植物生态学报 ›› 2024, Vol. 48 ›› Issue (6): 780-793.DOI: 10.17521/cjpe.2023.0391 cstr: 32100.14.cjpe.2023.0391
收稿日期:
2023-12-27
接受日期:
2024-02-20
出版日期:
2024-06-20
发布日期:
2024-02-22
通讯作者:
*孙龙(sunlong365@126.com)
基金资助:
CAI Hui-Ying, LI Lan-Hui, LIN Yang, LIANG Ya-Tao, YANG Guang, SUN Long*()
Received:
2023-12-27
Accepted:
2024-02-20
Online:
2024-06-20
Published:
2024-02-22
Contact:
*SUN Long(sunlong365@126.com)
Supported by:
摘要:
火是制约植物生长发育的重要干扰因子, 影响植物的生理代谢, 甚至导致植物死亡。非结构性碳水化合物(NSC)主要包括可溶性糖(SS)和淀粉(ST), 对植物在干扰下存活具有重要作用。然而, 关于植物NSC及其组分含量对火后时间响应机制的研究尚有不足。该研究采用“空间替代时间”的方法, 在大兴安岭呼中区选取5个不同火烧时间的重度火烧地块和1个临近的未火烧地块, 分别采集白桦(Betula platyphylla)的叶片、细根以及根际土壤样品, 测定白桦叶片和细根的NSC及其组分含量、白桦叶片和细根的性状特征, 以及根际土壤属性。结果表明: 白桦叶片ST和NSC含量随火后时间的增加显著降低, 而细根ST和NSC含量随火后时间的增加显著增加, 叶片和细根的NSC含量分别在火后30年和火后17年与火烧前无显著差异, 表明细根NSC含量从重度火烧干扰的影响中恢复得更快; 火后时间对白桦叶片的NSC含量有直接影响, 还通过影响比叶面积对叶片的NSC含量产生间接影响; 火后时间对白桦细根NSC含量的影响主要是通过影响土壤pH和比叶面积间接产生。综上, 火后时间对植物NSC含量的影响具有明显的器官差异性。该结果可为火烧迹地的植被恢复研究提供科学数据和理论基础。
蔡慧颖, 李兰慧, 林阳, 梁亚涛, 杨光, 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应. 植物生态学报, 2024, 48(6): 780-793. DOI: 10.17521/cjpe.2023.0391
CAI Hui-Ying, LI Lan-Hui, LIN Yang, LIANG Ya-Tao, YANG Guang, SUN Long. Responses of non-structural carbohydrates in Betula platyphylla leaves and fine roots to time since fire. Chinese Journal of Plant Ecology, 2024, 48(6): 780-793. DOI: 10.17521/cjpe.2023.0391
地点 Site | 起火时间(年) Burning time (year) | 火后时间 Time since fire (a) | 经度 Longitude (° E) | 纬度 Latitude (° N) |
---|---|---|---|---|
雄关-2#线 Xiongguan-2#line | 2020 | 1 | 123.81 | 51.61 |
白鲁山-10#线 Bailu Mountain-10#line | 2017 | 4 | 123.26 | 52.17 |
雄关-6#线 Xiongguan-6#line | 2012 | 9 | 123.70 | 51.58 |
白鲁山-19#线 Bailu Mountain-10#line | 2004 | 17 | 123.06 | 52.31 |
提阳山-52#线 Tiyang Mountain-52#line | 1991 | 30 | 124.08 | 52.04 |
S218西南 S218 southwest | 未火烧 Unburned (CK) | ~100 | 123.60 | 52.04 |
表1 大兴安岭呼中研究区样地的基本信息
Table 1 Basic information of the plots in the study area of Huzhong, Da Hinggan Mountains
地点 Site | 起火时间(年) Burning time (year) | 火后时间 Time since fire (a) | 经度 Longitude (° E) | 纬度 Latitude (° N) |
---|---|---|---|---|
雄关-2#线 Xiongguan-2#line | 2020 | 1 | 123.81 | 51.61 |
白鲁山-10#线 Bailu Mountain-10#line | 2017 | 4 | 123.26 | 52.17 |
雄关-6#线 Xiongguan-6#line | 2012 | 9 | 123.70 | 51.58 |
白鲁山-19#线 Bailu Mountain-10#line | 2004 | 17 | 123.06 | 52.31 |
提阳山-52#线 Tiyang Mountain-52#line | 1991 | 30 | 124.08 | 52.04 |
S218西南 S218 southwest | 未火烧 Unburned (CK) | ~100 | 123.60 | 52.04 |
图1 白桦叶片和细根非结构性碳水化合物(NSC)及其组分含量随火后时间的变化(平均值±标准误)。 不同小写字母表示同一器官同一组分在不同火烧时间差异显著(p < 0.05), 不同大写字母表示同一时间同一组分叶片和细根间差异显著(p < 0.05)。
Fig. 1 Changes in content of non-structural carbohydrates (NSC) and its components in Betula platyphylla leaves and fine roots with time since fire (mean ± SE). Different lowercase letters indicate significant differences among different fire times in the same organ and component (p < 0.05), different uppercase letters indicate significant differences between leaves and fine roots in the same time and component (p < 0.05). ST, soluble sugar; SS, starch.
图2 白桦叶片和细根非结构性碳水化合物(NSC)及其组分含量与土壤属性的相关性。
Fig. 2 Correlation of non-structural carbohydrates (NSC) and its component content in leaves and fine roots of Betula platyphylla with soil properties.
图3 白桦叶片和细根非结构性碳水化合物(NSC)及其组分含量与植物形态与结构性状的相关性。
Fig. 3 Correlation of non-structural carbohydrates (NSC) and its component content in leaves and fine roots of Betula platyphylla with plant morphology and structural traits.
图4 白桦叶片和细根非结构性碳水化合物(NSC)及其组分含量与植物化学性状的相关性。
Fig. 4 Correlation of non-structural carbohydrates (NSC) and its component content in leaves and fine roots of Betula platyphylla with phytochemical traits.
图5 火后时间、土壤属性和植物性状对白桦叶片(A、C)和细根(B、D)非结构性碳水化合物(NSC)含量的影响。 实线表明变量间因果关系显著(p < 0.05), 虚线表明因果关系不显著(p > 0.05), 线条上数字代表路径系数。条形图表明直接和间接影响, 黑色条表示火后时间、土壤属性和植物性状分别对NSC含量的直接影响, 灰色条表示火后时间对NSC含量的间接影响。CFI, 比较拟合指数; SRMR, 标准化均方根残差。*, p < 0.05; ***, p < 0.001。
Fig. 5 Effects of time since fire, soil properties, plant trait on non-structural carbohydrates (NSC) content of leaves (A, C) and fine roots (B, D) of Betula platyphylla. The solid line indicates that the causal relationship between variables is significant (p < 0.05), and the dashed line indicates that it is not significant (p > 0.05), the numbers on the lines represent the path coefficients. Bar charts show direct and indirect effects. The black bars represent the direct effects of time since fire, soil properties and plant traits on NSC content, respectively, and the gray bars indicate the indirect effects of time since fire on NSC content. CFI, comparative fit index; SRMR, standardized root mean square residual. *, p < 0.05; ***, p < 0.001.
[1] | Ai ZM, Xue S, Wang GL, Liu GB (2017). Responses of non-structural carbohydrates and C:N:P stoichiometry of Bothriochloa ischaemum to nitrogen addition on the Loess Plateau, China. Journal of Plant Growth Regulation, 36, 714-722. |
[2] |
Bär A, Michaletz ST, Mayr S (2019). Fire effects on tree physiology. New Phytologist, 223, 1728-1741.
DOI PMID |
[3] | Bezkorovainaya IN, Tarasov PA, Ivanova GA, Bogorodskaya AV, Krasnoshchekova EN (2007). The nitrogen reserves in sandy podzols after controlled fires in pine forests of Central Siberia. Eurasian Soil Science, 40, 700-707. |
[4] |
Blessing CH, Werner RA, Siegwolf R, Buchmann N (2015). Allocation dynamics of recently fixed carbon in beech saplings in response to increased temperatures and drought. Tree Physiology, 35, 585-598.
DOI PMID |
[5] | Bu WS, Chen FS, Wang FC, Fang XM, Mao R, Wang HM (2019). The species-specific responses of nutrient resorption and carbohydrate accumulation in leaves and roots to nitrogen addition in a subtropical mixed plantation. Canadian Journal of Forest Research, 49, 826-835. |
[6] | Buysse J, Merckx R (1993). An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44, 1627-1629. |
[7] | Chen YH, Han WX, Tang LY, Tang ZY, Fang JY (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36, 178-184. |
[8] | Cong JX, Gao CY, Xing W, Han DX, Li YH, Wang GP (2022). Historical chemical stability of carbon pool in permafrost peatlands in northern Great Khingan Mountains (China) during the last millennium, and its paleoenvironmental implications. Catena, 209, 105853. DOI: 10.1016/j.catena.2021.105853. |
[9] | Cui XY, Song JF (2005). Soil NH+ 4/NO3- nitrogen characteristics in primary forests and the adaptability of some coniferous species. Acta Ecologica Sinica, 25, 3082-3092. |
[崔晓阳, 宋金凤 (2005). 原始森林土壤NH+ 4/NO3-生境特征与某些针叶树种的适应性. 生态学报, 25, 3082-3092.] | |
[10] | de Moraes MG, Franco AC, Pollock CJ, de Cássia Leone Figueiredo-Ribeiro R (2016). Fire and drought: soluble carbohydrate storage and survival mechanisms in herbaceous plants from the cerrado. BioScience, 66, 107-117. |
[11] |
Diaz-Toribio MH, Putz FE (2021). Underground carbohydrate stores and storage organs in fire-maintained longleaf pine savannas in Florida, USA. American Journal of Botany, 108, 432-442.
DOI PMID |
[12] | Du JH, Shao JY, Li SF, Qin J (2020). Non-structural carbohydrate content of trees and its influencing factors at multiple spatial-temporal scales: a review. Chinese Journal of Applied Ecology, 31, 1378-1388. |
[杜建会, 邵佳怡, 李升发, 秦晶 (2020). 树木非结构性碳水化合物含量多时空尺度变化特征及其影响因素研究进展. 应用生态学报, 31, 1378-1388.]
DOI |
|
[13] | Gao WC, Chen DM, Hu XP, Fang XM, Li Q, Huang Q, Sun FD, Zhou JQ, Bai YF, Zhang J, Li Z, Zhao JM, Yuan DG, Cui XL, Liu L (2023). Nitrogen deposition drives the intricate changes of fine root traits. Global Ecology and Conservation, 43, e02443. DOI: 10.1016/j.gecco.2023.e02443. |
[14] | Garnett TP, Smethurst PJ (1999). Ammonium and nitrate uptake by Eucalyptus nitens: effects of pH and temperature. Plant and Soil, 214, 133-140. |
[15] | Gričar J, Hafner P, Lavrič M, Ferlan M, Ogrinc N, Krajnc B, Eler K, Vodnik D (2020). Post-fire effects on development of leaves and secondary vascular tissues in Quercus pubescens. Tree Physiology, 40, 796-809. |
[16] | Gu Z, Wang B, Chen SF, Wang YW, Suo AL, Liu XD, Chen F (2022). Changes of leaf functional traits of Pinus tabuliformis in burned areas with different fire severities. Chinese Journal of Applied Ecology, 33, 1497-1504. |
[顾泽, 王博, 陈思帆, 王忆文, 索奥丽, 刘晓东, 陈锋 (2022). 不同火烈度火烧迹地内油松叶功能性状的变化. 应用生态学报, 33, 1497-1504.]
DOI |
|
[17] |
Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytologist, 211, 386-403.
DOI PMID |
[18] | Hartmann H, Ziegler W, Trumbore S (2013). Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Functional Ecology, 27, 413-427. |
[19] |
He WQ, Liu HY, Qi Y, Liu F, Zhu XR (2020). Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. Global Change Biology, 26, 3627-3638.
DOI PMID |
[20] | Heim BC, Seiler JR, Strahm BD (2015). Root nonstructural carbohydrates and their relationship with autotrophic respiration of loblolly pine (Pinus taeda L.). Communications in Soil Science and Plant Analysis, 46, 888-896. |
[21] | Hesse BD, Hartmann H, Rötzer T, Landhäusser SM, Goisser M, Weikl F, Pritsch K, Grams TEE (2021). Mature beech and spruce trees under drought—Higher C investment in reproduction at the expense of whole-tree NSC stores. Environmental and Experimental Botany, 191, 104615. DOI: 10.1016/j.envexpbot.2021.104615. |
[22] | Hu TX, Zhao BQ, Li F, Dou X, Hu HQ, Sun L (2021). Effects of fire on soil respiration and its components in a Dahurian larch (Larix gmelinii) forest in Northeast China: implications for forest ecosystem carbon cycling. Geoderma, 402, 115273. DOI: 10.1016/j.geoderma.2021.115273. |
[23] | Hu TY, Zhou GS (2014). Drivers of lightning- and human- caused fire regimes in the Great Xing’an Mountains. Forest Ecology and Management, 329, 49-58. |
[24] | Hu Y, Wu FZ, Wu QX, Kang ZJ, Yue K, Yang YS, Ni XY (2022). Seasonal variations of non-structural carbohydrates in fresh litters of three dominant tree species in subtropical forests. Acta Ecologica Sinica, 42, 1901-1910. |
[胡仪, 吴福忠, 吴秋霞, 康自佳, 岳楷, 杨玉盛, 倪祥银 (2022). 三个亚热带森林优势种凋落物非结构性碳水化合物含量的季节动态. 生态学报, 42, 1901-1910.] | |
[25] | Huang J, Wang XM, Zheng MH, Mo JM (2021). 13-year nitrogen addition increases nonstructural carbon pools in subtropical forest trees in Southern China. Forest Ecology and Management, 481, 118748. DOI: 10.1016/j.foreco.2020.118748. |
[26] | Ji L, Liu Y, Wang J, Lu ZM, Zhang LJ, Yang YC (2021). Differential variation in non-structural carbohydrates in root branch orders of Fraxinus mandshurica Rupr. seedlings across different drought intensities and soil substrates. Frontiers in Plant Science, 12, 692715. DOI: 10.3389/fpls.2021.692715. |
[27] | Keeley JE (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116-126. |
[28] | Kitchen DJ, Blair JM, Callaham MA (2009). Annual fire and mowing alter biomass, depth distribution, and C and N content of roots and soil in tallgrass prairie. Plant and Soil, 323, 235-247. |
[29] | Knicker H (2007). How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 85, 91-118. |
[30] | Knox KJE, Clarke PJ (2005). Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. Functional Ecology, 19, 690-698. |
[31] | Korczynskyj D, Lamont BB (2005). Grasstree (Xanthorrhoea preissii) recovery after fire in two seasons and habitats. Australian Journal of Botany, 53, 509-515. |
[32] | Kruger EL, Reich PB (1997). Responses of hardwood regeneration to fire in mesic forest openings. II. Leaf gas exchange, nitrogen concentration, and water status. Canadian Journal of Forest Research, 27, 1832-1840. |
[33] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
PMID |
[34] | Leng F, Yang ZJ, Wu YC, He DW (2020). Physiological and photosynthetic characteristics and active component contents of Polygonum multiflorum Thunb. under different soil pH values. Acta Botanica Boreali-Occidentalia Sinica, 40, 1566-1573. |
[冷芬, 杨在君, 吴一超, 何道文 (2020). 土壤pH值对何首乌生理及其光合特性和有效成分含量的影响. 西北植物学报, 40, 1566-1573.] | |
[35] | Li MQ, Zhou L, Wang XY, Kang XS, Li CJ, Liu R (2023). Stem and leaf photosynthesis of 7 desert woody plants and its influencing factors. Chinese Journal of Applied Ecology, 34, 2637-2643. |
[李民青, 周乐, 王喜勇, 康晓珊, 李从娟, 刘冉 (2023). 7种荒漠木本植物枝干与叶片光合特征及其影响因素. 应用生态学报, 34, 2637-2643.]
DOI |
|
[36] | Li YY, Xu Y, Chen YS, Ling LH, Jiang YN, Duan HL, Liu JX (2020). Effects of drought regimes on growth and physiological traits of a typical shrub species in subtropical China. Global Ecology and Conservation, 24, e01269. DOI: 10.1016/j.gecco.2020.e01269. |
[37] | Liu KJ, He NP, Hou JH (2022). Spatial patterns and influencing factors of specific leaf area in typical temperate forests. Acta Ecologica Sinica, 42, 872-883. |
[刘可佳, 何念鹏, 侯继华 (2022). 中国温带典型森林植物比叶面积的空间格局及其影响因素. 生态学报, 42, 872-883.] | |
[38] | Liu MH, Wang YX, Li Q, Xiao WF, Song XZ (2019). Photosynthesis, ecological stoichiometry, and non-structural carbohydrate response to simulated nitrogen deposition and phosphorus addition in Chinese fir forests. Forests, 10, 1068. DOI: 10.3390/f10121068. |
[39] | Liu QQ, Ma XQ, Huang ZJ, Guo S, Wang DY, Wang CH, Liu B (2019). Effects of light intensity on the morphology characteristics and leaf non-structural carbohydrate content of Chinese fir seedlings. Acta Ecologica Sinica, 39, 4455-4462. |
[刘青青, 马祥庆, 黄智军, 郭思, 王大洋, 王昌辉, 刘博 (2019). 光强对杉木幼苗形态特征和叶片非结构性碳含量的影响. 生态学报, 39, 4455-4462.] | |
[40] |
Mei L, Xiong YM, Gu JC, Wang ZQ, Guo DL (2015). Whole-tree dynamics of non-structural carbohydrate and nitrogen pools across different seasons and in response to girdling in two temperate trees. Oecologia, 177, 333-344.
DOI PMID |
[41] | Miransari M (2013). Soil microbes and the availability of soil nutrients. Acta Physiologiae Plantarum, 35, 3075-3084. |
[42] |
Mitchell AK, Hinckley TM (1993). Effects of foliar nitrogen concentration on photosynthesis and water use efficiency in Douglas-fir. Tree Physiology, 12, 403-410.
PMID |
[43] |
Mo QF, Chen YQ, Yu SQ, Fan YX, Peng ZT, Wang WJ, Li ZA, Wang FM (2020). Leaf nonstructural carbohydrate concentrations of understory woody species regulated by soil phosphorus availability in a tropical forest. Ecology and Evolution, 10, 8429-8438.
DOI PMID |
[44] | Muqaddas B, Zhou XQ, Lewis T, Wild C, Chen CR (2015). Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Science of the Total Environment, 536, 39-47. |
[45] |
O SM, Hou XY, Orth R (2020). Observational evidence of wildfire-promoting soil moisture anomalies. Scientific Reports, 10, 11008. DOI: 10.1038/s41598-020-67530-4.
PMID |
[46] |
Olano JM, Menges ES, Martínez E (2006). Carbohydrate storage in five resprouting Florida scrub plants across a fire chronosequence. New Phytologist, 170, 99-105.
PMID |
[47] |
Palacio S, Milla R, Albuixech J, Pérez-Rontomé C, Camarero JJ, Maestro M, Montserrat-Martí G (2008). Seasonal variability of dry matter content and its relationship with shoot growth and nonstructural carbohydrates. New Phytologist, 180, 133-142.
DOI PMID |
[48] | Partelli-Feltrin R, Smith AMS, Adams HD, Thompson RA, Kolden CA, Yedinak KM, Johnson DM (2023). Death from hunger or thirst? Phloem death, rather than xylem hydraulic failure, as a driver of fire-induced conifer mortality. New Phytologist, 237, 1154-1163. |
[49] | Payton IJ, Brasch DJ (1978). Growth and nonstructural carbohydrate reserves in Chionochloa rigida and C. macra, and their short-term response to fire. New Zealand Journal of Botany, 16, 435-460. |
[50] | Rosell JA, Marcati CR, Olson ME, Lagunes X, Vergilio PCB, Jiménez-Vera C, Campo J (2023). Inner bark vs sapwood is the main driver of nitrogen and phosphorus allocation in stems and roots across three tropical woody plant communities. New Phytologist, 239, 1665-1678. |
[51] |
Ryan CM, Williams M (2011). How does fire intensity and frequency affect miombo woodland tree populations and biomass? Ecological Applications, 21, 48-60.
PMID |
[52] | Ryhti K, Schiestl-Aalto P, Tang Y, Rinne-Garmston KT, Ding YY, Pumpanen J, Biasi C, Saurer M, Bäck J, Kulmala L (2022). Effects of variable temperature and moisture conditions on respiration and nonstructural carbohydrate dynamics of tree roots. Agricultural and Forest Meteorology, 323, 109040. DOI: 10.1016/j.agrformet.2022.109040. |
[53] |
Sala A, Woodruff DR, Meinzer FC (2012). Carbon dynamics in trees: feast or famine? Tree Physiology, 32, 764-775.
DOI PMID |
[54] |
Schutz AEN, Bond WJ, Cramer MD (2009). Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia, 160, 235-246.
DOI PMID |
[55] | Sun JH, Shi HL, Chen KY, Ji BM, Zhang J (2023). Research advances on trade-off relationships of plant fine root functional traits. Chinese Journal of Plant Ecology, 47, 1055-1070. |
[孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静 (2023). 植物细根功能性状的权衡关系研究进展. 植物生态学报, 47, 1055-1070.]
DOI |
|
[56] | Tang K, Zhu WW, Zhou WX, Yi ZX, Tu NM (2013). Research progress on effects of soil pH on plant growth and development. Crop Research, 27(2), 207-212. |
[唐琨, 朱伟文, 周文新, 易镇邪, 屠乃美 (2013). 土壤pH对植物生长发育影响的研究进展. 作物研究, 27(2), 207-212.] | |
[57] |
Tixier A, Guzmán-Delgado P, Sperling O, Amico Roxas A, Laca E, Zwieniecki MA (2020). Comparison of phenological traits, growth patterns, and seasonal dynamics of non- structural carbohydrate in Mediterranean tree crop species. Scientific Reports, 10, 347. DOI: 10.1038/s41598-019-57016-3.
PMID |
[58] | Trifilò P, Casolo V, Raimondo F, Petrussa E, Boscutti F, Lo Gullo MA, Nardini A (2017). Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: the possible link between carbon starvation and hydraulic failure. Plant Physiology and Biochemistry, 120, 232-241. |
[59] | Varner JM, Hood SM, Aubrey DP, Yedinak K, Hiers JK, Jolly WM, Shearman TM, McDaniel JK, O’Brien JJ, Rowell EM (2021). Tree crown injury from wildland fires: causes, measurement and ecological and physiological consequences. New Phytologist, 231, 1676-1685. |
[60] | Vitasse Y, Lenz A, Kollas C, Randin CF, Hoch G, Körner C (2014). Genetic vs. non-genetic responses of leaf morphology and growth to elevation in temperate tree species. Functional Ecology, 28, 243-252. |
[61] | Wang F, Zhang JH, Gu Y, Zhao T, Han SJ (2017). Meta- analysis of the effects of nitrogen addition on photosynthesis of forests. Chinese Journal of Ecology, 36, 1539-1547. |
[王芳, 张军辉, 谷越, 赵婷, 韩士杰 (2017). 氮添加对树木光合速率影响的meta分析. 生态学杂志, 36, 1539-1547.] | |
[62] | Wang YX, Shan LS, Xie TT, Ma J, Shi YT (2024). The effects of drought-rehydration on non-structural carbohydrates of Reaumuria soongorica seedlings. Chinese Journal of Ecology, 43, 383-394. |
[王雲霞, 单立山, 解婷婷, 马静, 师亚婷 (2024). 干旱-复水对红砂幼苗各器官非结构性碳水化合物的影响. 生态学杂志, 43, 383-394.] | |
[63] | Wei YM, Hu HQ, Sun JB, Yuan Q, Sun L, Liu HF (2016). Effect of fire intensity on active organic and total soil carbon in a Larix gmelinii forest in the Daxing’anling Mountains, Northeastern China. Journal of Forestry Research, 27, 1351-1359. |
[64] | Wigley BJ, Cramer MD, Bond WJ (2009). Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecology, 203, 1-11. |
[65] |
Wiley E, Helliker B (2012). A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytologist, 195, 285-289.
DOI PMID |
[66] | Xi BY (2019). Morphology, distribution, dynamic characteristics of poplar roots and its water uptake habits. Journal of Beijing Forestry University, 41(12), 37-49. |
[席本野 (2019). 杨树根系形态、分布、动态特征及其吸水特性. 北京林业大学学报, 41(12), 37-49.] | |
[67] | Yang QP, Zhang WD, Li RS, Xu M, Wang SL (2016). Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees, 30, 1863-1871. |
[68] | Yin ZX, Fan SH, Xia W, Zhou Y, Zhou X, Zhang X, Li CJ, Guan FY (2023). Response of growth, metabolism and yield of Dendrocalamopsis oldhami to long-day photoperiod and fertilizer compensation. Journal of Forestry Research, 34, 151-166. |
[69] | Yu L, Song M, Xia Z, Korpelainen H, Li C (2019). Plant-plant interactions and resource dynamics of Abies fabri and Picea brachytyla as affected by phosphorus fertilization. Environmental and Experimental Botany, 168, 103893. DOI: 10.1016/j.envexpbot.2019.103893. |
[70] | Yu LM, Wang CK, Wang XC (2011). Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255. |
[于丽敏, 王传宽, 王兴昌 (2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.]
DOI |
|
[71] | Yu XY, Tie N, Sa RL, Hu RC (2023). Soil physical and chemical properties of Betula platyphylla secondary forest under different disturbance types. Forest Inventory and Planning, 48(3), 78-84. |
[于晓雨, 铁牛, 萨如拉, 呼日查 (2023). 不同干扰类型下的白桦次生林土壤理化性质研究. 林业调查规划, 48(3), 78-84.] | |
[72] | Zhang FS, Cao YP (1992). Rhizosphere dynamics and plant nutrition. Acta Pedologica Sinica, 3, 239-250. |
[张福锁, 曹一平 (1992). 根际动态过程与植物营养. 土壤学报, 3, 239-250.] | |
[73] |
Zhang H, Li W, Adams HD, Wang A, Wu J, Jin C, Guan D, Yuan F (2018). Responses of woody plant functional traits to nitrogen addition: a meta-analysis of leaf economics, gas exchange, and hydraulic traits. Frontiers in Plant Science, 9, 683. DOI: 10.3389/fpls.2018.00683.
PMID |
[74] | Zhang YP, Hai XY, Xu JL, Wu WX, Cao PH, An WJ (2019). Seasonal dynamics of non-structural carbohydrate content in branch of Quercus variabilis growing in east Qinling Mountain range. Chinese Journal of Plant Ecology, 43, 521-531. |
[章异平, 海旭莹, 徐军亮, 吴文霞, 曹鹏鹤, 安文静 (2019). 秦岭东段栓皮栎枝条非结构性碳水化合物含量的季节动态. 植物生态学报, 43, 521-531.]
DOI |
|
[75] | Zhao JJ, Gong L (2021). Response of fine root carbohydrate content to soil nitrogen addition and its relationship with soil factors in a schrenk (Picea schrenkiana) forest. Journal of Plant Growth Regulation, 40, 1210-1221. |
[76] | Zheng YT, Xiong JP, Ye Q, Lei XL, Wu HM, Xiao JX (2016). Effects of prescribed fire on soil nutrients in Camellia oleifera forest. Journal of Central South University of Forestry & Technology, 36(1), 26-32. |
[郑育桃, 熊建平, 叶清, 雷小林, 吴红敏, 肖金香 (2016). 营林用火对油茶林地土壤养分的影响. 中南林业科技大学学报, 36(1), 26-32.] |
[1] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[2] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[3] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[4] | 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞. 中国草地生态系统根系周转的空间格局和驱动因子[J]. 植物生态学报, 2018, 42(3): 337-348. |
[5] | 葛结林, 熊高明, 李家湘, 徐文婷, 赵常明, 卢志军, 李跃林, 谢宗强. 中国南方灌丛凋落物现存量[J]. 植物生态学报, 2017, 41(1): 5-13. |
[6] | 张艳婷, 张建军, 王建修, 吴晓洪, 陈宝强, 李鹏飞, 王志臻. 长期水淹对‘中山杉118’幼苗呼吸代谢的影响[J]. 植物生态学报, 2016, 40(6): 585-593. |
[7] | 王彪, 江源, 王明昌, 董满宇, 章异平. 芦芽山不同海拔白杄非结构性碳水化合物含量动态[J]. 植物生态学报, 2015, 39(7): 746-752. |
[8] | 杨春, 谭太龙, 余佳玲, 廖琼, 张晓龙, 张振华, 宋海星, 官春云. 大气CO2浓度倍增对油菜韧皮部汁液成分及根部氮素积累的影响[J]. 植物生态学报, 2014, 38(7): 776-784. |
[9] | 石慧清, 龚月桦, 张东武. 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响[J]. 植物生态学报, 2011, 35(7): 769-778. |
[10] | 陈洁, 汤亮, 刘小军, 曹卫星, 朱艳. 基于植株碳流的水稻籽粒淀粉积累模拟模型[J]. 植物生态学报, 2011, 35(4): 431-440. |
[11] | 王维, 蔡一霞, 杨建昌, 朱庆森. 结实期土壤水分亏缺影响水稻籽粒灌浆的生理原因[J]. 植物生态学报, 2011, 35(2): 195-202. |
[12] | 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35(12): 1245-1255. |
[13] | 朱云集, 马冬云, 李向阳, 郭天财, 王晨阳. 两种冠温型冬小麦籽粒蛋白质和淀粉组分积累动态[J]. 植物生态学报, 2006, 30(2): 352-360. |
[14] | 李永庚, 于振文, 梁晓芳, 赵俊晔, 邱希宾. 小麦产量和品质对灌浆期不同阶段低光照强度的响应[J]. 植物生态学报, 2005, 29(5): 807-813. |
[15] | 王维, 蔡一霞, 蔡昆争, 张建华, 杨建昌, 朱庆森. 土壤水分亏缺对水稻茎秆贮藏碳水化合物向籽粒运转的调节[J]. 植物生态学报, 2005, 29(5): 819-828. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19