植物生态学报 ›› 2011, Vol. 35 ›› Issue (11): 1127-1135.DOI: 10.3724/SP.J.1258.2011.01127
收稿日期:
2011-07-04
接受日期:
2011-07-22
出版日期:
2011-07-04
发布日期:
2011-11-07
通讯作者:
杨万勤
作者简介:
*(E-mail:scyangwq@163.com)
XIA Lei, WU Fu-Zhong, YANG Wan-Qin*()
Received:
2011-07-04
Accepted:
2011-07-22
Online:
2011-07-04
Published:
2011-11-07
Contact:
YANG Wan-Qin
About author:
*(E-mail:scyangwq@163.com)摘要:
冬季凋落物的质量损失是中高纬度和高海拔地区凋落物分解的关键, 但冬季凋落物分解是否与土壤动物的贡献有关, 不同冻融时期(冻融初期、深冻期和融化期)的土壤动物对凋落物分解的贡献是否存在差异? 对这两个问题仍缺乏必要的关注。为了解季节性冻融期间土壤动物对岷江冷杉(Abies faxoniana)凋落物分解的贡献, 采用凋落物分解袋法, 调查了季节性冻融期间(2010年10月底至2011年4月中旬), 不同网孔(0.020 mm、0.125 mm、1.000 mm和3.000 mm)凋落物分解袋内的岷江冷杉凋落叶质量损失, 分析了微型、中型和大型土壤动物对岷江冷杉凋落叶分解的贡献。在季节性冻融期间, 0.020 mm、0.125 mm、1.000 mm和3.000 mm分解袋内的岷江冷杉凋落叶质量损失率分别为12.13%、13.07%、14.95%和18.74%。不同体径的土壤动物对季节性冻融期间岷江冷杉凋落叶质量损失的贡献率总共为35.28%; 不同孔径凋落物袋内土壤动物的类群和个体相对密度与凋落叶的质量损失率呈现相对一致的变化趋势。在季节性冻融的3个阶段中, 土壤动物对岷江冷杉凋落叶质量损失的贡献率均为: 微型土壤动物<中型土壤动物<大型土壤动物。其中, 微型、中型和大型土壤动物分别在深冻期、冻融初期和融化期表现出最高的贡献率, 分别为6.56%、11.77%和21.94%。然而相对于其他冻融时期, 深冻期中型和大型土壤动物对岷江冷杉凋落叶质量损失的贡献率最低。这些结果清晰地表明了川西高山季节性冻融期间土壤动物调控着凋落物分解的生态过程, 是高山冬季凋落物分解的重要因素之一。
夏磊, 吴福忠, 杨万勤. 季节性冻融期间土壤动物对岷江冷杉凋落叶质量损失的贡献. 植物生态学报, 2011, 35(11): 1127-1135. DOI: 10.3724/SP.J.1258.2011.01127
XIA Lei, WU Fu-Zhong, YANG Wan-Qin. Contribution of soil fauna to mass loss of Abies faxoniana leaf litter during the freeze-thaw season. Chinese Journal of Plant Ecology, 2011, 35(11): 1127-1135. DOI: 10.3724/SP.J.1258.2011.01127
图1 季节性冻融期间样地土壤温度的动态变化(2010年10月26日至2011年4月18日)。
Fig. 1 Dynamic changes of soil temperature in the sampling site during the freeze-thaw season (from 26 October 2010 to 18 April 2011).
图2 季节性冻融期间各孔径网袋岷江冷杉凋落叶的质量损失率(平均值±标准误差, n = 5)。不同大写字母表示同一孔径、不同分解期的差异显著(p < 0.05); 不同小写字母表示相同分解期、不同孔径间差异显著(p < 0.05)。
Fig. 2 Mass loss rates of Abies faxoniana leaf litter in litterbags with different mesh sizes during the freeze-thaw season (mean ± SE, n = 5). Different capital letters indicate significant difference (p < 0.05) among the different decomposition stages for the same mesh size; Different small letters indicate significant difference (p < 0.05) among the different mesh sizes within the same decomposition stage.
图3 岷江冷杉凋落叶质量损失率、土壤动物的类群和个体相对密度变化(平均值±标准误差, n = 5)。
Fig. 3 Variations of mass loss rates of Abies faxoniana leaf litter, taxa and individual relative density of soil fauna (mean ± SE, n = 5).
图4 微型、中型和大型土壤动物作用的岷江冷杉凋落叶质量损失率(平均值±标准误差, n = 5)。不同大写字母表示同一类型土壤动物、不同分解期的差异显著(p < 0.05); 不同小写字母表示相同分解期、不同土壤动物间差异显著(p < 0.05)。
Fig. 4 Mass loss rates of Abies faxoniana leaf litter as driven by micro-, meso- and macro-fauna (mean ± SE, n = 5). Different capital letters indicate significant difference (p < 0.05) among the different decomposition stages for the same body size of soil fauna; Different small letters indicate significant difference (p < 0.05) among the different body sizes of soil fauna within the same decomposition stage.
图5 微型、中型和大型土壤动物对岷江冷杉凋落叶质量损失的贡献率(平均值±标准误差, n = 5)。不同大写字母表示同一类型土壤动物、不同分解期的差异显著(p < 0.05); 不同小写字母表示相同分解期、不同土壤动物间差异显著(p < 0.05)。
Fig. 5 Contribution rates (%) of micro-, meso- and macro- fauna to the mass loss of Abies faxoniana leaf litter (mean ± SE, n = 5). Different capital letters indicate significant difference (p < 0.05) among the different decomposition stages for the same body size of soil fauna; Different small letters indicate significant difference (p < 0.05) among the different body sizes of soil fauna within the same decomposition stage.
[1] | Aerts R (2006). The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94,713-724. |
[2] | Anderson JM, Ineson P, Huish SA (1983). Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic matter from deciduous woodlands. Soil Biology & Biochemistry, 15,463-467. |
[3] |
Berg MP, Kniese JP, Verhoef HA (1998). Dynamics and stratification of bacteria and fungi in the organic layers of a Scots pine forest soil. Biology and Fertility of Soils, 26,313-322.
DOI URL |
[4] | Bokhorst S, Bjerke JW, Melillo J, Callaghan TV, Phoenix GK (2010). Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland. Soil Biology & Biochemistry, 42,611-617. |
[5] | Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE (2002). Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos, 99,317-323. |
[6] | Brooks PD, Campbell DH, Tonnessen KA, Heuer K (1999). Natural variability in N export from headwater catchments: snow cover controls on ecosystem N retention. Hydrological Processes, 13,2191-2201. |
[7] | Cadisch G, Giller KE (1997). Driven by Nature: Plant Litter Quality and Decomposition. CAB International, Wallingford. |
[8] | Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP (2005). Winter in northeastern North America: a critical period for ecological processes. Frontiers in Ecology and the Environment, 3,314-322. |
[9] | Chapin FS III, Mooney HA, Chapin MC, Matson PA (2002). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[10] | Chen J (陈瑾), Li Y (李扬), Huang JH (黄建辉) (2011). Decomposition of mixed litter of four dominant species in an Inner Mongolia steppe. Chinese Journal of Plant Ecology(植物生态学报), 35,9-16. (in Chinese with English abstract) |
[11] | Crutsinger GM, Sanders NJ, Classen AT (2009). Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem. Basic and Applied Ecology, 10,535-543. |
[12] | Deng RJ (邓仁菊), Yang WQ (杨万勤), Feng RF (冯瑞芳), Hu JL (胡建利), Qin JL (秦嘉励), Xiong XJ (熊雪晶) (2009). Mass loss and element release of litter in the subalpine forest over one freeze-thaw season. Acta Ecologica Sinica(生态学报), 29,5731-5735. (in Chinese with English abstract) |
[13] | Diekötter T, Wamser S, Wolters V, Birkhofer K (2010). Landscape and management effects on structure and function of soil arthropod communities in winter wheat. Agriculture, Ecosystems and Environment, 137,108-112. |
[14] | Doblas-Miranda E, Sánchez-Piñ F, González-Megías A (2007). Soil macroinvertebrate fauna of a Mediterranean arid system: composition and temporal changes in the assemblage. Soil Biology & Biochemistry, 39,1916-1925. |
[15] | Duffy JE (2002). Biodiversity and ecosystem function: the consumer connection. Oikos, 99,201-219. |
[16] | Garcia-Pausas J, Casals P, Romanyà J (2004). Litter decom- position and faunal activity in Mediterranean forest soils: effects of N content and the moss layer. Soil Biology & Biochemistry, 36,989-997. |
[17] | Gavazov KS (2010). Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 337,19-32. |
[18] | González G, Seastedt TR (2001). Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology, 82,955-964. |
[19] | Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Fierney GL (2001). Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry, 56,191-213. |
[20] | Hedlund K, Augustsson A (1995). Effects of enchytraeid grazing on fungal growth and respiration. Soil Biology & Biochemistry, 27,905-909. |
[21] |
Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA (2004). Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science, 306,1019-1020.
URL PMID |
[22] | Heneghan L, Bolger T (1996). Effect of components of ‘acid rain’ on the contribution of soil microarthropods to eco- system function. Journal of Applied Ecology, 33,1329-1344. |
[23] | Henry HAL (2008). Climate change and soil freezing dynamics: historical trends and projected changes. Climatic Change, 87,421-434. |
[24] | Hunter MD, Adl S, Pringle CM, Coleman DC (2003). Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia, 47,101-115. |
[25] |
Kampichler C, Bruckner A (2009). The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biological Reviews, 84,375-389.
DOI URL PMID |
[26] | Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997). Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33,159-193. |
[27] | Meentemeyer V (1978). Microclimate the lignin control of litter decomposition rates. Ecology, 59,465-472. |
[28] | Meentemeyer V (1984). The geography of organic decomposi- tion rates. Annals of the Association of American Geographers, 74,551-560. |
[29] | Meyer WM III, Ostertag R, Cowie RH (2011). Macro-inverte- brates accelerate litter decomposition and nutrient release in a Hawaiian rainforest. Soil Biology & Biochemistry, 43,206-211. |
[30] | Read DJ, Perez-Moreno J (2003). Mycorrhizas and nutrient cycling in ecosystems―a journey towards relevance? New Phytologist, 157,475-492. |
[31] | Seastedt TR (1984). The role of microarthropods in decom- position and mineralization processes. Annual Review of Entomology, 29,25-46. |
[32] | Singh KP, Singh PK, Tripathi SK (1999). Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India. Biology and Fertility of Soils, 29,371-378. |
[33] | Smith VC, Bradford MA (2003). Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time. Applied Soil Ecology, 24,197-203. |
[34] | Swift MJ, Heal OW, Anderson JM (1979). Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford. |
[35] | Tan B, Wu FZ, Yang WQ, Liu L, Yu S (2010). Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan during onset of freezing. Acta Ecologica Sinica, 30,93-99. |
[36] | Wall D, Bradford MA, John MGST, Trofymow JA, Behan- Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flem- ming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny L, Lin KC, Maryati M, Masse D, Pokarzhevskii A, Rahman H, Sabar MG, Salamon JA, Swift MJ, Varela A, Vasconcelos HL, White D, Zou XM (2008). Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biology, 14,2661-2677. |
[37] | Wang SJ, Ruan HH, Han Y (2010). Effects of microclimate, litter type, and mesh size on leaf litter decomposition along an elevation gradient in the Wuyi Mountains, China. Ecological Research, 25,1113-1120. |
[38] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304,1629-1633.
DOI URL PMID |
[39] | Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36,135-140. |
[40] | Xu ZF (徐振锋), Yin HJ (尹华军), Zhao CZ (赵春章), Cao G (曹刚), Wan ML (万名利), Liu Q (刘庆) (2009). A review of responses of litter decomposition in terrestrial ecosystems to global warming. Chinese Journal of Plant Ecology(植物生态学报), 33,1208-1219. (in Chinese with English abstract) |
[41] | Yang WQ (杨万勤), Feng RF (冯瑞芳), Zhang J (张健), Wang KY (王开运) (2007). Carbon stock and biochemical properties in the organic layer and mineral soil under three subalpine forests in Western China. Acta Ecologica Sinica(生态学报), 27,4157-4165. (in Chinese with English abstract) |
[42] | Yang WQ, Wang KY, Kellomäki S, Gong HD (2005). Litter dynamics of three subalpine forests in Western Sichuan. Pedosphere, 15,653-659. |
[43] | Yang WQ, Wang KY, Kellomäki S, Zhang J (2006). Annual and monthly variations in litter macronutrients of three subalpine forests in western China. Pedosphere, 16,788-798. |
[44] | Yang XD, Chen J (2009). Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology & Biochemistry, 41,910-918. |
[45] | Yang XD (杨效东), Zou XM (邹晓明) (2006). Soil fauna and leaf litter decomposition in tropical rain forest in Xishuangbanna, SW China: effects of mesh size of litterbags. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30,791-801. (in Chinese with English abstract) |
[46] | Yin WY (尹文英), Hu SH (胡圣豪), Shen YF (沈韫芬), Ning YZ (宁应之), Sun XD (孙希达), Wu JH (吴纪华), Zhuge Y (诸葛燕), Zhang YM (张云美), Wang M (王敏), Chen JY (陈建英), Xu CG (徐成纲), Liang YL (梁彦龄), Wang HZ (王洪铸), Yang T (杨潼), Chen DN (陈德牛), Zhang GQ (张国庆), Song DX (宋大祥), Chen J (陈军) (1998). Pictorial Keys to Soil Animals of China(中国土壤动物检索图鉴). Science Press, Beijing. (in Chinese) |
[47] | Zwahlen C, Hilbeck A, Nentwig W (2007). Field decomposi- tion of transgenic Bt maize residue and the impact on non-target soil invertebrates. Plant and Soil, 300,245-257. |
[1] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[2] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[3] | 郭彩虹, 杨万勤, 吴福忠, 徐振锋, 岳楷, 倪祥银, 袁吉, 杨帆, 谭波. 川西亚高山森林林窗对凋落枝早期分解的影响[J]. 植物生态学报, 2018, 42(1): 28-37. |
[4] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[5] | 唐波, 杨欢, 尹春英, 孙誉育, 郑东辉, 刘庆. 夜间增温对亚高山针叶林主要树种无机氮吸收的影响[J]. 植物生态学报, 2016, 40(6): 543-553. |
[6] | 李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 胡义. 亚高山森林林窗对凋落物分解过程中半纤维素动态的影响[J]. 植物生态学报, 2015, 39(3): 229-238. |
[7] | 何洁,杨万勤,倪祥银,李晗,徐李亚,吴福忠. 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响[J]. 植物生态学报, 2014, 38(6): 550-561. |
[8] | 肖群英, 尹春英, 濮晓珍, 乔明锋, 刘庆. 川西亚高山季节性冻土期针叶林主要树种叶片和细根的生态生理特征[J]. 植物生态学报, 2014, 38(4): 343-354. |
[9] | 何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸. 雪被斑块对高山森林两种灌木凋落叶质量损失的影响[J]. 植物生态学报, 2013, 37(4): 306-316. |
[10] | 武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野逸, 朱剑霄. 季节性雪被对高山森林凋落物分解的影响[J]. 植物生态学报, 2013, 37(4): 296-305. |
[11] | 刘瑞龙, 杨万勤, 谭波, 王文君, 倪祥银, 吴福忠. 土壤动物对川西亚高山和高山森林凋落叶第一年不同分解时期N和P元素动态的影响[J]. 植物生态学报, 2013, 37(12): 1080-1090. |
[12] | 赵红梅, 黄刚, 马健, 李彦, 周丽. 荒漠区地表凋落物分解对季节性降水增加的响应[J]. 植物生态学报, 2012, 36(6): 471-482. |
[13] | 刘洋, 张健, 闫帮国, 黄旭, 徐振锋, 吴福忠. 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态[J]. 植物生态学报, 2012, 36(5): 382-392. |
[14] | 杨效东, 邹晓明. 西双版纳热带季节雨林凋落叶分解与土壤动物群落:两种网孔分解袋的分解实验比较[J]. 植物生态学报, 2006, 30(5): 791-801. |
[15] | 田兴军, 立石贵浩. 亚高山针叶林土壤动物和土壤微生物对针叶分解的作用(英文)[J]. 植物生态学报, 2002, 26(3): 257-263. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19