植物生态学报 ›› 2015, Vol. 39 ›› Issue (3): 229-238.DOI: 10.17521/cjpe.2015.0022
所属专题: 凋落物
李晗, 吴福忠, 杨万勤*(), 徐李亚, 倪祥银, 何洁, 胡义
收稿日期:
2014-11-14
接受日期:
2015-01-28
出版日期:
2015-03-01
发布日期:
2015-03-17
通讯作者:
杨万勤
作者简介:
# 共同第一作者
基金资助:
LI Han, WU Fu-Zhong, YANG Wan-Qin*(), XU Li-Ya, NI Xiang-Yin, HE Jie, HU Yi
Received:
2014-11-14
Accepted:
2015-01-28
Online:
2015-03-01
Published:
2015-03-17
Contact:
Wan-Qin YANG
About author:
# Co-first authors
摘要:
亚高山森林林窗可能通过改变冬季雪被格局和生长季水热环境影响林窗内凋落物中半纤维素的分解动态, 但目前对此还缺乏研究。采用凋落物分解袋法, 以亚高山森林5种典型物种岷江冷杉(Abies faxoniana)、红桦(Betula albosinensis)、四川红杉(Larix mastersiana)、方枝柏(Sabina saltuaria)和高山杜鹃(Rhododendron lapponicum)凋落物为研究对象, 研究雪被形成期、雪被覆盖期、雪被融化期和生长季节从林窗中心、林冠林窗、扩展林窗到郁闭林下物种凋落物的半纤维素变化特征。经历一年分解后, 5种凋落物的半纤维素均呈现净累积现象。针、阔叶凋落物半纤维素分别在雪被覆盖期和融化期表现出相对较高的损失率。在雪被覆盖期和融化期, 凋落物半纤维素在林窗中心和林冠林窗具有相对较高的损失率; 而在生长季节, 林窗中心呈现相对较低的凋落物半纤维素累积率。统计分析结果表明凋落物分解过程中半纤维素损失率与环境因子和凋落物质量因子均显著相关。这些结果表明亚高山森林林窗对凋落物分解过程中半纤维素损失率具有显著影响, 分别促进了半纤维素在冬季的损失以及抑制了半纤维素在生长季节的累积, 意味着亚高山森林林窗的形成有利于凋落物半纤维素的降解。
李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 胡义. 亚高山森林林窗对凋落物分解过程中半纤维素动态的影响. 植物生态学报, 2015, 39(3): 229-238. DOI: 10.17521/cjpe.2015.0022
LI Han,WU Fu-Zhong,YANG Wan-Qin,XU Li-Ya,NI Xiang-Yin,HE Jie,HU Yi. Effects of forest gap on hemicellulose dynamics during foliar litter decomposition in an subalpine forest. Chinese Journal of Plant Ecology, 2015, 39(3): 229-238. DOI: 10.17521/cjpe.2015.0022
土层 Soil layer | pH | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) |
---|---|---|---|---|
有机层 Organic layer | 6.2 ± 0.3 | 160.20 ± 15.70 | 58.02 ± 0.88 | 1.70 ± 0.01 |
表1 研究样地土壤有机层基本化学性质(平均值±标准误差)
Table 1 Basic chemical properties of the soil organic layer at study sites (mean ± SE)
土层 Soil layer | pH | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) |
---|---|---|---|---|
有机层 Organic layer | 6.2 ± 0.3 | 160.20 ± 15.70 | 58.02 ± 0.88 | 1.70 ± 0.01 |
物种 Species | 半纤维素Hemicellulose (%) | C (%) | N (%) | P (%) | 木质素Lignin (%) | 纤维素Cellulose (%) | C:N | C:P | N:P | Lignin:N |
---|---|---|---|---|---|---|---|---|---|---|
方枝柏 Sabina saltuaria | 8.06 ± 0.09b | 51.64 ± 1.77bc | 0.88 ± 0.01b | 0.12 ± 0.01cd | 14.07 ± 0.74b | 12.22 ± 0.38a | 58.86 ± 2.21b | 416.02 ± 14.04a | 7.08 ± 0.41ab | 16.04 ± 1.01a |
岷江冷杉 Abies faxoniana | 12.86 ± 0.11c | 50.56 ± 2.96b | 0.88 ± 0.01b | 0.11 ± 0.01bc | 15.85 ± 0.36b | 12.19 ± 0.20b | 57.77 ± 3.53b | 443.51 ± 36.69ab | 7.68 ± 0.72b | 18.11 ± 0.42b |
四川红杉 Larix mastersiana | 5.50 ± 0.20a | 54.35 ± 0.63c | 0.86 ± 0.04b | 0.13 ± 0.01d | 27.21 ± 2.21d | 16.45 ± 0.44d | 63.32 ± 3.49b | 407.08 ± 2.42a | 6.44 ± 0.38a | 25.95 ± 1.08c |
红桦 Betula albosinensis | 12.74 ± 0.10c | 49.69 ± 1.45b | 1.33 ± 0.02d | 0.09 ± 0.01a | 36.68 ± 0.62b | 12.47 ± 0.38e | 37.24 ± 1.35a | 544.94 ± 31.72c | 14.63 ± 0.36d | 25.99 ± 0.37c |
高山杜鹃 Rhododendron lapponicum | 8.07 ± 0.31b | 50.29 ± 0.16b | 0.67 ± 0.02a | 0.11 ± 0.01b | 20.81 ± 0.18c | 14.07 ± 0.41c | 75.54 ± 4.47c | 471.14 ± 42.04b | 6.25 ± 0.65a | 31.24 ± 0.69d |
表2 5种亚高山森林凋落物物种名称及其初始质量(平均值±标准误差, n = 3)
Table 2 Species identity and initial quality of the five litter types of the subalpine forest (mean ± SE, n = 3)
物种 Species | 半纤维素Hemicellulose (%) | C (%) | N (%) | P (%) | 木质素Lignin (%) | 纤维素Cellulose (%) | C:N | C:P | N:P | Lignin:N |
---|---|---|---|---|---|---|---|---|---|---|
方枝柏 Sabina saltuaria | 8.06 ± 0.09b | 51.64 ± 1.77bc | 0.88 ± 0.01b | 0.12 ± 0.01cd | 14.07 ± 0.74b | 12.22 ± 0.38a | 58.86 ± 2.21b | 416.02 ± 14.04a | 7.08 ± 0.41ab | 16.04 ± 1.01a |
岷江冷杉 Abies faxoniana | 12.86 ± 0.11c | 50.56 ± 2.96b | 0.88 ± 0.01b | 0.11 ± 0.01bc | 15.85 ± 0.36b | 12.19 ± 0.20b | 57.77 ± 3.53b | 443.51 ± 36.69ab | 7.68 ± 0.72b | 18.11 ± 0.42b |
四川红杉 Larix mastersiana | 5.50 ± 0.20a | 54.35 ± 0.63c | 0.86 ± 0.04b | 0.13 ± 0.01d | 27.21 ± 2.21d | 16.45 ± 0.44d | 63.32 ± 3.49b | 407.08 ± 2.42a | 6.44 ± 0.38a | 25.95 ± 1.08c |
红桦 Betula albosinensis | 12.74 ± 0.10c | 49.69 ± 1.45b | 1.33 ± 0.02d | 0.09 ± 0.01a | 36.68 ± 0.62b | 12.47 ± 0.38e | 37.24 ± 1.35a | 544.94 ± 31.72c | 14.63 ± 0.36d | 25.99 ± 0.37c |
高山杜鹃 Rhododendron lapponicum | 8.07 ± 0.31b | 50.29 ± 0.16b | 0.67 ± 0.02a | 0.11 ± 0.01b | 20.81 ± 0.18c | 14.07 ± 0.41c | 75.54 ± 4.47c | 471.14 ± 42.04b | 6.25 ± 0.65a | 31.24 ± 0.69d |
林窗位置 Gap positions | 土壤表层温度特征 Soil surface temperature characteristics | 雪被形成期 Snow formation stage | 雪被覆盖期 Snow cover stage | 雪被融化期 Snow melt stage | 冬季 Winter | 生长季节 Growing season | 全年 The whole year |
---|---|---|---|---|---|---|---|
林窗中心 Gap center | 日均温 DMT (℃) | -3.97 | -3.97 | 2.14 | -1.97 | 9.62 | 4.11 |
正积温 PAT (℃) | 378.47 | 1 004.85 | 1 604.30 | 2 987.62 | 20 713.40 | 23 701.02 | |
负积温 NAT (℃) | -2 296.28 | -4 433.95 | -482.58 | -7 212.81 | -217.40 | -7 430.21 | |
冻融循环 FSFC (times) | 43 | 75 | 54 | 172 | - | 172 | |
林冠林窗 Canopy gap | 日均温 DMT (℃) | -2.90 | -3.25 | 1.13 | -1.77 | 7.81 | 3.43 |
正积温 PAT (℃) | 408.92 | 1 066.50 | 922.70 | 2 398.12 | 17 454.67 | 19 853.79 | |
负积温 NAT (℃) | -1 799.92 | -3 875.67 | -287.33 | -5 962.92 | -98.00 | -6 061.92 | |
冻融循环 FSFC (times) | 56 | 100 | 29 | 185 | - | 185 | |
扩展林窗 Expanded gap | 日均温 DMT (℃) | -3.46 | -4.15 | 1.82 | -2.22 | 7.87 | 3.26 |
正积温 PAT (℃) | 356.75 | 1039.04 | 1 418.50 | 2 814.29 | 17 971.93 | 20 786.22 | |
负积温 NAT (℃) | -2 017.08 | -4 624.67 | -391.25 | -7 033.00 | -140.25 | -7 173.25 | |
冻融循环 FSFC (times) | 50 | 92 | 49 | 191 | - | 191 | |
郁闭林下 Closed canopy | 日均温 DMT (℃) | -3.54 | -3.67 | 1.24 | -2.15 | 7.79 | 3.29 |
正积温 PAT (℃) | 448.50 | 1328.92 | 1 005.50 | 2 782.92 | 17 598.58 | 20 382.50 | |
负积温 NAT (℃) | -2 149.17 | -4 501.00 | -305.08 | -6 955.25 | -61.89 | -7 017.14 | |
冻融循环 FSFC (times) | 59 | 105 | 38 | 201 | - | 201 |
表3 亚高山森林凋落物全年分解不同关键时期林窗不同位置土壤表层温度特征值
Table 3 Characteristics of soil surface temperature at different critical stages of litter decomposition and different positions of forest gap in an subalpine forest
林窗位置 Gap positions | 土壤表层温度特征 Soil surface temperature characteristics | 雪被形成期 Snow formation stage | 雪被覆盖期 Snow cover stage | 雪被融化期 Snow melt stage | 冬季 Winter | 生长季节 Growing season | 全年 The whole year |
---|---|---|---|---|---|---|---|
林窗中心 Gap center | 日均温 DMT (℃) | -3.97 | -3.97 | 2.14 | -1.97 | 9.62 | 4.11 |
正积温 PAT (℃) | 378.47 | 1 004.85 | 1 604.30 | 2 987.62 | 20 713.40 | 23 701.02 | |
负积温 NAT (℃) | -2 296.28 | -4 433.95 | -482.58 | -7 212.81 | -217.40 | -7 430.21 | |
冻融循环 FSFC (times) | 43 | 75 | 54 | 172 | - | 172 | |
林冠林窗 Canopy gap | 日均温 DMT (℃) | -2.90 | -3.25 | 1.13 | -1.77 | 7.81 | 3.43 |
正积温 PAT (℃) | 408.92 | 1 066.50 | 922.70 | 2 398.12 | 17 454.67 | 19 853.79 | |
负积温 NAT (℃) | -1 799.92 | -3 875.67 | -287.33 | -5 962.92 | -98.00 | -6 061.92 | |
冻融循环 FSFC (times) | 56 | 100 | 29 | 185 | - | 185 | |
扩展林窗 Expanded gap | 日均温 DMT (℃) | -3.46 | -4.15 | 1.82 | -2.22 | 7.87 | 3.26 |
正积温 PAT (℃) | 356.75 | 1039.04 | 1 418.50 | 2 814.29 | 17 971.93 | 20 786.22 | |
负积温 NAT (℃) | -2 017.08 | -4 624.67 | -391.25 | -7 033.00 | -140.25 | -7 173.25 | |
冻融循环 FSFC (times) | 50 | 92 | 49 | 191 | - | 191 | |
郁闭林下 Closed canopy | 日均温 DMT (℃) | -3.54 | -3.67 | 1.24 | -2.15 | 7.79 | 3.29 |
正积温 PAT (℃) | 448.50 | 1328.92 | 1 005.50 | 2 782.92 | 17 598.58 | 20 382.50 | |
负积温 NAT (℃) | -2 149.17 | -4 501.00 | -305.08 | -6 955.25 | -61.89 | -7 017.14 | |
冻融循环 FSFC (times) | 59 | 105 | 38 | 201 | - | 201 |
图1 亚高山森林凋落物全年分解不同关键时期林窗不同位置雪被覆盖厚度(n = 3)。CC, 郁闭林下; CG, 林冠林窗; EG, 扩展林窗; GC, 林窗中心。
Fig. 1 Snow depth in four gap positions during the one-year litter decomposition (n = 3). CC, closed canopy; CG, canopy gap; EG, expanded gap; GC, gap center.
图2 亚高山森林凋落物全年分解不同采样时期不同林窗位置下5种凋落物半纤维素含量(平均值±标准误差, n = 3)。CC, 郁闭林下; CG, 林冠林窗; EG, 扩展林窗; GC, 林窗中心。不同小写字母表示相同采样时期不同林窗位置间差异显著(p < 0.05)。
Fig. 2 Hemicellulose content of the five litter types in different gap positions at different critical sampling stages over one-year decomposition in an subalpine forest (mean ± SE, n = 3). CC, closed canopy; CG, canopy gap; EG, expanded gap; GC, gap center. Different lowercase letters indicate significant differences among gap positions at the same sampling stages (p < 0.05).
变异来源 Variation source | df | F | p |
---|---|---|---|
T | 3 | 163.580 | 0.000** |
S | 4 | 590.699 | 0.000** |
G | 3 | 13.908 | 0.000** |
T × S | 12 | 74.056 | 0.000** |
T × G | 9 | 32.429 | 0.000** |
S × G | 12 | 19.384 | 0.000** |
T × S × G | 36 | 19.846 | 0.000** |
表4 亚高山森林凋落物全年分解过程中半纤维素损失率与采样时期, 林窗位置和物种的重复测量方差分析
Table 4 Results of repeated measures ANOVA on effects of sampling stage, gap position and specie on litter hemicellulose losses over one-year litter decomposition in an subalpine forest
变异来源 Variation source | df | F | p |
---|---|---|---|
T | 3 | 163.580 | 0.000** |
S | 4 | 590.699 | 0.000** |
G | 3 | 13.908 | 0.000** |
T × S | 12 | 74.056 | 0.000** |
T × G | 9 | 32.429 | 0.000** |
S × G | 12 | 19.384 | 0.000** |
T × S × G | 36 | 19.846 | 0.000** |
图3 亚高山森林凋落物全年分解不同关键时期不同林窗位置下5种凋落物质量残留量(平均值±标准误差, n = 3)。CC, 郁闭林下; CG, 林冠林窗; EG, 扩展林窗; GC, 林窗中心。不同小写字母表示相同关键时期不同林窗位置间差异显著(p < 0.05)。
Fig. 3 Litter mass remaining of the five litter types in different gap positions at different critical sampling stages over one-year decomposition in an subalpine forest (mean ± SE, n = 3). CC, closed canopy; CG, canopy gap; EG, expanded gap; GC, gap center. Different lowercase letters indicate significant differences among gap positions at the same critical stages (p < 0.05).
图4 亚高山森林凋落物全年分解不同关键时期不同林窗位置下5种凋落物半纤维素损失率(平均值±标准误差, n = 3)。CC, 郁闭林下; CG, 林冠林窗; EG, 扩展林窗; GC, 林窗中心; GS, 生长季节; SCS, 雪被覆盖期; SFS, 雪被形成期; SMS, 雪被融化期; Winter, 冬季; Year, 分解第一年。不同小写字母表示相同关键时期不同林窗位置间差异显著(p < 0.05)。
Fig. 4 Hemicellulose losses of the five litter types in different gap positions at different critical sampling stages over one-year decomposition in an subalpine forest (mean ± SE, n = 3). CC, closed canopy; CG, canopy gap; EG, expanded gap; GC, gap center; GS, growing season; SCS, snow cover stage; SFS, snow formation stage; SMS, snowmelt stage; Winter, the whole winter; Year, the first year of decomposition. Different lowercase letters indicate significant differences among gap positions at the same critical stages (p < 0.05).
影响因子 Factor | 相关性系数 Correlation coefficient | |
---|---|---|
环境因子 Environmental factors | 日均温 Daily mean temperature | -0.246** |
正积温 Positive accumulated temperature | -0.707 | |
负积温 Negative accumulated temperature | -0.147* | |
冻融循环 Frequency of freeze-thaw cycle | 0.211** | |
凋落物质量因子 Litter quality factors | 半纤维素 Hemicellulose | 0.276** |
C | -0.219** | |
N | 0.153* | |
P | -0.241** | |
木质素 Lignin | -0.146* | |
纤维素 Cellulose | 0.068 | |
C:N | -0.165* | |
C:P | 0.202** | |
N:P | 0.197** | |
Lignin:N | -0.074 |
表5 亚高山森林凋落物半纤维素损失率与环境因子和凋落物化学属性的相关性分析
Table 5 Correlations of the litter hemicellulose losses with environmental factors and litter quality factors over one-year litter decomposition in an subalpine forest
影响因子 Factor | 相关性系数 Correlation coefficient | |
---|---|---|
环境因子 Environmental factors | 日均温 Daily mean temperature | -0.246** |
正积温 Positive accumulated temperature | -0.707 | |
负积温 Negative accumulated temperature | -0.147* | |
冻融循环 Frequency of freeze-thaw cycle | 0.211** | |
凋落物质量因子 Litter quality factors | 半纤维素 Hemicellulose | 0.276** |
C | -0.219** | |
N | 0.153* | |
P | -0.241** | |
木质素 Lignin | -0.146* | |
纤维素 Cellulose | 0.068 | |
C:N | -0.165* | |
C:P | 0.202** | |
N:P | 0.197** | |
Lignin:N | -0.074 |
1 | Arunachalam A, Arunachalam K (2000). Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India.Plant and Soil, 223, 187-195. |
2 | Berg B, Hannus K, Popoff T, Theander O (1982). Changes in organic chemical components of needle litter during decomposition. Long-term decomposition in a Scots pine forest I.Canadian Journal of Botany, 60, 1310-1319. |
3 | Berg B, McClaugherty C (2014). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 3rd edn. Springer-Verlag, Berlin. |
4 | Clein JS, Schimel JP (1995). Microbial activity of tundra and taiga soils at sub-zero temperatures.Soil Biology & Biochemistry, 27, 1231-1234. |
5 | Dai JY, Qin SP, Zhou JM (2004). Dynamic changes of DOM fractions during the decaying process of Metasequoia glyptostrobodies litter.Ecology and Environment, 13, 207-210. (in Chinese with English abstract) |
[代静玉, 秦淑平, 周江敏 (2004). 水杉凋落物分解过程中溶解性有机质的分组组成变化. 生态环境, 13, 207-210.] | |
6 | Deng RJ, Yang WQ, Wu FZ (2009). Effects of seasonal freeze-thaw on the enzyme activities in Abies faxoniana and Betula platyphylla litters.Chinese Journal of Applied Ecology, 20, 1026-1031. (in Chinese with English abstract) |
[邓仁菊, 杨万勤, 吴福忠 (2009). 季节性冻融对岷江冷杉和白桦凋落物酶活性的影响. 应用生态学报, 20, 1026-1031.] | |
7 | Duguid MC, Frey BR, Ellum DS, Kelty M, Ashton MS (2013). The influence of ground disturbance and gap position on understory plant diversity in upland forests of southern New England.Forest Ecology and Management, 303, 148-159. |
8 | He J, Jiang XM, Yang WQ, Ni XY, Xu LY, Li H, Wu FZ (2014a). Effects of snow patches on the release of N and P during foliar litter decomposition in an alpine forest of western Sichuan, China.Chinese Journal of Applied Ecology, 25, 2158-2166. (in Chinese with English abstract) |
[何洁, 蒋先敏, 杨万勤, 倪祥银, 徐李亚, 李晗, 吴福忠 (2014a). 雪被斑块对川西高山森林凋落叶N和P释放的影响. 应用生态学报, 25, 2158-2166.] | |
9 | He J, Yang WQ, Ni XY, Li H, Xu LY, Wu FZ (2014b). Effects of snow patch on the dynamics of potassium and sodium during litter decomposition in winter in a subalpine forest of western Sichuan.Chinese Journal of Plant Ecology, 38, 550-561. (in Chinese with English abstract) |
[何洁, 杨万勤, 倪祥银, 李晗, 徐李亚, 吴福忠 (2014b). 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响. 植物生态学报, 38, 550-561.] | |
10 | He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest.Chinese Journal of Plant Ecology, 37, 306-316. |
(in Chinese with English abstract) [何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.] | |
11 | Konestabo HS, Michelsen A, Holmstrup M (2007). Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem.Applied Soil Ecology, 36, 136-146. |
12 | Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Chang CH (2015). Effects of the snow cover on acid-soluble extractive and acid-insoluble residue during foliar litter decomposition in an alpine forest.Acta Ecologica Sinica, 35, 1-15. |
(in Chinese with English abstract) [李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 常晨晖 (2015). 不同厚度雪被对高山森林6种凋落物分解过程中酸溶性和酸不溶性组分的影响. 生态学报, 35, 1-15. | |
13 | Liu L, Wu FZ, Yang WQ, Wang A, Tan B, Yu S (2010). Soil bacterial diversity in the subalpine/alpine forests of western Sichuan at the early stage of freeze-thaw season.Acta Ecologica Sinica, 30, 5687-5694. |
(in Chinese with English abstract) [刘利, 吴福忠, 杨万勤, 王奥, 谭波, 余胜 (2010). 季节性冻结初期川西亚高山/高山森林土壤细菌多样性. 生态学报, 30, 5687-5694.] | |
14 | Liu RL, Yang WQ, Wu FZ, Tan B, Wang WJ (2014). Soil fauna community structure and diversity during foliar litter decomposition in the subalpine/alpine forests of western Sichuan.Chinese Journal of Applied and Environmental Biology, 20, 499-507. |
(in Chinese with English abstract) [刘瑞龙, 杨万勤, 吴福忠, 谭波, 王文君 (2014). 川西亚高山/高山森林凋落物分解过程中土壤动物群落结构及其多样性动态. 应用与环境生物学报, 20, 499-507.] | |
15 | Mallik AU, Kreutzweiser DP, Spalvieri CM (2014). Forest regeneration in gaps seven years after partial harvesting in riparian buffers of boreal mixedwood streams.Forest Ecology and Management, 312, 117-128. |
16 | Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics.Ecology, 63, 621-626. |
17 | Ni XY, Yang WQ, Li H, Xu LY, He J, Tan B, Wu FZ (2014). The responses of early foliar litter humification to reduced snow cover during winter in an alpine forest.Canadian Journal of Soil Science, 94, 453-461. |
18 | Ni XY, Yang WQ, Li H, Xu LY, He J, Wu FZ (2014). Effects of snowpack on early foliar litter humification during winter in a subalpine forest of western Sichuan.Chinese Journal of Plant Ecology, 38, 540-549. |
(in Chinese with English abstract) [倪祥银, 杨万勤, 李晗, 徐李亚, 何洁, 吴福忠 (2014). 雪被斑块对川西亚高山森林6种凋落叶冬季腐殖化的影响. 植物生态学报, 38, 540-549.] | |
19 | Ritter E (2005). Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest.Soil Biology & Biochemistry, 37, 1237-1247. |
20 | Saccone P, Morin S, Baptist F, Bonneville JM, Colace MP, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clément JC (2013). The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows.Plant and Soil, 363, 215-229. |
21 | Schädel C, Blöchl A, Richter A, Hoch G (2010). Quantification and monosaccharide composition of hemicelluloses from different plant functional types.Plant Physiology & Biochemistry, 48, 1-8. |
22 | van Soest PJ, Robertson JB, Lewis BA (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.Journal of Dairy Science, 74, 3583-3592. |
23 | Varhola A, Coops NC, Bater CW, Teti P, Boon S, Weiler M (2010). The influence of ground- and lidar-derived forest structure metrics on snow accumulation and ablation in disturbed forests.Canadian Journal of Forest Research, 40, 812-821. |
24 | Whitmore TC (1989). Canopy gaps and the two major groups of forest trees.Ecology, 70, 536-538. |
25 | Wu Q, Wu F, Yang, W, Zhao Y, He W, Tan B (2014). Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of eastern Tibet Plateau.PLoS ONE, 9, e97112. |
26 | Wu QQ, Wu FZ, Yang WQ, Xu ZF, He W, He M, Zhan YY, Zhu JX (2013). Effect of seasonal snow cover on litter decomposition in alpine forest.Chinese Journal of Plant Ecology, 37, 296-305. |
(in Chinese with English abstract) [武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野逸, 朱剑霄 (2013). 季节性雪被对高山森林凋落物分解的影响. 植物生态学报, 37, 296-305.] | |
27 | Xu LY, Yang WQ, Li H, Ni XY, He J, Wu FZ (2014). Effects of forest gap on soluble nitrogen and soluble phosphorus of foliar litter decomposition in an alpine forest.Journal of Soil and Water Conservation, 28, 214-221. |
(in Chinese with English abstract) [徐李亚, 杨万勤, 李晗, 倪祥银, 何洁, 吴福忠 (2014). 高山森林林窗对凋落物分解过程中水溶性氮和磷的影响. 水土保持学报, 28, 214-221.] | |
28 | Yu ZP, Peng H, Lin D, Ruan RS, Hu ZR, Wang N, Liu YH, Zhang JS (2011). The structure characteristic of hemicellulose: A review.Polymer Bulletin, (6), 48-54. |
(in Chinese with English abstract) [余紫苹, 彭红, 林妲, 阮榕生, 王娜, 胡铮, 刘玉环, 张锦胜 (2011). 植物半纤维素结构研究进展. 高分子通报, (6), 48-54.] | |
29 | Zhu JX, He XH, Wu FZ, Yang WQ, Tan B (2012). Decomposition of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China.Scandinavian Journal of Forest Research, 27, 586-596. |
[1] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[2] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[3] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[4] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[5] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[6] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[7] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[8] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[9] | 江蓝, 魏晨思, 何中声, 朱静, 邢聪, 王雪琳, 刘金福, 沈彩霞, 施友文. 格氏栲天然林林窗植物群落功能性状的变异[J]. 植物生态学报, 2022, 46(3): 267-279. |
[10] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[11] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[12] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[13] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[14] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[15] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19