植物生态学报 ›› 2023, Vol. 47 ›› Issue (4): 469-478.DOI: 10.17521/cjpe.2022.0071
徐干君1, 吴胜义1, 李伟2, 赵欣胜2, 聂磊超2, 唐希颖2, 翟夏杰2,*()
收稿日期:
2022-02-21
接受日期:
2022-07-28
出版日期:
2023-04-20
发布日期:
2022-07-29
通讯作者:
*ORCID:翟夏杰: 0000-0001-9892-1550 (zhaixiajie@caf.ac.cn)
XU Gan-Jun1, WU Sheng-Yi1, LI Wei2, ZHAO Xin-Sheng2, NIE Lei-Chao2, TANG Xi-Ying2, ZHAI Xia-Jie2,*()
Received:
2022-02-21
Accepted:
2022-07-28
Online:
2023-04-20
Published:
2022-07-29
Contact:
*(zhaixiajie@caf.ac.cn)
摘要:
湿地生态系统的固碳及其调节气候等生态系统服务十分重要, 准确评估黄河流域自然保护地的碳储量有助于碳中和研究和区域生态保护与高质量发展。该研究基于野外采样和室内分析, 并结合遥感数据, 评估了陕西黄河湿地省级自然保护区光滩和典型自然植被区的地上植被和0-50 cm土壤碳储量。碳储量评估区总面积13 086.52 hm2, 占保护区面积的23.87%。结果表明, 高草植被的地上碳储量显著高于低草植被和矮灌丛植被, 其碳密度分别为496.73、23.45和138.38 g·m-2; 土壤0-50 cm的碳密度为7.15-11.98 kg·m-2, 高草植被区的土壤碳储量(5.02 × 105 t)显著高于光滩(2.09 × 105 t)、低草植被区(3.40 × 105 t)和矮灌丛植被区(1.45 × 105 t); 最终核算出陕西黄河湿地省级自然保护区典型植被区的地上植被和0-50 cm土壤总碳储量约为1.22 × 106 t, 其中光滩区、低草植被区、矮灌丛植被区、高草植被区的碳储量占比分别为17.13%、27.95%、12.13%和42.79%。研究结果可为黄河中游自然湿地的保护修复和碳汇功能提升研究提供一定的数据支持。
徐干君, 吴胜义, 李伟, 赵欣胜, 聂磊超, 唐希颖, 翟夏杰. 陕西黄河湿地自然保护区碳储量估算. 植物生态学报, 2023, 47(4): 469-478. DOI: 10.17521/cjpe.2022.0071
XU Gan-Jun, WU Sheng-Yi, LI Wei, ZHAO Xin-Sheng, NIE Lei-Chao, TANG Xi-Ying, ZHAI Xia-Jie. Estimation of carbon storage in Shaanxi Yellow River Wetland Provincial Nature Reserve. Chinese Journal of Plant Ecology, 2023, 47(4): 469-478. DOI: 10.17521/cjpe.2022.0071
图1 陕西黄河湿地省级自然保护区地理区位及采样点位分布。
Fig. 1 Geographical location and distribution of sampling sites in Shaanxi Yellow River Wetland Provincial Nature Reserve.
土地利用类型分类 Classification of land use type | 土地利用类型 Land use type | 面积 Area (hm2) | 占保护区面积比例 Area proportion of the reserve (%) |
---|---|---|---|
自然生态系统类型 Natural ecosystem type | 光滩 Beach | 2 916.70 | 5.32 |
沼泽湿地 Marsh | 8 383.48 | 15.29 | |
矮灌丛 Short shrubland | 1 786.34 | 3.26 | |
其他土地利用类型 Other land use type | 农田 Farmland | 8 495.16 | 15.49 |
坑塘水面 Pond water surface | 15 835.82 | 28.87 | |
河流 River | 15 138.42 | 27.60 | |
农村宅基地 Rural homestead | 2 289.30 | 4.17 |
表1 陕西黄河湿地省级自然保护区不同土地利用类型基本特征
Table 1 Basic characteristics of different land use types in Shaanxi Yellow River Wetland Provincial Reserve
土地利用类型分类 Classification of land use type | 土地利用类型 Land use type | 面积 Area (hm2) | 占保护区面积比例 Area proportion of the reserve (%) |
---|---|---|---|
自然生态系统类型 Natural ecosystem type | 光滩 Beach | 2 916.70 | 5.32 |
沼泽湿地 Marsh | 8 383.48 | 15.29 | |
矮灌丛 Short shrubland | 1 786.34 | 3.26 | |
其他土地利用类型 Other land use type | 农田 Farmland | 8 495.16 | 15.49 |
坑塘水面 Pond water surface | 15 835.82 | 28.87 | |
河流 River | 15 138.42 | 27.60 | |
农村宅基地 Rural homestead | 2 289.30 | 4.17 |
图2 陕西黄河湿地省级自然保护区及周边典型湿地植被类型分布。
Fig. 2 Distribution of vegetation types in Shaanxi Yellow River Wetland Provincial Nature Reserve and surrounding typical wetlands.
图3 陕西黄河湿地省级自然保护区不同植被类型的碳密度和碳含量百分比(平均值±标准误)。 不同小写字母表示植被类型间差异显著(p < 0.05)。
Fig. 3 Density and proportion of carbon content in different vegetation types in Shaanxi Yellow River Wetland Provincial Nature Reserve (mean ± SE). Different lowercase letters indicate significant differences among vegetation types (p < 0.05).
湿地植被类型 Wetland vegetation type | 生物量干质量 Biomass dry mass (g·m-2) | 标准误 Standard error (g·m-2) |
---|---|---|
低草植被 Short-grass vegetation | 62.80c | 6.73 |
矮灌丛植被 Short-shrubland vegetation | 340.05b | 44.96 |
高草植被 Tall-grass vegetation | 1 213.18a | 113.21 |
表2 陕西黄河湿地省级自然保护区不同植被类型生物量
Table 2 Biomass of different vegetation types in Shaanxi Yellow River Wetland Provincial Reserve
湿地植被类型 Wetland vegetation type | 生物量干质量 Biomass dry mass (g·m-2) | 标准误 Standard error (g·m-2) |
---|---|---|
低草植被 Short-grass vegetation | 62.80c | 6.73 |
矮灌丛植被 Short-shrubland vegetation | 340.05b | 44.96 |
高草植被 Tall-grass vegetation | 1 213.18a | 113.21 |
图4 陕西黄河湿地省级自然保护区不同植被类型下的土壤碳密度(平均值±标准误)。 不同小写字母表示植被类型间差异显著(p < 0.05)。
Fig. 4 Soil carbon density under different vegetation types in Shaanxi Yellow River Wetland Provincial Nature Reserve (mean ± SE). Different lowercase letters indicate significant differences among vegetation types (p < 0.05).
[1] |
Angst Š, Cajthaml T, Angst G, Šimáčková H, Brus J, Frouz J (2017). Retention of dead standing plant biomass (marcescence) increases subsequent litter decomposition in the soil organic layer. Plant and Soil, 418, 571-579.
DOI URL |
[2] | Bao YB, Liu K, Li T, Hu S (2015). Effects of land use change on habitat based on InVEST model—Taking Yellow River Wetland Nature Reserve in Shaanxi Province as an example. Arid Zone Research, 32, 622-629. |
[包玉斌, 刘康, 李婷, 胡胜 (2015). 基于InVEST模型的土地利用变化对生境的影响——以陕西省黄河湿地自然保护区为例. 干旱区研究, 32, 622-629.] | |
[3] |
Bossio DA, Cook-Patton SC, Ellis PW, Fargione J, Sanderman J, Smith P, Wood S, Zomer RJ, von Unger M, Emmer IM, Griscom BW (2020). The role of soil carbon in natural climate solutions. Nature Sustainability, 3, 391-398.
DOI |
[4] | Chang XK, Zeng H, Liu M (2018). Relationships among vegetation types, biomass and soil environmental factors in the wetlands of Yellow Sea and Bohai coastal areas. Chinese Journal of Ecology, 37, 3298-3304. |
[常雄凯, 曾辉, 刘淼 (2018). 黄渤海滨海湿地植被类型、生物量及其与土壤环境因子的关系. 生态学杂志, 37, 3298-3304.] | |
[5] |
Deng L, Han QS, Zhang C, Tang ZS, Shangguan ZP (2017). Above-ground and below-ground ecosystem biomass accumulation and carbon sequestration with Caragana korshinskii Kom plantation development. Land Degradation & Development, 28, 906-917.
DOI URL |
[6] |
Dolinar N, Regvar M, Abram D, Gaberščik A (2016). Water- level fluctuations as a driver of Phragmites australis primary productivity, litter decomposition, and fungal root colonisation in an intermittent wetland. Hydrobiologia, 774, 69-80.
DOI URL |
[7] | Dong PP, Xiu YJ, Zhang ZM, Zhang MX (2020). Conservation and high quality development of wetlands in the Yellow River Basin. Wetland Science, 18, 350-355. |
[董盼盼, 修玉娇, 张振明, 张明祥 (2020). 黄河流域湿地保护与高质量发展. 湿地科学, 18, 350-355.] | |
[8] | Du SD, Bai JH, Jia J, Guan YN, Zhang GL, Chen GZ, Zhang SY, Gai LY (2022). Changes of soil organic carbon storage in Phragmites australis wetlands along a salinity gradient in the Yellow River Delta. Acta Scientiae Circumstantiae, 42(1), 80-87. |
[杜书栋, 白军红, 贾佳, 关亚楠, 张光亮, 陈国柱, 张树岩, 盖凌云 (2022). 黄河三角洲芦苇湿地土壤有机碳储量沿盐分梯度的变化特征. 环境科学学报, 42(1), 80-87.] | |
[9] | Duan WY, Huang C (2021). Research progress on the carbon cycle of rivers and lakes. China Environmental Science, 41, 3792-3807. |
[段巍岩, 黄昌 (2021). 河流湖泊碳循环研究进展. 中国环境科学, 41, 3792-3807.] | |
[10] |
Dunn C, Freeman C (2018). The role of molecular weight in the enzyme-inhibiting effect of phenolics: the significance in peatland carbon sequestration. Ecological Engineering, 114, 162-166.
DOI URL |
[11] |
Fang JY (2021). Ecological perspectives of carbon neutrality. Chinese Journal of Plant Ecology, 45, 1173-1176.
DOI URL |
[方精云 (2021). 碳中和的生态学透视. 植物生态学报, 45, 1173-1176.]
DOI |
|
[12] |
Fang JY, Yu GR, Liu LL, Hu SJ, Chapin III FS (2018). Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115, 4015-4020.
DOI PMID |
[13] |
Guo YP, Yang X, Mohhamot A, Liu HY, Ma WH, Yu SL, Tang ZY (2017). Storage of carbon, nitrogen and phosphorus in temperate shrubland ecosystems across Northern China. Chinese Journal of Plant Ecology, 41, 14-21.
DOI |
[郭焱培, 杨弦, 安尼瓦尔•买买提, 刘鸿雁, 马文红, 于顺利, 唐志尧 (2017). 中国北方温带灌丛生态系统碳、氮、磷储量. 植物生态学报, 41, 14-21.]
DOI |
|
[14] | He SX, Han RL, Liang ZS (2015). Effect of grass restoration on soil carbon and nitrogen in the hilly area of the Loess Plateau. Chinese Science Bulletin, 60, 1932-1940. |
[贺少轩, 韩蕊莲, 梁宗锁 (2015). 黄土高原丘陵沟壑区草地恢复对土壤碳氮库的影响. 科学通报, 60, 1932-1940.] | |
[15] |
Lal R (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 815-830.
DOI URL |
[16] | Li JP, Yu XB, Xia SX, Zhao W, Wang ST, Xu C (2020). The spatial distribution of soil organic carbon density and carbon storage in Baiyangdian wetland. Acta Ecologica Sinica, 40, 8928-8935. |
[李瑾璞, 于秀波, 夏少霞, 赵玮, 王树涛, 许策 (2020). 白洋淀湿地区土壤有机碳密度及储量的空间分布特征. 生态学报, 40, 8928-8935.] | |
[17] | Li MY, Shangguan ZP, Deng L (2021). Spatial distribution of carbon storages in the terrestrial ecosystems and its influencing factors on the Loess Plateau. Acta Ecologica Sinica, 41, 6786-6799. |
[李妙宇, 上官周平, 邓蕾 (2021). 黄土高原地区生态系统碳储量空间分布及其影响因素. 生态学报, 41, 6786-6799.] | |
[18] | Lin CY, Li XL, Sun HS, Sun HF, Ma CB, Han HB, Zhang YP, Li CY (2021). Responses of soil organic carbon component on different degrees of degradation of alpine wetland in the source of Yellow River. Acta Agrestia Sinica, 29, 1540-1548. |
[林春英, 李希来, 孙海松, 孙华方, 马程彪, 韩辉邦, 张宇鹏, 李成一 (2021). 黄河源高寒湿地有机碳组分对不同退化程度的响应. 草地学报, 29, 1540-1548.]
DOI |
|
[19] | Liu JT, Li AQ, Sun JK, Song AY, Xia JB (2021). Foliar C, N, and P stoichiometry of dominant shrubs in the chenier wetland of the Yellow River Delta, China. Acta Ecologica Sinica, 41, 3805-3815. |
[刘京涛, 李安琦, 孙景宽, 宋爱云, 夏江宝 (2021). 黄河三角洲贝壳堤湿地优势灌木碳、氮、磷化学计量特征. 生态学报, 41, 3805-3815.] | |
[20] | Liu XH, Zhang HB, Li Y (2019). Variation of organic matter in soil aggregates with the succession of tidal flatland from barren land-saltmarsh-upland in the Yellow River Delta. Acta Pedologica Sinica, 56, 374-385. |
[刘兴华, 章海波, 李远 (2019). 黄河三角洲滩涂-湿地-旱地土壤团聚体有机质组分变化规律. 土壤学报, 56, 374-385.] | |
[21] | Liu YN, Xi M, Zhang XL, Yu ZD, Kong FL (2019). Carbon storage distribution characteristics of wetlands in China and its influencing factors. Chinese Journal of Applied Ecology, 30, 2481-2489. |
[刘亚男, 郗敏, 张希丽, 于政达, 孔范龙 (2019). 中国湿地碳储量分布特征及其影响因素. 应用生态学报, 30, 2481-2489.]
DOI |
|
[22] | Liu ZG, Zhang KM (2005). Wetland soils carbon stock in the Sanjiang plain. Journal of Tsinghua University (Science & Technology), 45, 788-791. |
[刘子刚, 张坤民 (2005). 黑龙江省三江平原湿地土壤碳储量变化. 清华大学学报(自然科学版), 45, 788-791.] | |
[23] |
Lu MZ, Zou YC, Xun QL, Yu ZC, Jiang M, Sheng LX, Lu XG, Wang DL (2021). Anthropogenic disturbances caused declines in the wetland area and carbon pool in China during the last four decades. Global Change Biology, 27, 3837-3845.
DOI URL |
[24] |
Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013). Wetlands, carbon, and climate change. Landscape Ecology, 28, 583-597.
DOI URL |
[25] |
Nahlik AM, Fennessy MS (2016). Carbon storage in US wetlands. Nature Communications, 7, 13835. DOI: 10.1038/ncomms13835.
DOI |
[26] | Pearse AL, Barton JL, Lester RE, Zawadzki A, Macreadie PI (2018). Soil organic carbon variability in Australian temperate freshwater wetlands. Limnology and Oceanography, 63, S254-S266. |
[27] | Pei HM, Xu MX, Li Q, Tuo DF (2012). Advances in soil organic carbon losses under erosion. Research of Soil and Water Conservation, 19(6), 269-274. |
[裴会敏, 许明祥, 李强, 脱登峰 (2012). 侵蚀条件下土壤有机碳流失研究进展. 水土保持研究, 19(6), 269-274.] | |
[28] |
Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355-359.
DOI |
[29] |
Regnier P, Friedlingstein P, Ciais P, MacKenzie FT, Gruber N, Janssens IA, Laruelle GG, Lauerwald R, Luyssaert S, Andersson AJ, Arndt S, Arnosti C, Borges AV, Dale AW, Gallego-Sala A, et al. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6, 597-607.
DOI |
[30] |
Santonja M, Rodríguez-Pérez H, Le Bris N, Piscart C (2020). Leaf nutrients and macroinvertebrates control litter mixing effects on decomposition in temperate streams. Ecosystems, 23, 400-416.
DOI |
[31] |
Shen XJ, Jiang M, Lu XG, Liu XT, Liu B, Zhang JQ, Wang XW, Tong SZ, Lei GC, Wang SZ, Tong C, Fan HQ, Tian K, Wang XL, Hu YM, et al. (2021). Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China. Science China Earth Sciences, 64, 1115-1125.
DOI |
[32] | Song HL, Liu XT, Wang LZ, Yu WN, Dong B (2018). Spatial and temporal distribution of soil organic carbon in vegetation communities of the Yellow River Delta under different disturbance levels. Journal of Soil and Water Conservation, 32(1), 190-196. |
[宋红丽, 刘兴土, 王立志, 郁万妮, 董彬 (2018). 不同干扰程度下黄河三角洲植被群落有机碳分布特征. 水土保持学报, 32(1), 190-196.] | |
[33] | Song LP, Chu XZ, Yang J (2016). Carbon sequestration capacity of typical plants in marginal zone of the Ebinur Lake Wetland. Arid Land Geography, 39, 136-143. |
[宋亮平, 楚新正, 杨晶 (2016). 艾比湖湿地边缘带典型植物固碳能力研究. 干旱区地理, 39, 136-143.] | |
[34] | Syvitski J, Ángel JR, Saito Y, Overeem I, Vörösmarty CJ, Wang H, Olago D (2022). Earth’s sediment cycle during the Anthropocene. Nature Reviews Earth & Environment, 3, 179-196. |
[35] | Unger V, Elsey-Quirk T, Sommerfield C, Velinsky D (2016). Stability of organic carbon accumulating in Spartina alterniflora-dominated salt marshes of the Mid-Atlantic US. Estuarine, Coastal and Shelf Science, 182, 179-189. |
[36] |
Villa JA, Bernal B (2018). Carbon sequestration in wetlands, from science to practice: an overview of the biogeochemical process, measurement methods, and policy framework. Ecological Engineering, 114, 115-128.
DOI URL |
[37] | Wang BW, Mu CC, Wang B (2019). Carbon storage of a primary coniferous forested wetland ecosystem in the temperate Changbai Mountain of China. Acta Ecologica Sinica, 39, 3344-3354. |
[王伯炜, 牟长城, 王彪 (2019). 长白山原始针叶林沼泽湿地生态系统碳储量. 生态学报, 39, 3344-3354.] | |
[38] | Wang GX, Xia J, Li XY, Yang D, Hu ZY, Sun SQ, Sun XY (2021). Critical advances in understanding ecohydrological processes of terrestrial vegetation: from leaf to watershed scale. Chinese Science Bulletin, 66, 3667-3683. |
[王根绪, 夏军, 李小雁, 杨达, 胡兆永, 孙守琴, 孙向阳 (2021). 陆地植被生态水文过程前沿进展: 从植物叶片到流域. 科学通报, 66, 3667-3683.] | |
[39] | Wang YS, Wang YH (2008). Observation of Carbon Exchange Between Terrestrial and Freshwater Lakes and the Atmosphere in China. Science Press, Beijing. |
[王跃思, 王迎红 (2008). 中国陆地和淡水湖泊与大气间碳交换观测. 科学出版社, 北京.] | |
[40] |
Xiao D, Deng L, Kim DG, Huang C, Tian K (2019). Carbon budgets of wetland ecosystems in China. Global Change Biology, 25, 2061-2076.
DOI PMID |
[41] |
Xin XP, Ding L, Cheng W, Zhu XY, Chen BR, Liu ZL, He GL, Qing GL, Yang GX, Tang HJ (2020). Biomass carbon storage and its effect factors in steppe and agro-pastoral ecotones in northern China. Scientia Agricultura Sinica, 53, 2757-2768.
DOI |
[辛晓平, 丁蕾, 程伟, 朱晓昱, 陈宝瑞, 刘钟龄, 何广礼, 青格勒, 杨桂霞, 唐华俊 (2020). 北方草地及农牧交错区草地植被碳储量及其影响因素. 中国农业科学, 53, 2757-2768.]
DOI |
|
[42] |
Xu L, Yu GR, He NP (2018). Changes of soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. Acta Geographica Sinica, 73, 2150-2167.
DOI |
[徐丽, 于贵瑞, 何念鹏 (2018). 1980s-2010s中国陆地生态系统土壤碳储量的变化. 地理学报, 73, 2150-2167.]
DOI |
|
[43] | Yang R, Sai N, Su L, Shang HJ, Liu YH, Guo YS (2020). Ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus of the Yellow River wetland in Baotou, Inner Mongolia. Acta Ecologica Sinica, 40, 2205-2214. |
[杨荣, 塞那, 苏亮, 尚海军, 刘永宏, 郭永盛 (2020). 内蒙古包头黄河湿地土壤碳氮磷含量及其生态化学计量学特征. 生态学报, 40, 2205-2214.] | |
[44] | Yang WH, Wang MH, Li WP, Fan AP, Miao CL, Yu LH (2018). Effects of land use types on soil organic carbon in the South China Sea wetland. Ecology and Environmental Sciences, 27, 1034-1043. |
[杨文焕, 王铭浩, 李卫平, 樊爱萍, 苗春林, 于玲红 (2018). 黄河湿地包头段不同地被类型对土壤有机碳的影响. 生态环境学报, 27, 1034-1043.]
DOI |
|
[45] |
Yang YH, Shi Y, Sun WJ, Chang JF, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, et al. (2022). Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 65, 861-895.
DOI PMID |
[46] |
Yao JT, Kong XB (2018). Modeling the effects of land-use optimization on the soil organic carbon sequestration potential. Journal of Geographical Sciences, 28, 1641-1658.
DOI |
[47] | Zhang JH, Li GD, Wang YS, Zhu LQ, Zhao WL, Ding YP (2020). Spatial characteristics and variation mechanism of different soil organic carbon components in the alluvial/ sedimentary zone of the Yellow River. Acta Geographica Sinica, 75, 558-570. |
[张俊华, 李国栋, 王岩松, 朱连奇, 赵文亮, 丁亚鹏 (2020). 黄河泥沙冲/沉积区土壤有机碳不同组分空间特征及变异机制. 地理学报, 75, 558-570.]
DOI |
|
[48] | Zhang WM, Wu M, Wang M, Shao XX, Jiang XS, Zhou B (2014). Distribution characteristics of organic carbon and its components in soils under different types of vegetation in wetland of Hangzhou Bay. Acta Pedologica Sinica, 51, 1351-1360. |
[张文敏, 吴明, 王蒙, 邵学新, 姜小三, 周斌 (2014). 杭州湾湿地不同植被类型下土壤有机碳及其组分分布特征. 土壤学报, 51, 1351-1360.] | |
[49] | Zhou M, Li SL, Ding H, Qin CQ, Yue FJ (2018). Advances in study on organic carbon characteristics in the riverine systems. Chinese Journal of Ecology, 37, 255-264. |
[周苗, 李思亮, 丁虎, 覃蔡清, 岳甫均 (2018). 地表流域有机碳地球化学研究进展. 生态学杂志, 37, 255-264.] | |
[50] | Zhou WC, Suolang D, Cui LJ, Wang YF, Li W (2016). Effects of drainage on soil organic carbon stock in the Zoige peatlands, eastern Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 36, 2123-2132. |
[周文昌, 索郎夺尔基, 崔丽娟, 王义飞, 李伟 (2016). 排水对若尔盖高原泥炭地土壤有机碳储量的影响. 生态学报, 36, 2123-2132.] |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[5] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[6] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[7] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[8] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[9] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[10] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[11] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[12] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[13] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[14] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[15] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19