植物生态学报 ›› 2022, Vol. 46 ›› Issue (7): 775-784.DOI: 10.17521/cjpe.2021.0281
曾凯娜1,2, 孙浩然1,2, 申益春1, 任明迅1,2,*()
收稿日期:
2021-08-02
接受日期:
2022-01-14
出版日期:
2022-07-20
发布日期:
2022-06-09
通讯作者:
任明迅
作者简介:
* 任明迅:ORCID:0000-0002-4707-2656 (renmx@hainanu.edu.cn)基金资助:
ZENG Kai-Na1,2, SUN Hao-Ran1,2, SHEN Yi-Chun1, REN Ming-Xun1,2,*()
Received:
2021-08-02
Accepted:
2022-01-14
Online:
2022-07-20
Published:
2022-06-09
Contact:
REN Ming-Xun
Supported by:
摘要:
传粉网络是植物和传粉者之间形成的网状相互作用关系, 为理解群落物种多样性形成与维持机制提供了全新的视角。湿地是典型的群落交错区, 环境异质性与物种多样性都很高, 传粉网络可能比草地和森林等生态系统具有更复杂的结构。该研究针对海南岛海口市南郊的羊山湿地, 比较4个样地在旱季(5月)与雨季(8月)的传粉网络及其动态变化, 揭示湿地生态系统的传粉网络结构特征以及在干湿季的变化规律。结果表明, 羊山湿地传粉网络共有71种开花的植物, 131种传粉者, 传粉网络呈现低连接度、高嵌套度、中等网络特化程度的结构特征。在季节动态方面, 4个样地旱季的植物与传粉者种类高于雨季; 而传粉网络的连接度、嵌套度与网络特化程度没有明显的季节差异。白花鬼针草和水角等多个物种可同时在雨季和旱季开花, 使得植物-传粉者的种间关系虽然存在季节变化, 但传粉网络在旱季与雨季间的动态变化不大。总体而言, 羊山湿地物种多样性较高, 边缘效应较明显, 传粉网络结构较稳定。
曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态. 植物生态学报, 2022, 46(7): 775-784. DOI: 10.17521/cjpe.2021.0281
ZENG Kai-Na, SUN Hao-Ran, SHEN Yi-Chun, REN Ming-Xun. Pollination network and seasonal dynamics of Yangshan Wetland in Hainan Island, China. Chinese Journal of Plant Ecology, 2022, 46(7): 775-784. DOI: 10.17521/cjpe.2021.0281
图1 海南羊山湿地的地理位置及景观。A, 羊山湿地在海南岛的位置。B, 研究样地示意图。C, 样地4的旱季景观。D, 羊山湿地常见挺水植物水角(中间植株有木蜂访花)。
Fig. 1 Study sites and landscapes of Yangshan Wetland in Hainan Island. A, Location of Yangshan wetland in Hainan Island. B, Four experimental plots. C, Landscape of Plot 4 in dry season. D, The most common emergent macrophytes plants Hydrocera triflora (a carpenter bee is visiting a flower on the middle plant).
传粉网络 Pollination network | 开花植物 Plants in blooming (P) | 传粉者Pollinator (A) | 网络尺寸 Network size (P × A) | 连接数量 Number of interaction (I) | 连接度 Connectance (I/(P × A)) | 嵌套度 Weighted nestedness | 网络特化 程度 H′2 |
---|---|---|---|---|---|---|---|
旱季样地1 D1 | 10 | 19 | 190 | 37 | 0.19 | 5.73 | -0.33 |
旱季样地2 D2 | 14 | 21 | 294 | 49 | 0.17 | 4.78 | -0.28 |
旱季样地3 D3 | 19 | 29 | 551 | 73 | 0.13 | 5.70 | -0.22 |
旱季样地4 D4 | 22 | 45 | 990 | 84 | 0.08 | 11.71 | -0.37 |
旱季合计 Dry season total | 49 | 82 | 4 018 | 244 | 0.06 | 0.65 | 0.45 |
雨季样地1 R1 | 12 | 10 | 120 | 30 | 0.25 | 3.62 | -0.12 |
雨季样地2 R2 | 8 | 15 | 120 | 35 | 0.29 | 5.89 | -0.15 |
雨季样地3 R3 | 10 | 29 | 290 | 49 | 0.17 | 6.99 | -0.32 |
雨季样地4 R4 | 26 | 39 | 1 014 | 103 | 0.10 | 8.96 | -0.33 |
雨季合计 Rainy season total | 44 | 66 | 2 904 | 235 | 0.08 | 0.62 | 0.52 |
表1 海南羊山湿地不同季节的传粉网络参数
Table 1 Parameters of pollination network in different seasons of Yangshan Wetland in Hainan Island
传粉网络 Pollination network | 开花植物 Plants in blooming (P) | 传粉者Pollinator (A) | 网络尺寸 Network size (P × A) | 连接数量 Number of interaction (I) | 连接度 Connectance (I/(P × A)) | 嵌套度 Weighted nestedness | 网络特化 程度 H′2 |
---|---|---|---|---|---|---|---|
旱季样地1 D1 | 10 | 19 | 190 | 37 | 0.19 | 5.73 | -0.33 |
旱季样地2 D2 | 14 | 21 | 294 | 49 | 0.17 | 4.78 | -0.28 |
旱季样地3 D3 | 19 | 29 | 551 | 73 | 0.13 | 5.70 | -0.22 |
旱季样地4 D4 | 22 | 45 | 990 | 84 | 0.08 | 11.71 | -0.37 |
旱季合计 Dry season total | 49 | 82 | 4 018 | 244 | 0.06 | 0.65 | 0.45 |
雨季样地1 R1 | 12 | 10 | 120 | 30 | 0.25 | 3.62 | -0.12 |
雨季样地2 R2 | 8 | 15 | 120 | 35 | 0.29 | 5.89 | -0.15 |
雨季样地3 R3 | 10 | 29 | 290 | 49 | 0.17 | 6.99 | -0.32 |
雨季样地4 R4 | 26 | 39 | 1 014 | 103 | 0.10 | 8.96 | -0.33 |
雨季合计 Rainy season total | 44 | 66 | 2 904 | 235 | 0.08 | 0.62 | 0.52 |
图2 海南羊山湿地4个旱季样地(D1-D4)传粉网络。在每个传粉网络中, 顶部代表传粉者, 底部代表植物。矩形大小代表相对多度, 上下矩形间的连接宽度代表关联强度。P1-P35等代号表示不同的植物(附录VI), 昆虫下面的代号代表该功能群中的不同物种。
Fig. 2 Pollination network in dry season of four plots (D1-D4) of Yangshan Wetland in Hainan Island. In each pollination network, the top and bottom represent pollinators and plants, respectively. The size indicates relative abundancy and the width of the link represents the correlation strength. P1-P35 are plants (Supplement VI) and codes under each pollinator functional group represent different species.
图3 海南羊山湿地4个雨季样地(R1-R4)传粉网络。在每个传粉网络中, 顶部代表传粉者、底部代表植物。矩形大小代表相对多度, 上下矩形间的连接宽度代表关联强度。P36-P57等代号表示不同的植物(附录VI), 昆虫下面的代号代表该功能群中的不同物种。
Fig. 3 Pollination network in rainy season of four plots (R1-R4) of Yangshan Wetland in Hainan Island. In each pollination network, the top and bottom represent pollinators and plants, respectively. The size indicates relative abundancy and the width of the link represents the correlation strength. P1-P35 are plants (Supplement VI) and codes under each pollinator functional group represent the different species.
植物 Plant | 传粉网络 Pollination network | 传粉者种类 Pollinator species | 物种强度 Species strength | 专一性 Standardized Kullback- Leibler distance (d′) |
---|---|---|---|---|
白花鬼针草 Bidens pilosa var. radiata | 旱季 DZ | 40 | 12.484 0 | 0.551 0 |
雨季 RZ | 18 | 3.852 7 | 0.671 4 | |
水角 Hydrocera triflora | 旱季 DZ | 20 | 26.212 4 | 0.462 4 |
雨季 RZ | 12 | 6.977 5 | 0.455 6 | |
假马鞭 Stachytarpheta jamaicensis | 旱季 DZ | 7 | 2.266 9 | 0.477 4 |
雨季 RZ | 15 | 7.707 9 | 0.696 1 | |
马缨丹 Lantana camara | 旱季 DZ | 12 | 5.657 1 | 0.773 4 |
雨季 RZ | 10 | 5.248 1 | 0.646 1 | |
小冠薰 Basilicum polystachyon | 旱季 DZ | 17 | 7.241 9 | 0.317 5 |
雨季 RZ | 12 | 2.439 9 | 0.508 6 |
表2 海南羊山湿地常见植物的物种水平参数
Table 2 Species level parameters of common plants of the Yangshan Wetland in Hainan Island
植物 Plant | 传粉网络 Pollination network | 传粉者种类 Pollinator species | 物种强度 Species strength | 专一性 Standardized Kullback- Leibler distance (d′) |
---|---|---|---|---|
白花鬼针草 Bidens pilosa var. radiata | 旱季 DZ | 40 | 12.484 0 | 0.551 0 |
雨季 RZ | 18 | 3.852 7 | 0.671 4 | |
水角 Hydrocera triflora | 旱季 DZ | 20 | 26.212 4 | 0.462 4 |
雨季 RZ | 12 | 6.977 5 | 0.455 6 | |
假马鞭 Stachytarpheta jamaicensis | 旱季 DZ | 7 | 2.266 9 | 0.477 4 |
雨季 RZ | 15 | 7.707 9 | 0.696 1 | |
马缨丹 Lantana camara | 旱季 DZ | 12 | 5.657 1 | 0.773 4 |
雨季 RZ | 10 | 5.248 1 | 0.646 1 | |
小冠薰 Basilicum polystachyon | 旱季 DZ | 17 | 7.241 9 | 0.317 5 |
雨季 RZ | 12 | 2.439 9 | 0.508 6 |
[1] |
Aizen MA, Morales CL, Morales JM (2008). Invasive mutualists erode native pollination webs. PLOS Biology, 6, e31. DOI: 10.1371/journal.pbio.0060031.
DOI URL |
[2] |
Asada T (2002). Vegetation gradients in relation to temporal fluctuation of environmental factors in Bekanbeushi peatland, Hokkaido, Japan. Ecological Research, 17, 505-518.
DOI URL |
[3] |
Bascompte J, Jordano P (2007). Plant-animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 38, 567-593.
DOI URL |
[4] |
Bascompte J, Jordano P, Melián CJ, Olesen JM (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 9383-9387.
DOI PMID |
[5] |
Bascompte J, Jordano P, Olesen JM (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431-433.
PMID |
[6] |
Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018-1020.
DOI URL |
[7] |
Blüthgen N, Menzel F, Blüthgen N (2006). Measuring specialization in species interaction networks. BMC Ecology, 6, 9. DOI: 10.1186/1472-6785-6-9.
DOI PMID |
[8] |
Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N (2007). Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341-346.
PMID |
[9] | CaraDonna PJ, Burkle LA, Schwarz B, Resasco J, Knight TM, Benadi G, Blüthgen N, Dormann CF, Fang Q, Fründ J, Gauzens B, Kaiser-Bunbury CN, Winfree R, Vázquez DP (2021). Seeing through the static: the temporal dimension of plant-animal mutualistic interactions. Ecology Letters, 24, 149-161. |
[10] |
Casanova M, Brock M (2000). How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 147, 237-250.
DOI URL |
[11] |
Castro-Urgal R, Traveset A (2014). Differences in flower visitation networks between an oceanic and a continental island. Botanical Journal of the Linnean Society, 174, 478- 488.
DOI URL |
[12] |
Cuartas-Hernández S, Medel R (2015). Topology of plant-flower-visitor networks in a tropical mountain forest: insights on the role of altitudinal and temporal variation. PLOS ONE, 10, e0141804. DOI: 10.1371/journal.pone.0141804.
DOI URL |
[13] |
Dormann CF, Fründ J, Schaefer HM (2017). Identifying causes of patterns in ecological networks: opportunities and limitations. Annual Review of Ecology, Evolution, and Systematics, 48, 559-584.
DOI URL |
[14] |
Dupont YL, Padrón B, Olesen JM, Petanidou T (2009). Spatio- temporal variation in the structure of pollination networks. Oikos, 118, 1261-1269.
DOI URL |
[15] |
Fang Q, Huang SQ (2012). Progress in pollination networks: network structure and dynamics. Biodiversity Science, 20, 300-307.
DOI URL |
[方强, 黄双全 (2012). 传粉网络的研究进展: 网络的结构和动态. 生物多样性, 20, 300-307.]
DOI |
|
[16] |
Fang Q, Huang SQ (2012). Relative stability of core groups in pollination networks in a biodiversity hotspot over four years. PLOS ONE, 7, e32663. DOI: 10.1371/journal.pone.0032663.
DOI URL |
[17] |
Gómez JM, Perfectti F, Jordano P (2011). The functional consequences of mutualistic network architecture. PLOS ONE, 6, e16143. DOI: 10.1371/journal.pone.0016143.
DOI URL |
[18] |
Haapalehto TO, Vasander H, Jauhiainen S, Tahvanainen T, Kotiaho JS (2011). The effects of peatland restoration on water-table depth, elemental concentrations, and vegetation: 10 years of changes. Restoration Ecology, 19, 587-598.
DOI URL |
[19] |
Jones KN, Klemetti SM (2012). Managing marginal populations of the rare wetland plant Trollius laxus Salisbury (spreading globeflower): consideration of light levels, herbivory, and pollination. Northeastern Naturalist, 19, 267-278.
DOI URL |
[20] | Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010). The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecology Letters, 13, 442-452. |
[21] |
Lundgren R, Olesen JM (2005). The dense and highly connected world of greenland's plants and their pollinators. Arctic, Antarctic, and Alpine Research, 37, 514-520.
DOI URL |
[22] |
Olesen JM, Bascompte J, Elberling H, Jordano P (2008). Temporal dynamics in a pollination network. Ecology, 89, 1573-1582.
PMID |
[23] | Olesen JM, Jordano P (2002). Geographic patterns in plant- pollinator mutualistic networks. Ecology, 83, 2416-2424. |
[24] |
Pawar S (2014). Why are plant-pollinator networks nested? Science, 345, 383. DOI: 10.1126/science.1256466.
DOI URL |
[25] |
Ponisio LC, Gaiarsa MP, Kremen C (2017). Opportunistic attachment assembles plant-pollinator networks. Ecology Letters, 20, 1261-1272.
DOI PMID |
[26] |
Saavedra S, Rohr RP, Fortuna MA, Selva N, Bascompte J (2016). Seasonal species interactions minimize the impact of species turnover on the likelihood of community persistence. Ecology, 97, 865-873.
PMID |
[27] |
Santamaría S, Galeano J, Pastor JM, Méndez M (2016). Removing interactions, rather than species, casts doubt on the high robustness of pollination networks. Oikos, 125, 526-534.
DOI URL |
[28] |
Schleuning M, Fründ J, Klein AM, Abrahamczyk S, Alarcón R, Albrecht M, Andersson GKS, Bazarian S, Böhning-Gaese K, Bommarco R, Dalsgaard B, Dehling DM, Gotlieb A, Hagen M, Hickler T, et al. (2012). Specialization of mutualistic interaction networks decreases toward tropical latitudes. Current Biology, 22, 1925-1931.
DOI PMID |
[29] |
Souza CS, Maruyama PK, Aoki C, Sigrist MR, Raizer J, Gross CL, de Araujo AC (2018). Temporal variation in plant- pollinator networks from seasonal tropical environments: higher specialization when resources are scarce. Journal of Ecology, 106, 2409-2420.
DOI URL |
[30] | State Forestry Administration of the People's Republic of China (2015). China Wetlands Resources Hainan Volume. China Forestry Publishing House, Beijing. |
[中华人民共和国国家林业局 (2015). 中国湿地资源: 海南卷. 中国林业出版社, 北京.] | |
[31] |
Tu YL, Wang LP, Wang XL, Wang LL, Duan YW (2019). Status of invasive plants on local pollination networks: a case study of Tagetes minuta in Tibet based on pollen grains from pollinators. Biodiversity Science, 27, 306-313.
DOI URL |
[土艳丽, 王力平, 王喜龙, 王林林, 段元文 (2019). 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位. 生物多样性, 27, 306-313.]
DOI |
|
[32] | Vasander H (1982). Plant biomass and production in virgin, drained and fertilized sites in a raised bog in southern Finland. Annales Botanici Fennici, 19, 103-125. |
[33] |
Vázquez DP, Simberloff D (2002). Ecological specialization and susceptibility to disturbance: conjectures and refutations. The American Naturalist, 159, 606-623.
DOI PMID |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[3] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[4] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[5] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[6] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[7] | 胡昭佚, 陈天松, 赵丽, 许培轩, 吴正江, 董李勤, 张昆. 水位下降对若尔盖高寒草本沼泽木里薹草氮磷重吸收的影响[J]. 植物生态学报, 2023, 47(6): 847-855. |
[8] | 徐干君, 吴胜义, 李伟, 赵欣胜, 聂磊超, 唐希颖, 翟夏杰. 陕西黄河湿地自然保护区碳储量估算[J]. 植物生态学报, 2023, 47(4): 469-478. |
[9] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[10] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[11] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[12] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[13] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[14] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[15] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19