植物生态学报 ›› 2021, Vol. 45 ›› Issue (6): 606-616.DOI: 10.17521/cjpe.2020.0268
朱蔚娜1,3, 张国龙1,3, 张璞进2, 张迁迁1,3, 任瑾涛1,3, 徐步云1,3, 清华1,3,*()
收稿日期:
2020-08-06
接受日期:
2020-12-23
出版日期:
2021-06-20
发布日期:
2021-09-09
通讯作者:
清华
作者简介:
*(qinghua_515@126.com)基金资助:
ZHU Wei-Na1,3, ZHANG Guo-Long1,3, ZHANG Pu-Jin2, ZHANG Qian-Qian1,3, REN Jin-Tao1,3, XU Bu-Yun1,3, QING Hua1,3,*()
Received:
2020-08-06
Accepted:
2020-12-23
Online:
2021-06-20
Published:
2021-09-09
Contact:
QING Hua
Supported by:
摘要:
开展凋落物分解特征与植物功能性状间的关系研究对于认识生态系统功能的维持机制至关重要。为了阐明不同物种叶凋落物和根系分解的主要影响因素, 该研究以大针茅(Stipa grandis)典型草原的大针茅、糙隐子草(Cleistogenes squarrosa)、知母(Anemarrhena asphodeloides)、羊草(Leymus chinensis)、银灰旋花(Convolvulus ammannii)和黄囊薹草(Carex korshinskyi) 6种植物的叶凋落物和根系为研究对象, 采用凋落物袋法通过501天的野外分解实验对叶凋落物和根系的分解速率常数进行研究, 并测定6种植物的叶片干物质含量、根比表面积、根组织密度以及叶凋落物和根系的碳(C)、氮(N)含量、纤维组分含量等功能性状, 探讨了6种植物叶凋落物和根系的分解特征与其功能性状之间的关系。结果表明, 6种植物叶片和根系性状的种间差异显著, 大部分性状的最大值和最小值的比值在1到2之间, 而个别性状如根系的C:N和根比表面积相差近4倍。叶凋落物和根系在分解过程中质量剩余率与分解速率常数整体变化趋势都表现出前期分解迅速, 中期相对变缓, 后期分解最慢的规律; 并且糙隐子草的叶凋落物和根系分解最慢, 而银灰旋花的叶凋落物分解最快, 知母根系分解最快。通过相关分析和逐步回归分析发现, 在不同分解时期, 叶凋落物和根系的分解过程受到不同性状的影响。结构性碳水化合物含量是叶凋落物前期和后期分解以及根系前期分解的主要影响因素, 非结构性碳水化合物含量则是根系中期和后期分解的主要影响因素; 另外, 叶凋落物在分解中期的分解速率主要受叶片干物质含量的影响, 根系在分解中期和后期的分解速率还分别受到根系C:N和N含量的显著影响。研究结果对于预测大针茅草原的碳和养分循环过程具有重要指导意义。
朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系. 植物生态学报, 2021, 45(6): 606-616. DOI: 10.17521/cjpe.2020.0268
ZHU Wei-Na, ZHANG Guo-Long, ZHANG Pu-Jin, ZHANG Qian-Qian, REN Jin-Tao, XU Bu-Yun, QING Hua. Decomposition characteristics of leaf litters and roots of six main plant species and their relationships with functional traits in Stipa grandis steppe. Chinese Journal of Plant Ecology, 2021, 45(6): 606-616. DOI: 10.17521/cjpe.2020.0268
表1 内蒙古大针茅草原6种植物叶凋落物的功能性状及叶片干物质含量(平均值2标准误)
Table 1 Functional traits and dry matter content of leaves of leaf ltter of six plant species in Stipa grandis steppe in Nei Mongol (mean2SE)
图1 内蒙古大针茅草原6种植物叶凋落物和根分解过程中的质量剩余率变化(平均值±标准误, n = 3)。A, 叶凋落物分解。B, 根系分解。由于银灰旋花叶片较小且易碎, 第76天处理时出现较大异常。
Fig. 1 Variation of mass residual rate during the decomposition process of leaf litters and roots of six plant species in Stipa grandis steppe in Nei Mongol (mean ± SE, n = 3). A, Decomposition of leaf litters. B, Decomposition of roots. Because Convolvulus ammannii leaves were small and fragile, and a big abnormality appeared at 76 daysʼ treatment.
表3 内蒙古大针茅草 原6种植物叶凋落物与根在不同分解时期的拟合分解速率常数(平均值±标准误)
Table 3 Functional traits of roots of six plant species in Stipa grandis steppe in Nei Mongol (mean±SE)
图2 内蒙古大针茅草原6种植物叶凋落物功能性状与分解速率常数(k)的关系。与4个时期k都无相关性的功能性状未画出(p > 0.05)。
Fig. 2 Relationship between functional traits of leaf litter and decomposition rate constant (k) of six plant species in Stipa grandis steppe in Nei Mongol. Functional traits that were not correlated with k for any of the four periods were not plotted (p > 0.05).
图3 内蒙古大针茅草原6种植物根凋落物功能性状与分解速率常数(k)的关系。与4个时期k都无相关性的功能性状未画出(p > 0.05)。
Fig. 3 Relationship between functional traits of litters of plant roots and decomposition rate constant (k) of six plant species in Stipa grandis steppe in Nei Mongol. Functional traits that were not correlated with k of the four periods were not plotted (p > 0.05).
分解时间段 Decomposition period (d) | 凋落物类型 Litter type | 模型 Model | r | 调整后的R2 Adjusted R2 | F | 显著性 Significance | 赤池信息 准则值 AICc |
---|---|---|---|---|---|---|---|
0-104 | 叶 Leaf | kL = 4.336 - 0.116X6 | 0.907 | 0.812 | 74.639 | <0.001 | 1.213 0 |
kL = 5.448 - 0.140X6 - 0.057X7 | 0.945 | 0.878 | 62.069 | <0.001 | -4.300 6 | ||
kL = 4.968 - 0.149X6 - 0.055X7 + 0.19X5 | 0.962 | 0.910 | 58.202 | <0.001 | -7.094 9 | ||
根 Root | kR = 2.411 - 0.055X6 | 0.826 | 0.663 | 34.410 | <0.001 | 4.521 8 | |
kR = 3.118 - 0.06X6 - 0.041X7 | 0.946 | 0.881 | 64.217 | <0.001 | 6.992 0 | ||
kR = 3.937 - 0.056X6 - 0.046X7 - 0.019X1 | 0.976 | 0.942 | 92.731 | <0.001 | -22.226 0 | ||
105-223 | 叶 Leaf | kL = 1.131 - 0.020X9 | 0.750 | 0.536 | 20.607 | <0.001 | -11.592 8 |
根 Root | kR = 0.131 + 0.014X4 | 0.767 | 0.563 | 22.863 | <0.001 | -19.749 6 | |
kR = -0.069 + 0.012X4 + 0.006X3 | 0.905 | 0.795 | 34.016 | <0.001 | -31.214 4 | ||
224-501 | 叶 Leaf | kL = 0.15 + 0.027X7 | 0.695 | 0.451 | 14.985 | 0.001 | -34.327 3 |
kL = -0.272 + 0.03X7 + 0.008X6 | 0.777 | 0.551 | 11.440 | 0.001 | -31.549 6 | ||
根 Root | kR = 0.071 + 0.04X4 | 0.679 | 0.427 | 13.685 | 0.002 | -58.761 2 | |
kR = 0.120 + 0.004X4 - 0.047X2 | 0.846 | 0.678 | 18.867 | <0.001 | -23.870 1 | ||
kR = 0.406 + 0.001X4 - 0.106X2 - 0.001X10 | 0.899 | 0.768 | 19.751 | <0.001 | -70.138 3 | ||
0-501 | 叶 Leaf | kL = -1.059 - 0.023X6 | 0.874 | 0.749 | 51.631 | <0.001 | -51.201 6 |
kL = -1.050 - 0.029X6 + 0.005X9 | 0.924 | 0.835 | 43.920 | <0.001 | -56.544 5 | ||
kL = -1.407 - 0.044X6 + 0.01X9 - 0.019X7 | 0.960 | 0.904 | 54.266 | <0.001 | -63.616 2 | ||
根 Root | kR = 0.119 + 0.012X4 | 0.944 | 0.885 | 131.926 | <0.001 | -58.386 3 | |
kR = 0.212 + 0.012X4 - 0.137X11 | 0.960 | 0.911 | 88.248 | <0.001 | -60.832 1 |
表4 内蒙古大针茅草原6种植物叶凋落物和根系多元逐步回归模型系数及显著性
Table 4 Multiple stepwise regression model coefficients and significance of leaf and root litters of six plant species in Stipa grandis steppe in Nei Mongol
分解时间段 Decomposition period (d) | 凋落物类型 Litter type | 模型 Model | r | 调整后的R2 Adjusted R2 | F | 显著性 Significance | 赤池信息 准则值 AICc |
---|---|---|---|---|---|---|---|
0-104 | 叶 Leaf | kL = 4.336 - 0.116X6 | 0.907 | 0.812 | 74.639 | <0.001 | 1.213 0 |
kL = 5.448 - 0.140X6 - 0.057X7 | 0.945 | 0.878 | 62.069 | <0.001 | -4.300 6 | ||
kL = 4.968 - 0.149X6 - 0.055X7 + 0.19X5 | 0.962 | 0.910 | 58.202 | <0.001 | -7.094 9 | ||
根 Root | kR = 2.411 - 0.055X6 | 0.826 | 0.663 | 34.410 | <0.001 | 4.521 8 | |
kR = 3.118 - 0.06X6 - 0.041X7 | 0.946 | 0.881 | 64.217 | <0.001 | 6.992 0 | ||
kR = 3.937 - 0.056X6 - 0.046X7 - 0.019X1 | 0.976 | 0.942 | 92.731 | <0.001 | -22.226 0 | ||
105-223 | 叶 Leaf | kL = 1.131 - 0.020X9 | 0.750 | 0.536 | 20.607 | <0.001 | -11.592 8 |
根 Root | kR = 0.131 + 0.014X4 | 0.767 | 0.563 | 22.863 | <0.001 | -19.749 6 | |
kR = -0.069 + 0.012X4 + 0.006X3 | 0.905 | 0.795 | 34.016 | <0.001 | -31.214 4 | ||
224-501 | 叶 Leaf | kL = 0.15 + 0.027X7 | 0.695 | 0.451 | 14.985 | 0.001 | -34.327 3 |
kL = -0.272 + 0.03X7 + 0.008X6 | 0.777 | 0.551 | 11.440 | 0.001 | -31.549 6 | ||
根 Root | kR = 0.071 + 0.04X4 | 0.679 | 0.427 | 13.685 | 0.002 | -58.761 2 | |
kR = 0.120 + 0.004X4 - 0.047X2 | 0.846 | 0.678 | 18.867 | <0.001 | -23.870 1 | ||
kR = 0.406 + 0.001X4 - 0.106X2 - 0.001X10 | 0.899 | 0.768 | 19.751 | <0.001 | -70.138 3 | ||
0-501 | 叶 Leaf | kL = -1.059 - 0.023X6 | 0.874 | 0.749 | 51.631 | <0.001 | -51.201 6 |
kL = -1.050 - 0.029X6 + 0.005X9 | 0.924 | 0.835 | 43.920 | <0.001 | -56.544 5 | ||
kL = -1.407 - 0.044X6 + 0.01X9 - 0.019X7 | 0.960 | 0.904 | 54.266 | <0.001 | -63.616 2 | ||
根 Root | kR = 0.119 + 0.012X4 | 0.944 | 0.885 | 131.926 | <0.001 | -58.386 3 | |
kR = 0.212 + 0.012X4 - 0.137X11 | 0.960 | 0.911 | 88.248 | <0.001 | -60.832 1 |
[1] |
Balasubramanian D, Arunachalam K, Das AK, Arunachalam A (2012). Decomposition and nutrient release of Eichhornia crassipes (Mart.) Solms. under different trophic conditions in wetlands of eastern Himalayan foothills. Ecological Engineering, 44, 111-122.
DOI URL |
[2] |
Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699.
DOI URL |
[3] |
Bardgett RD, Shine A (1999). Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology & Biochemistry, 31, 317-321.
DOI URL |
[4] |
Cebrian J (1999). Patterns in the fate of production in plant communities. The American Naturalist, 154, 449-468.
DOI PMID |
[5] |
Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339, 1615-1618.
DOI PMID |
[6] | Cornelissen JHC, Castro-Díez P, Carnelli AL (1998). Variation in relative growth rate among woody species//Lambers H, Poorter H, van Vuuren MMI. Inherent Variation in Plant Growth: Physiological Mechanisms and Ecological Consequences. Backhuys Publishers, Leiden, the Netherlands. 363-392. |
[7] |
Cornelissen JHC, Thompson K (1997). Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytologist, 135, 109-114.
DOI PMID |
[8] |
Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071.
DOI PMID |
[9] |
Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, Team TL (2009). Controls on long-term root and leaf litter decomposition in neotropical forests. Global Change Biology, 15, 1339-1355.
DOI URL |
[10] |
Díaz S, Cabido M (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655.
DOI URL |
[11] |
Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC (2013). Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology, 101, 943-952.
DOI URL |
[12] |
García-Palacios P, Prieto I, Ourcival JM, Hättenschwiler S (2016). Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall. Ecosystems, 19, 490-503.
DOI URL |
[13] |
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372-380.
DOI URL |
[14] |
Huangfu CH, Wei ZS (2018). Nitrogen addition drives convergence of leaf litter decomposition rates between Flaveria bidentis and native plant. Plant Ecology, 219, 1355-1368.
DOI URL |
[15] |
Jia BR(2019). Litter decomposition and its underlying mechanisms. Chinese Journal of Plant Ecology, 43, 648-657.
DOI URL |
[ 贾丙瑞(2019). 凋落物分解及其影响机制. 植物生态学报, 43, 648-657.] | |
[16] |
Jiang L, Kou L, Li SG (2018). Alterations of early-stage decomposition of leaves and absorptive roots by deposition of nitrogen and phosphorus have contrasting mechanisms. Soil Biology & Biochemistry, 127, 213-222.
DOI URL |
[17] | Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006). Blackwell Publishing Ltd Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology, 20, 21-30. |
[18] |
Lan Y, Cui BS, You ZY, Li X, Han Z, Zhang YT, Zhang Y (2012). Litter decomposition of six macrophytes in a eutrophic shallow lake (Baiyangdian Lake, China). Clean—Soil, Air, Water, 40, 1159-1166.
DOI URL |
[19] |
Langley JA, Hungate BA (2003). Mycorrhizal controls on belowground litter quality. Ecology, 84, 2302-2312.
DOI URL |
[20] | Li GH(2010). Effect of organic amendments and chemical fertilizer on soil microbial activity, biomass and community structure. Chinese Agricultural Science Bulletin, 26(14), 204-208. |
[ 李桂花(2010). 不同施肥对土壤微生物活性、群落结构和生物量的影响. 中国农学通报, 26(14), 204-208.] | |
[21] |
Li X, Cui BS, Yang QC, Lan Y, Wang TT, Han Z (2012). Litter quality and interactions of macrophytes tissues decomposition in a eutrophic shallow lake. Procedia Environmental Sciences, 13, 1170-1178.
DOI URL |
[22] |
Li YL, Meng QT, Zhao XY, Cui JY(2008). Relationships of fresh leaf traits and leaf litter decomposition in Kerqin sandy land. Acta Ecologica Sinica, 28, 2486-2494.
DOI URL |
[ 李玉霖, 孟庆涛, 赵学勇, 崔建垣(2008). 科尔沁沙地植物成熟叶片性状与叶凋落物分解的关系. 生态学报, 28, 2486-2494.] | |
[23] |
Liu P, Huang JH, Han XG, Sun OJ (2009). Litter decomposition in semiarid grassland of Inner Mongolia, China. Rangeland Ecology & Management, 62, 305-313.
DOI URL |
[24] |
Liu X, Xiong YM, Liao BW (2017). Relative contributions of leaf litter and fine roots to soil organic matter accumulation in mangrove forests. Plant and Soil, 421, 493-503.
DOI URL |
[25] |
Ma CE, Xiong YM, Li L, Guo DL (2016). Root and leaf decomposition become decoupled over time: implications for below- and above-ground relationships. Functional Ecology, 30, 1239-1246.
DOI URL |
[26] | Meier CL, Bowman WD (2008a). Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences of the United States of America, 105,19780-19785. |
[27] |
Meier CL, Bowman WD (2008b). Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth. Oecologia, 158, 95-107.
DOI URL |
[28] | Meng YY, Zhang LM, Yuan YS, Jia X, Cheng H, Huangfu CH(2021). Effects of soil moisture content and litter quality on decomposition of Carex thunbergii fine roots and leaf litter. Research of Environmental Sciences, 34, 707-714. |
[ 孟盈盈, 张黎明, 远勇帅, 贾璇, 程桦, 皇甫超河(2021). 土壤水分含量和凋落物特性对陌上菅细根和叶片凋落物分解的影响. 环境科学研究, 34, 707-714.] | |
[29] |
OʼLear HA, Seastedt TR (1994). Landscape patterns of litter decomposition in alpine tundra. Oecologia, 99, 95-101.
DOI URL |
[30] |
Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
DOI URL |
[31] |
Petraglia A, Cacciatori C, Chelli S, Fenu G, Calderisi G, Gargano D, Abeli T, Orsenigo S, Carbognani M (2019). Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil, 435, 187-200.
DOI URL |
[32] | Shi Y, Wen ZM, Gong SH(2011). Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River basin, Shaanxi Province, China. Acta Ecologica Sinica, 31, 6805-6814. |
[ 施宇, 温仲明, 龚时慧(2011). 黄土丘陵区植物叶片与细根功能性状关系及其变化. 生态学报, 31, 6805-6814.] | |
[33] |
Silver WL, Miya RK (2001). Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia, 129, 407-419.
DOI URL |
[34] |
Stoler AB, Burke DJ, Relyea RA (2016). Litter chemistry and chemical diversity drive ecosystem processes in forest ponds. Ecology, 97, 1783-1795.
DOI PMID |
[35] |
Sun T, Dong LL, Wang ZW, Lü X, Mao ZJ (2016). Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biology & Biochemistry, 93, 50-59.
DOI URL |
[36] | Sun T, Hobbie SE, Berg B, Zhang H, Wang Q, Wang Z, Hättenschwiler S (2018). Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of America, 115, 10392-10397. |
[37] |
Sun T, Mao ZJ, Han YY (2013). Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species. Plant and Soil, 372, 445-458.
DOI URL |
[38] | van Soest PJ (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of Association of Official Agricultural Chemists, 46, 829-835. |
[39] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[40] |
Wang J, Liu LL, Wang X, Yang S, Zhang BB, Li P, Qiao CL, Deng MF, Liu WX (2017a). High night-time humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semi-arid landscape. Functional Ecology, 31, 1659-1668.
DOI URL |
[41] |
Wang J, Yang S, Zhang BB, Liu WX, Deng MF, Chen SP, Liu LL (2017b). Temporal dynamics of ultraviolet radiation impacts on litter decomposition in a semi-arid ecosystem. Plant and Soil, 419, 71-81.
DOI URL |
[42] |
Wang X, Xu ZW, Lü XT, Wang RZ, Cai JP, Yang S, Li MH, Jiang Y (2017c). Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 418, 241-253.
DOI URL |
[43] |
Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009). Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters, 12, 45-56.
DOI PMID |
[44] | Wirth C, Lichstein JW (2009). The imprint of species turnover on old-growth forest carbon balances—Insights from a trait-based model of forest dynamics//Wirth C, Gleixner G, Heimann M. Old-Growth Forests . Springer, Berlin. 81-113. |
[45] |
Xiong YM, Fan PP, Fu SL, Zeng H, Guo DL (2013). Slow decomposition and limited nitrogen release by lower order roots in eight Chinese temperate and subtropical trees. Plant and Soil, 363, 19-31.
DOI URL |
[46] |
Yang ZM, Hasitamier, Liu XM(2016). Effects of grazing on the composition of soil animals and their decomposition function to Stipa grandis litter in Inner Mongolia typical steppe, China. Chinese Journal of Applied Ecology, 27, 2864-2874.
DOI PMID |
[ 杨志敏, 哈斯塔米尔, 刘新民(2016). 放牧对内蒙古典型草原大针茅凋落物中土壤动物组成及其分解功能的影响. 应用生态学报, 27, 2864-2874.]
PMID |
|
[47] |
Zanne AE, Oberle B, Dunham KM, Milo AM, Walton ML, Young DF (2015). A deteriorating state of affairs: How endogenous and exogenous factors determine plant decay rates. Journal of Ecology, 103, 1421-1431.
DOI URL |
[48] |
Zhao HM, Huang G, Ma J, Li Y, Tang LS (2014). Decomposition of aboveground and root litter for three desert herbs: mass loss and dynamics of mineral nutrients. Biology and Fertility of Soils, 50, 745-753.
DOI URL |
[49] | Zhou SX, Huang CD, Xiang YB, Han BH, Xiao YX, Tang JD(2016). Effects of simulated nitrogen deposition on lignin and cellulose degradation of foliar litter in natural evergreen broad-leaved forest in Rainy Area of Western China. Chinese Journal of Applied Ecology, 27, 1368-1374. |
[ 周世兴, 黄从德, 向元彬, 韩博涵, 肖永翔, 唐剑东(2016). 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落物木质素和纤维素降解的影响. 应用生态学报, 27, 1368-1374.] | |
[50] |
Zhou X, He Z, Ding F, Li L, Stoffella PJ (2018). Biomass decaying and elemental release of aquatic macrophyte detritus in waterways of the Indian River Lagoon basin, South Florida, USA. Science of the Total Environment, 635, 878-891.
DOI URL |
[1] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[6] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[7] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[8] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[9] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[10] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[11] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[12] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[13] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[14] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[15] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19