasonal dynamics of litter fall in a sub-alpine spruce-fir forest on the eastern Tibetan Plateau: Allometric scaling relationships based on one year of observations. Forests, 8, 314.
DOI URL |
[13] |
Gavazov KS ( 2010). Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 337, 19-32.
DOI URL |
[14] |
Gosz JR, Likens GE, Bormann FH ( 1973). Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecological Monographs, 43, 173-191.
DOI URL |
[15] |
Guan YY, Fei F, Guan Q, Chen B ( 2016). Advances in studies of forest gap ecology. Scientia Silvae Sinicae, 52(4), 91-99.
DOI URL |
[ 管云云, 费菲, 关庆, 陈斌 ( 2016). 林窗生态学研究进展. 林业科学, 52(4), 91-99.]
DOI URL |
|
[16] |
He W, Wu FZ, Yang WQ, Tan B, Zhao YY, Wu QQ, He M ( 2016). Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest. Ecosystems, 19, 115-128.
DOI URL |
[17] |
He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY ( 2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest. Chinese Journal of Plant Ecology, 37, 306-316.
DOI URL |
[ 何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 ( 2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
DOI URL |
|
[18] |
He W, Wu FZ, Zhang DJ, Yang WQ, Tan B, Zhao YY, Wu QQ ( 2015). The effects of forest gaps on cellulose degradation in the foliar litter of two shrub species in an alpine fir forest. Plant and Soil, 393, 109-122.
DOI URL |
[19] |
Hobbie SE ( 1996). Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66, 503-522.
DOI URL |
[20] |
Hobbie SE, Chapin FS ( 1996). Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry, 35, 327-338.
DOI URL |
[21] |
Konestabo HS, Michelsen A, Holmstrup M ( 2007). Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-Arctic ecosystem. Applied Soil Ecology, 36, 136-146.
DOI URL |
[22] |
Liu Q, Wu Y ( 2002). Effects of gap size on regeneration of subalpine coniferous forests in northwest Yunnan. Chinese Journal of Applied and Environmental Biology, 8, 453-459.
DOI URL |
[ 刘庆, 吴彦 ( 2002). 滇西北亚高山针叶林林窗大小与更新的初步分析. 应用与环境生物学报, 8, 453-459.]
DOI URL |
|
[23] |
McCarthy J ( 2001). Gap dynamics of forest trees: A review with particular attention to boreal forests. Environmental Reviews, 9, 1-59.
DOI URL |
[24] |
Olson JS ( 1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
DOI URL |
[25] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B ( 2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
DOI URL |
[26] |
Prescott CE, Blevins LL, Staley CL ( 2000). Effects of clear-cutting on decomposition rates of litter and forest floor in forests of British Columbia . Canadian Journal of Forest Research, 30, 1751-1757.
DOI URL |
[27] |
Prescott CE, Hope GD, Blevins LL ( 2003). Effect of gap size on litter decomposition and soil concentrations in a high- elevation spruce fir forest. Canadian of Forest Research, 33, 2210-2220.
DOI URL |
[28] |
Sariyildiz T ( 2008). Effects of gap-size classes on long-term litter decomposition rates of beech, oak and chestnut species at high elevations in Northeast Turkey. Ecosystems, 11, 841-853.
DOI URL |
[29] |
Schliemann SA, Bockheim JG ( 2011). Methods for studying treefall gaps: A review. Forest Ecology and Management, 261, 1143-1151.
DOI URL |
[30] |
Shorohova E, Kapitsa E ( 2016). The decomposition rate of non-stem components of coarse woody debris (CWD) in European boreal forests mainly depends on site moisture and tree species. European Journal of Forest Research, 135, 1-14.
DOI URL |
[31] |
Varhola A, Coopas NC, Weiler M, Moore RD ( 2010). Forest effects on snow accumulation and ablation: An integrative review of empirical results. Journal of Hydrology, 392, 219-233.
DOI URL |
[32] |
Wu FZ, Yang WQ, Zhang J ( 2010). Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140.
DOI URL |
[33] | Wu QG, Wu FZ, Yang WQ, Tan B, He W, Ni XY ( 2016). Effects of gap sizes on foliar litter decomposition in alpine forest. Acta Ecologica Sinica, 36, 3537-3545. |
[ 吴庆贵, 吴福忠, 谭波, 杨万勤, 何伟, 倪祥银 ( 2016). 高山森林林窗对凋落叶分解的影响. 生态学报, 36, 3537-3545.] | |
[34] |
Wu QG, Wu FZ, Yang WQ, Tan B, Yang YL, Ni XY, He J ( 2013). Characteristics of gaps and disturbance regimes of the alpine fir forest in western Sichuan. Chinese Journal of Applied and Environmental Biology, 19, 922-928.
DOI URL |
[ 吴庆贵, 吴福忠, 杨万勤, 谭波, 杨玉莲, 倪祥银, 何洁 ( 2013). 川西高山森林林隙特征及干扰状况. 应用与环境生物学报, 19, 922-928.]
DOI URL |
|
[35] |
Wu QQ, Wu FZ, Yang WQ, Zhao YY, He W, Tan B ( 2014). Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of Eastern, Tibet Plateau . PLOS ONE, 9, e97112. DOI: 10.1371/journal.pone.0097112.
DOI URL PMID |
[36] |
Zang RG, Yu SX, Liu JL, Yang YC ( 1999). The gap phase regeneration in a tropical montane rain forest in Bawangling, Hainan Island. Acta Ecologica Sinica, 19, 151-158.
DOI URL |
[ 臧润国, 余世孝, 刘静艳, 杨彦承 ( 1999). 海南霸王岭热带山地雨林林隙更新规律的研究. 生态学报, 19, 151-158.]
DOI URL |
|
[37] |
Zhang QS, Zak JC ( 1995). Erects of gap size on litter decomposition and microbial activity in a subtropical forest. Ecology, 76, 2196-2204.
DOI URL |
[38] |
Zhu JJ, Zhang GQ, Wang GG, Yan QL, Lu DL, Li XF ( 2015). On the size of forest gaps: Can their lower and upper limits be objectively defined? Agriculture and Forest Meteorology, 213, 64-76.
DOI URL |
[1] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[2] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[3] | 江蓝, 魏晨思, 何中声, 朱静, 邢聪, 王雪琳, 刘金福, 沈彩霞, 施友文. 格氏栲天然林林窗植物群落功能性状的变异[J]. 植物生态学报, 2022, 46(3): 267-279. |
[4] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[5] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[6] | 宋思梦, 张丹桔, 张健, 杨万勤, 张艳, 周扬, 李勋. 马尾松人工林林窗边缘效应对油樟化学计量特征的影响[J]. 植物生态学报, 2017, 41(10): 1081-1090. |
[7] | 张艳, 张丹桔, 张健, 杨万勤, 邓长春, 李建平, 李勋, 唐仕姗, 张明锦. 马尾松人工林林窗大小对两种凋落叶难降解物质含量的影响[J]. 植物生态学报, 2015, 39(8): 785-796. |
[8] | 李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 胡义. 亚高山森林林窗对凋落物分解过程中半纤维素动态的影响[J]. 植物生态学报, 2015, 39(3): 229-238. |
[9] | 何洁,杨万勤,倪祥银,李晗,徐李亚,吴福忠. 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响[J]. 植物生态学报, 2014, 38(6): 550-561. |
[10] | 崔宁洁,张丹桔,刘洋,张健,杨万勤,欧江,张捷,宋小艳,殷睿. 马尾松人工林不同大小林窗植物多样性及其季节动态[J]. 植物生态学报, 2014, 38(5): 477-490. |
[11] | 武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野逸, 朱剑霄. 季节性雪被对高山森林凋落物分解的影响[J]. 植物生态学报, 2013, 37(4): 296-305. |
[12] | 赵红梅, 黄刚, 马健, 李彦, 周丽. 荒漠区地表凋落物分解对季节性降水增加的响应[J]. 植物生态学报, 2012, 36(6): 471-482. |
[13] | 夏磊, 吴福忠, 杨万勤. 季节性冻融期间土壤动物对岷江冷杉凋落叶质量损失的贡献[J]. 植物生态学报, 2011, 35(11): 1127-1135. |
[14] | 张亮, 邢福, 于丽丽, 许坤, 孙忠林, 吕宪国. 三江平原沼泽湿地岛状林植物多样性[J]. 植物生态学报, 2008, 32(3): 582-590. |
[15] | 张远彬, 王开运, 鲜骏仁. 岷江冷杉林林窗小气候及其对不同龄级岷江冷杉幼苗生长的影响[J]. 植物生态学报, 2006, 30(6): 941-946. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19