植物生态学报 ›› 2022, Vol. 46 ›› Issue (2): 176-187.DOI: 10.17521/cjpe.2021.0397
张义1,2, 程杰3, 苏纪帅4, 程积民1,2,5,*()
收稿日期:
2021-11-04
接受日期:
2022-01-18
出版日期:
2022-02-20
发布日期:
2022-01-25
通讯作者:
程积民
作者简介:
(gyzcjm@ms.iswc.ac.cn)基金资助:
ZHANG Yi1,2, CHENG Jie3, SU Ji-Shuai4, CHENG Ji-Min1,2,5,*()
Received:
2021-11-04
Accepted:
2022-01-18
Online:
2022-02-20
Published:
2022-01-25
Contact:
CHENG Ji-Min
Supported by:
摘要:
封育是退化草地的重要恢复措施, 理解长期封育过程中草地群落生产力和植物多样性变化特征及两者间关系, 有助于草地植被的恢复管理与利用。该研究依托宁夏云雾山国家级自然保护区典型草原长期封育演替梯度, 选择持续放牧、封育9年、26年和34年的草地群落作为研究对象, 分析其地上生产力、物种多样性和功能多样性的变化特征及内在联系。结果表明, 封育显著提高典型草原植物群落的地上生产力、凋落物生物量、功能丰富度和功能离散度, 未改变草地群落的物种丰富度、Shannon-Wiener指数和功能均匀度, 但Simpson优势度指数和Pielou均匀度指数在长期封育(34年)后显著下降。此外, 封育对不同植物群落加权平均功能性状的影响存在差异。随机森林模型和方差分解结果显示, 群落加权平均功能性状对封育草地群落地上生产力变异的解释度高达70.70%, 其中植株高度是最主要的解释因子; 功能多样性的解释度为36.86%, 主要由功能丰富度贡献; 而物种多样性的解释度仅为14.72%。由此可见, 植物功能性状和功能多样性对草地群落地上生产力的贡献远高于物种多样性, 建议将其纳入植物群落恢复演替动态研究, 以便全面了解植物多样性与生态系统功能的关系, 为更好地实现生态恢复目标奠定基础。
张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系. 植物生态学报, 2022, 46(2): 176-187. DOI: 10.17521/cjpe.2021.0397
ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession. Chinese Journal of Plant Ecology, 2022, 46(2): 176-187. DOI: 10.17521/cjpe.2021.0397
封育年限 GED (a) | 纬度 Latitude (° N) | 经度 Longitude (° E) | 海拔 Altitude (m) | 地上生产力 ANPP (g·m-2) | 凋落物生物量 Litter biomass (g·m-2) | 丰富度 Richness | Shannon- Wiener 指数 H′ | Pielou均匀度指数 E | Simpson优势度指数 D |
---|---|---|---|---|---|---|---|---|---|
0 | 36.22 | 106.38 | 1 942 | 115.60 ± 13.13c | 30.78 ± 8.02c | 13.33 ± 0.74a | 2.21 ± 0.05ab | 0.86 ± 0.01a | 0.85 ± 0.01a |
9 | 36.22 | 106.39 | 1 928 | 165.14 ± 10.10b | 61.66 ± 7.38bc | 12.64 ± 0.62a | 2.17 ± 0.07ab | 0.86 ± 0.01a | 0.85 ± 0.01a |
26 | 36.20 | 106.41 | 1 885 | 253.38 ± 15.32a | 160.06 ± 34.83b | 14.17 ± 0.67a | 2.30 ± 0.05a | 0.87 ± 0.01a | 0.87 ± 0.01a |
34 | 36.24 | 106.38 | 2 098 | 261.79 ± 19.87a | 346.74 ± 57.52a | 14.42 ± 0.96a | 2.11 ± 0.06b | 0.80 ± 0.01b | 0.81 ± 0.01b |
表1 封育草地群落植物地上生产力与物种多样性(平均值±标准误)
Table 1 Aboveground net primary productivity and species diversity of grassland communities after grazing exclusion (mean ± SE)
封育年限 GED (a) | 纬度 Latitude (° N) | 经度 Longitude (° E) | 海拔 Altitude (m) | 地上生产力 ANPP (g·m-2) | 凋落物生物量 Litter biomass (g·m-2) | 丰富度 Richness | Shannon- Wiener 指数 H′ | Pielou均匀度指数 E | Simpson优势度指数 D |
---|---|---|---|---|---|---|---|---|---|
0 | 36.22 | 106.38 | 1 942 | 115.60 ± 13.13c | 30.78 ± 8.02c | 13.33 ± 0.74a | 2.21 ± 0.05ab | 0.86 ± 0.01a | 0.85 ± 0.01a |
9 | 36.22 | 106.39 | 1 928 | 165.14 ± 10.10b | 61.66 ± 7.38bc | 12.64 ± 0.62a | 2.17 ± 0.07ab | 0.86 ± 0.01a | 0.85 ± 0.01a |
26 | 36.20 | 106.41 | 1 885 | 253.38 ± 15.32a | 160.06 ± 34.83b | 14.17 ± 0.67a | 2.30 ± 0.05a | 0.87 ± 0.01a | 0.87 ± 0.01a |
34 | 36.24 | 106.38 | 2 098 | 261.79 ± 19.87a | 346.74 ± 57.52a | 14.42 ± 0.96a | 2.11 ± 0.06b | 0.80 ± 0.01b | 0.81 ± 0.01b |
图1 封育草地植物群落加权平均功能性状和功能多样性(平均值±标准误)。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Community weighted mean functional traits and functional diversity of grassland communities after grazing exclusion (mean ± SE). Different lowercase letters indicate significant differences (p < 0.05). FDis, functional dispersion; FEve, functional evenness; FRic, functional richness; LCC, leaf carbon concentration; LDMC, leaf dry matter content; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; LT, leaf thickness; SLA, specific leaf area.
图2 封育草地群落地上生产力与植物群落加权平均功能性状的关系。
Fig. 2 Relationships between aboveground net primary productivity (ANPP) and community-weighted mean functional traits in grasslands after grazing exclusion. LCC, leaf carbon concentration; LDMC, leaf dry matter content; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; LT, leaf thickness; SLA, specific leaf area.
图3 封育草地群落地上生产力与物种多样性(A-D)和功能多样性(E-G)的关系。
Fig. 3 Relationship between aboveground net primary productivity (ANPP) and plant species diversity (A-D) and functional diversity (E-G) in grassland communities after grazing exclusion. D, Simpson dominance index; E, Pielou evenness index; FDis, functional dispersion; FEve, functional evenness; FRic, functional richness; H′, Shannon-Wiener index.
图4 封育草地群落地上生产力影响因子的随机森林模型(A)和方差分解(B)结果。*, p < 0.05; **, p < 0.01。
Fig. 4 Results of random forest model (A) and variance partition analysis (B) for factors influencing aboveground net primary productivity of grassland communities after grazing exclusion. *, p < 0.05; **, p < 0.0l. D, Simpson dominance index; E, Pielou evenness index; FDis, functional dispersion; FEve, functional evenness; FRic, functional richness; H′, Shannon-Wiener index; LCC, leaf carbon concentration; LDMC, leaf dry matter content; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; LT, leaf thickness; SLA, specific leaf area.
高度 Height | 叶片厚度 LT | 叶干物质 含量 LDMC | 比叶面积 SLA | 叶片碳含量 LCC | 叶片氮含量 LNC | 叶片磷含量 LPC | 功能丰富度 FRic | 功能均匀度 FEve | 功能离散度 FDis | |
---|---|---|---|---|---|---|---|---|---|---|
物种丰富度 Richness | 0.106 | 0.014 | -0.347* | 0.301* | -0.077 | 0.133 | 0.145 | 0.551** | 0.199 | 0.206 |
Shannon-Wiener指数 H′ | -0.232 | -0.188 | -0.233 | 0.327* | -0.145 | 0.369** | 0.347* | 0.284 | 0.294* | 0.100 |
Pielou均匀度指数 E | -0.502** | -0.280 | 0.108 | 0.082 | -0.120 | 0.416** | 0.364* | -0.243 | 0.225 | -0.094 |
Simpson优势度指数 D | -0.376** | -0.263 | -0.043 | 0.266 | -0.104 | 0.414** | 0.360* | 0.037 | 0.181 | 0.048 |
表2 封育草地植物群落加权平均功能性状、功能多样性与物种多样性的Pearson相关系数
Table 2 Pearson coefficients showing the correlation of community-weighted mean functional traits to functional diversity and species diversity in grasslands after grazing exclusion
高度 Height | 叶片厚度 LT | 叶干物质 含量 LDMC | 比叶面积 SLA | 叶片碳含量 LCC | 叶片氮含量 LNC | 叶片磷含量 LPC | 功能丰富度 FRic | 功能均匀度 FEve | 功能离散度 FDis | |
---|---|---|---|---|---|---|---|---|---|---|
物种丰富度 Richness | 0.106 | 0.014 | -0.347* | 0.301* | -0.077 | 0.133 | 0.145 | 0.551** | 0.199 | 0.206 |
Shannon-Wiener指数 H′ | -0.232 | -0.188 | -0.233 | 0.327* | -0.145 | 0.369** | 0.347* | 0.284 | 0.294* | 0.100 |
Pielou均匀度指数 E | -0.502** | -0.280 | 0.108 | 0.082 | -0.120 | 0.416** | 0.364* | -0.243 | 0.225 | -0.094 |
Simpson优势度指数 D | -0.376** | -0.263 | -0.043 | 0.266 | -0.104 | 0.414** | 0.360* | 0.037 | 0.181 | 0.048 |
[1] |
Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O’Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, et al. (2011). Productivity is a poor predictor of plant species richness. Science, 333, 1750-1753.
DOI URL |
[2] |
Alberti J, Bakker ES, van Klink R, Olff H, Smit C (2017). Herbivore exclusion promotes a more stochastic plant community assembly in a natural grassland. Ecology, 98, 961-970.
DOI PMID |
[3] |
Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146-1156.
PMID |
[4] |
Cadotte MW, Carscadden K, Mirotchnick N (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 1079-1087.
DOI URL |
[5] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[6] |
Carmona D, Lajeunesse MJ, Johnson MTJ (2011). Plant traits that predict resistance to herbivores. Functional Ecology, 25, 358-367.
DOI URL |
[7] | Chen ZZ, Wang SP (2000). Typical Grassland Ecosystem of China. Science Press, Beijing. |
[ 陈佐忠, 汪诗平 (2000). 中国典型草原生态系统. 科学出版社, 北京.] | |
[8] |
Cheng JM, Jing GH, Wei L, Jing ZB (2016). Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China. Ecological Engineering, 97, 170-178.
DOI URL |
[9] |
Craine JM, Ocheltree TW, Nippert JB, Towne EG, Skibbe AM, Kembel SW, Fargione JE (2013). Global diversity of drought tolerance and grassland climate-change resilience. Nature Climate Change, 3, 63-67.
DOI URL |
[10] |
Deng L, Shangguan ZP, Wu GL, Chang XF (2017). Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth-Science Reviews, 173, 84-95.
DOI URL |
[11] |
Dı́az S, Cabido M (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655.
DOI URL |
[12] |
Dı́az S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing-A global synthesis. Global Change Biology, 13, 313-341.
DOI URL |
[13] | Dong SK, Tang L, Zhang XF, Liu SL, Liu QR, Su XK, Zhang Y, Wu XY, Zhao ZZ, Li Y, Sha W (2017). Relationship between plant species diversity and functional diversity in alpine grasslands. Acta Ecologica Sinica, 37, 1472-1483. |
[ 董世魁, 汤琳, 张相锋, 刘世梁, 刘全儒, 苏旭坤, 张勇, 武晓宇, 赵珍珍, 李钰, 沙威 (2017). 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 37, 1472-1483.] | |
[14] |
Fernández-Lugo S, Bermejo LA, de Nascimento L, Méndez J, Naranjo-Cigala A, Arévalo JR (2013). Productivity: key factor affecting grazing exclusion effects on vegetation and soil. Plant Ecology, 214, 641-656.
DOI URL |
[15] |
Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 12, 22-33.
DOI PMID |
[16] |
Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011). Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology, 92, 1573-1581.
PMID |
[17] |
Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, et al. (2015). Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305.
DOI URL |
[18] |
Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637.
DOI URL |
[19] |
Golodets C, Sternberg M, Kigel J (2009). A community-level test of the leaf-height-seed ecology strategy scheme in relation to grazing conditions. Journal of Vegetation Science, 20, 392-402.
DOI URL |
[20] |
Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, et al. (2016). Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393.
DOI URL |
[21] |
Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clément J-C (2013). Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology, 101, 47-57.
DOI URL |
[22] |
Grime JP (1997). Biodiversity and ecosystem function: the debate deepens. Science, 277, 1260-1261.
DOI URL |
[23] |
Grime JP (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
DOI URL |
[24] |
Han JG, Zhang YJ, Wang CJ, Bai WM, Wang YR, Han GD, Li LH (2008). Rangeland degradation and restoration management in China. The Rangeland Journal, 30, 233-239.
DOI URL |
[25] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Sack L, Yu GR (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
DOI URL |
[26] |
Hu ZM, Li SG, Guo Q, Niu SL, He NP, Li LH, Yu GR (2016). A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biology, 22, 1385-1393.
DOI URL |
[27] |
Jeddi K, Chaieb M (2010). Changes in soil properties and vegetation following livestock grazing exclusion in degraded arid environments of South Tunisia. Flora, 205, 184-189.
DOI URL |
[28] |
Jing ZB, Cheng JM, Chen A (2013). Assessment of vegetative ecological characteristics and the succession process during three decades of grazing exclusion in a continental steppe grassland. Ecological Engineering, 57, 162-169.
DOI URL |
[29] |
Jing ZB, Cheng JM, Su JS, Bai Y, Jin JW (2014). Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland. Ecological Engineering, 64, 171-178.
DOI URL |
[30] |
Klumpp K, Soussana J-F (2009). Using functional traits to predict grassland ecosystem change: a mathematical test of the response-and-effect trait approach. Global Change Biology, 15, 2921-2934.
DOI URL |
[31] |
Laliberté E, Legendre P (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[32] |
Lanta V, Lepš J (2006). Effect of functional group richness and species richness in manipulated productivity-diversity studies: a glasshouse pot experiment. Acta Oecologica, 29, 85-96.
DOI URL |
[33] | Lepš J, de Bello F, Lavorel S, Berman S (2006). Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia, 78, 481-501. |
[34] |
Li WH, Xu FW, Zheng SX, Taube F, Bai YF (2017). Patterns and thresholds of grazing-induced changes in community structure and ecosystem functioning: species-level responses and the critical role of species traits. Journal of Applied Ecology, 54, 963-975.
DOI URL |
[35] | Liu XJ, Ma KP (2015). Plant functional traits-Concepts, applications and future directions. Scientia Sinica (Vitae) (Chinese Version), 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[36] | Liu XQ, Zhang X, Zhang LF, Li YN, Zhao L, Xu SX, Li HQ, Ma RR, Niu B, Gao YB, Gu S (2016). Effects of exclosure duration on the community structure and species diversity of an alpine meadow in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 36, 5150-5162. |
[ 刘晓琴, 张翔, 张立锋, 李英年, 赵亮, 徐世晓, 李红琴, 马荣荣, 牛犇, 高玉葆, 古松 (2016). 封育年限对高寒草甸群落组分和物种多样性的影响. 生态学报, 36, 5150-5162.] | |
[37] |
Lü TT, Wang P, Yan H, Zhang W, Liao GX, Jiang HB, Zou CL, Sheng LX (2014). Relationship between functional diversity and productivity in meadow and marsh plant communities. Chinese Journal of Plant Ecology, 38, 405-416.
DOI URL |
[ 吕亭亭, 王平, 燕红, 张稳, 廖桂项, 姜海波, 邹畅林, 盛连喜 (2014). 草甸和沼泽植物群落功能多样性与生产力的关系. 植物生态学报, 38, 405-416.]
DOI |
|
[38] |
Ma JJ, Yao H, Feng ZY, Zhang SL (2012). Changes in plant functional groups and species diversity under three grassland using modes in typical grassland area of Inner Mongolia, China. Chinese Journal of Plant Ecology, 36, 1-9.
DOI URL |
[ 马建军, 姚虹, 冯朝阳, 张树礼 (2012). 内蒙古典型草原区3种不同草地利用模式下植物功能群及其多样性的变化. 植物生态学报, 36, 1-9.]
DOI |
|
[39] |
Mason NWH, Mouillot D, Lee WG, Wilson JB (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111, 112-118.
DOI URL |
[40] |
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
DOI URL |
[41] |
Mokany K, Ash J, Roxburgh S (2008). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893.
DOI URL |
[42] |
Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010). Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876.
DOI URL |
[43] |
Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH (2011). Functional structure of biological communities predicts ecosystem multifunctionality. PLOS ONE, 6, e17476. DOI: 10.1371/journal.pone.0017476.
DOI URL |
[44] |
Naeem S (2002). Disentangling the impacts of diversity on ecosystem functioning in combinatorial experiments. Ecology, 83, 2925-2935.
DOI URL |
[45] |
Pan Q, Zheng H, Wang ZH, Wen Z, Yang YZ (2021). Effects of plant functional traits on ecosystem services: a review. Chinese Journal of Plant Ecology, 45, 1140-1153.
DOI URL |
[ 潘权, 郑华, 王志恒, 文志, 杨延征 (2021). 植物功能性状对生态系统服务影响研究进展. 植物生态学报, 45, 1140-1153.]
DOI |
|
[46] |
Petchey OL, Gaston KJ (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402-411.
DOI URL |
[47] |
Petchey OL, Gaston KJ (2006). Functional diversity: back to basics and looking forward. Ecology Letters, 9, 741-758.
PMID |
[48] |
Qiu LP, Wei XR, Zhang XC, Cheng JM (2013). Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland. PLOS ONE, 8, e55433. DOI: 10.1371/journal.pone.0055433.
DOI URL |
[49] | Reich PB, Tilman D, Naeem S, Ellsworth DS, Knops J, Craine J, Wedin D, Trost J (2004). Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proceedings of the National Academy of Sciences of the United States of America, 101, 10101-10106. |
[50] |
Risser PG (1995). Biodiversity and ecosystem function. Conservation Biology, 9, 742-746.
DOI URL |
[51] |
Roscher C, Schumacher J, Gubsch M, Lipowsky A, Weigelt A, Buchmann N, Schmid B, Schulze E-D (2012). Using plant functional traits to explain diversity-productivity relationships. PLOS ONE, 7, e36760. DOI: 10.1371/journal.pone.0036760.
DOI URL |
[52] |
Sasaki T, Okubo S, Okayasu T, Jamsran U, Ohkuro T, Takeuchi K (2009). Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands. Ecology, 90, 2598-2608.
DOI URL |
[53] |
Su JS, Xu FW (2021). Root, not aboveground litter, controls soil carbon storage under grazing exclusion across grasslands worldwide. Land Degradation & Development, 32, 3326-3337.
DOI URL |
[54] | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. |
[55] |
Tilman D, Lehman CL, Thomson KT (1997). Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861.
PMID |
[56] |
Villéger S, Mason NWH, Mouillot D (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
DOI URL |
[57] |
Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[58] |
Wacker L, Baudois O, Eichenberger-Glinz S, Schmid B (2009). Diversity effects in early- and mid-successional species pools along a nitrogen gradient. Ecology, 90, 637-648.
PMID |
[59] | Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111, 5266-5270. |
[60] |
Walker B, Kinzig A, Langridge J (1999). Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems, 2, 95-113.
DOI URL |
[61] |
Wang HD, Zhang LL, Zhu ZH (2013). Effects of clipping and fertilizing on the relationships between species diversity and ecosystem functioning and mechanisms of community stability in alpine meadow. Chinese Journal of Plant Ecology, 37, 279-295.
DOI URL |
[ 王海东, 张璐璐, 朱志红 (2013). 刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制. 植物生态学报, 37, 279-295.]
DOI |
|
[62] |
Xiong DP, Shi PL, Zhang XZ, Zou CB (2016). Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China-A meta-analysis. Ecological Engineering, 94, 647-655.
DOI URL |
[63] | Yan YC, Tang HP, Xin XP, Wang X (2009). Advances in research on the effects of exclosure on grasslands. Acta Ecologica Sinica, 29, 5039-5046. |
[ 闫玉春, 唐海萍, 辛晓平, 王旭 (2009). 围封对草地的影响研究进展. 生态学报, 29, 5039-5046.] | |
[64] |
Zhang JH, Huang YM, Chen HY, Gong JR, Qi Y, Li EG, Wu XC (2018). Response of plant functional traits at species and community levels to grazing exclusion on Inner Mongolian steppe, China. The Rangeland Journal, 40, 179-189.
DOI URL |
[65] | Zuo XA, Zhou X, Lv P, Zhao XY, Zhang J, Wang SK, Yue XY (2016). Testing associations of plant functional diversity with carbon and nitrogen storage along a restoration gradient of sandy grassland. Frontiers in Plant Science, 7, 189. |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[3] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[4] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[5] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[6] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[7] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[8] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[9] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[10] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[11] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[12] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[13] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[14] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[15] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19