植物生态学报 ›› 2017, Vol. 41 ›› Issue (1): 5-13.DOI: 10.17521/cjpe.2016.0202
所属专题: 中国灌丛生态系统碳储量的研究; 凋落物
葛结林1, 熊高明1, 李家湘1, 徐文婷1, 赵常明1, 卢志军2, 李跃林3, 谢宗强1,*()
收稿日期:
2016-06-14
接受日期:
2016-11-10
出版日期:
2017-01-10
发布日期:
2017-01-23
通讯作者:
谢宗强
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Jie-Lin GE1, Gao-Ming XIONG1, Jia-Xiang LI1, Wen-Ting XU1, Chang-Ming ZHAO1, Zhi-Jun LU2, Yue-Lin LI3, Zong-Qiang XIE1,*()
Received:
2016-06-14
Accepted:
2016-11-10
Online:
2017-01-10
Published:
2017-01-23
Contact:
Zong-Qiang XIE
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
凋落物是陆地生态系统的重要组成部分, 在区域尺度上阐明其现存量的分布特征及其影响因子有助于理解陆地生态系统碳循环的机理。该研究采用分层随机抽样调查方法分析了中国南方灌丛生态系统凋落物现存量的空间分布格局及其影响因子。结果发现: 该区域灌丛凋落物现存量的平均值为0.32 kg·m-2, 是中国森林凋落物现存量(0.47 kg·m-2)的68%, 是中国草地凋落物现存量(0.06 kg·m-2)的5倍;凋落物现存量呈现出明显的纬度格局,随着纬度的增加而升高;该区域的灌丛生态系统凋落物现存量的碳转换系数为0.41,显著低于植被活体转换系数0.50;凋落物现存量与年平均气温、土壤全磷含量和土壤pH值显著负相关,与年降水量、土壤碳、氮以及有机碳含量相关性不显著。研究表明:该区域灌丛凋落物现存量是中国陆地生态系统碳库不可忽视的组分;年平均气温是影响该区域内灌丛生态系统凋落物现存量的重要环境因子;采用常用的植被活体碳转换系数可能会高估凋落物现存量碳库的22%。
葛结林, 熊高明, 李家湘, 徐文婷, 赵常明, 卢志军, 李跃林, 谢宗强. 中国南方灌丛凋落物现存量. 植物生态学报, 2017, 41(1): 5-13. DOI: 10.17521/cjpe.2016.0202
Jie-Lin GE, Gao-Ming XIONG, Jia-Xiang LI, Wen-Ting XU, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Litter standing crop of shrubland ecosystems in southern China. Chinese Journal of Plant Ecology, 2017, 41(1): 5-13. DOI: 10.17521/cjpe.2016.0202
地点 Place | 年份 Year | 样点数 No. of sites | 纬度 Latitude (N) (°) | 经度 Longitude (E) (°) | 海拔 Altitude (m) | 年平均气温 Mean annual temperature (℃) | 年降水量 Mean annual precipitation (mm) | 土壤全碳 Soil total carbon (%) | 土壤全氮 Soil total nitrogen (%) | 土壤全磷 Soil total phosphorus (mg·g-1) |
---|---|---|---|---|---|---|---|---|---|---|
江苏 Jiangsu | 2012-2013 | 5 | 31.6-34.6 | 118.1-120.3 | 18-388 | 16.1 | 1 019.6 | 1.4 | 0.1 | 0.5 |
浙江 Zhejiang | 2011-2013 | 26 | 27.5-31.1 | 118.4-122.3 | 27-631 | 18.2 | 1 784.3 | 1.8 | 0.2 | 0.3 |
安徽 Anhui | 2011-2012 | 20 | 29.7-31.6 | 115.9-119.4 | 47-553 | 17.2 | 1 692.1 | 2.1 | 0.2 | 0.5 |
湖北 Hubei | 2011-2013 | 74 | 29.1-32.9 | 108.7-115.8 | 61-1 865 | 16.3 | 1 375.2 | 2.3 | 0.2 | 0.6 |
江西 Jiangxi | 2011-2013 | 49 | 25.0-29.6 | 113.9-117.5 | 28-601 | 20.0 | 1 641.0 | 1.7 | 0.2 | 0.4 |
福建 Fujian | 2011-2013 | 39 | 24.1-27.9 | 116.4-120.2 | 42-1 132 | 20.3 | 1 795.1 | 1.3 | 0.1 | 0.2 |
广东 Guangdong | 2011-2014 | 35 | 21.7-25.0 | 111.3-116.5 | 0-678 | 22.6 | 2 009.2 | 2.2 | 0.2 | 0.3 |
湖南 Hunan | 2011-2013 | 70 | 25.1-29.7 | 109.6-113.9 | 61-1 405 | 18.6 | 1 547.3 | 2.5 | 0.2 | 0.4 |
重庆 Chongqing | 2011-2013 | 50 | 28.5-32.0 | 105.9-110.0 | 173-1 506 | 16.8 | 1 355.3 | 2.9 | 0.2 | 0.6 |
广西 Guangxi | 2011-2014 | 44 | 21.7-25.0 | 105.2-111.4 | 33-1 259 | 22.0 | 1 669.8 | 3.0 | 0.3 | 0.8 |
海南 Hainan | 2011-2012 | 20 | 18.3-20.0 | 108.7-111.0 | 4-147 | 26.1 | 1 569.3 | 0.9 | 0.1 | 0.4 |
表1 所研究省市自治区的地理位置、气候和土壤养分概况
Table 1 General information on geographic location, climate and soil for different provinces, municipalities and autonomous regions
地点 Place | 年份 Year | 样点数 No. of sites | 纬度 Latitude (N) (°) | 经度 Longitude (E) (°) | 海拔 Altitude (m) | 年平均气温 Mean annual temperature (℃) | 年降水量 Mean annual precipitation (mm) | 土壤全碳 Soil total carbon (%) | 土壤全氮 Soil total nitrogen (%) | 土壤全磷 Soil total phosphorus (mg·g-1) |
---|---|---|---|---|---|---|---|---|---|---|
江苏 Jiangsu | 2012-2013 | 5 | 31.6-34.6 | 118.1-120.3 | 18-388 | 16.1 | 1 019.6 | 1.4 | 0.1 | 0.5 |
浙江 Zhejiang | 2011-2013 | 26 | 27.5-31.1 | 118.4-122.3 | 27-631 | 18.2 | 1 784.3 | 1.8 | 0.2 | 0.3 |
安徽 Anhui | 2011-2012 | 20 | 29.7-31.6 | 115.9-119.4 | 47-553 | 17.2 | 1 692.1 | 2.1 | 0.2 | 0.5 |
湖北 Hubei | 2011-2013 | 74 | 29.1-32.9 | 108.7-115.8 | 61-1 865 | 16.3 | 1 375.2 | 2.3 | 0.2 | 0.6 |
江西 Jiangxi | 2011-2013 | 49 | 25.0-29.6 | 113.9-117.5 | 28-601 | 20.0 | 1 641.0 | 1.7 | 0.2 | 0.4 |
福建 Fujian | 2011-2013 | 39 | 24.1-27.9 | 116.4-120.2 | 42-1 132 | 20.3 | 1 795.1 | 1.3 | 0.1 | 0.2 |
广东 Guangdong | 2011-2014 | 35 | 21.7-25.0 | 111.3-116.5 | 0-678 | 22.6 | 2 009.2 | 2.2 | 0.2 | 0.3 |
湖南 Hunan | 2011-2013 | 70 | 25.1-29.7 | 109.6-113.9 | 61-1 405 | 18.6 | 1 547.3 | 2.5 | 0.2 | 0.4 |
重庆 Chongqing | 2011-2013 | 50 | 28.5-32.0 | 105.9-110.0 | 173-1 506 | 16.8 | 1 355.3 | 2.9 | 0.2 | 0.6 |
广西 Guangxi | 2011-2014 | 44 | 21.7-25.0 | 105.2-111.4 | 33-1 259 | 22.0 | 1 669.8 | 3.0 | 0.3 | 0.8 |
海南 Hainan | 2011-2012 | 20 | 18.3-20.0 | 108.7-111.0 | 4-147 | 26.1 | 1 569.3 | 0.9 | 0.1 | 0.4 |
图2 中国南方灌丛凋落物现存量随经纬度的变化(平均值±标准误差)。A, 纬度。B, 经度。
Fig. 2 Variation in litter standing crop of shrublands across the latitudinal and longitudinal gradients in southern China (mean ± SE). A, Latitude. B, Longitude.
图3 中国南方灌丛凋落物现存量与环境因子的关系。本文仅显示凋落物现存量与环境因子关系显著的图。A-E, 现存量与单个环境因子(年平均气温、土壤全磷含量、土壤容重和干燥度)的关系。F, 现存量与年平均气温(MAT)、土壤全磷含量和土壤pH值之间的多元线性回归关系。
Fig. 3 Variation in litter standing crop of shrublands of southern China in relation to environmental factors in China. We only showed the figures that depicted the significant relationship between litter standing crop and environmental factors. A-E, The relationship between litter standing crop and single environmental variables including mean annual temperature (MAT), soil total phosphorus (P) content, soil pH value, soil bulk density and climatic dryness (Idw). F, Observed value vs. predicted value of litter standing crop from multiple regression using mean annual temperature (MAT), soil P content and soil pH value as predictors.
[1] | Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship.Oikos, 79, 439-449. |
[2] | Chave J, Navarrete D, Almeida S, Alvarez E, Aragão LE, Bonal D, Châtelet P, Silva-Espejo J, Goret JY, Hildebrand P (2010). Regional and seasonal patterns of litterfall in tropical South America.Biogeosciences, 7, 43-55. |
[3] | Chen SS, Liu HY, Guo DL (2010). Litter stocks and chemical quality of natural birch forest along temperature and precipitation gradients in eastern Inner Mongolia, China.Chinese Journal of Plant Ecology, 34, 1007-1015. (in Chinese with English abstract)[陈莎莎, 刘鸿雁, 郭大立 (2010). 内蒙古东部天然白桦林的凋落物性质和储量及其随温度和降水梯度的变化格局. 植物生态学报, 34, 1007-1015.] |
[4] | Descheemaeker K, Muys B, Nyssen J, Poesen J, Raes D, Haile M, Deckers J (2006). Litter production and organic matter accumulation in exclosures of the Tigray highlands, Ethiopia. Forest Ecology and Management, 233, 21-35. |
[5] | Domke GM, Perry CH, Walters BF, Woodall CW, Russell MB, Smith JE (2016). Estimating litter carbon stocks on forest land in the United States.Science of Total Environment, 557, 469-478. |
[6] | Dorrepaal E, Cornelissen JHC, Aerts R, Wallén B, van Logtestijn RSP (2005). Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient?Journal of Ecology, 93, 817-828. |
[7] | Fang JY, Huang Y, Zhu JL, Sun WJ, Hu HF (2015a). Carbon budget of forest ecosystems and its driving forces.China Basic Science, 3, 20-25. (in Chinese with English abstract)[方精云, 黄耀, 朱江玲, 孙文娟, 胡会峰 (2015a). 森林生态系统碳收支及其影响机制. 中国基础科学, 3, 20-25.] |
[8] | Fang JY, Yu GR, Ren XB, Liu GH, Zhao XQ (2015b). Carbon sequestration in China’s terrestrial ecosystems under climate change—Progress on ecosystem carbon sequestration from the CAS Strategic Priority Research Program. Bulletin of Chinese Academy of Sciences, 30, 848-857. (in Chinese with English abstract)[方精云, 于贵瑞, 任小波, 刘国华, 赵新全 (2015b). 中国陆地生态系统固碳效应——中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”之生态系统固碳任务群研究进展. 中国科学院院刊, 30, 848-857. ] |
[9] | García-Palacios P, McKie BG, Handa IT, Frainer A, Hättenschwiler S (2016). The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes.Functional Ecology, 30, 819-829. |
[10] | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas.International Journal of Climatology, 25, 1965-1978. |
[11] | Hilli S, Stark S, Derome J (2010). Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients.Applied Soil Ecology, 46, 200-208. |
[12] | Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China.Journal of Plant Ecology (Chinese Version), 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.] |
[13] | Li Q, Zhou DW, Chen XY (2014). The accumulation, decomposition and ecological effects of above-ground litter in terrestrial ecosystem.Acta Ecologica Sinica, 34, 3807-3819. (in Chinese with English abstract)[李强, 周道玮, 陈笑莹 (2014). 地上枯落物的累积、分解及其在陆地生态系统中的作用. 生态学报, 34, 3807-3819.] |
[14] | Liu C, Westman CJ, Berg B, Kutsch W, Wang GZ, Man R, Ilvesniemi H (2004). Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia.Global Ecology and Biogeography, 13, 105-114. |
[15] | Liu GS (1997). Soil Physical and Chemical Analysis and the Profile Description. China Standard Publishing House, Beijing. (in Chinese)[刘光崧 (1997). 土壤理化分析与剖面描述. 中国标准出版社, 北京.] |
[16] | Lü GH, Li RP, Wen RH, Xie YB, Wang XY (2014). Analysis of climatic effects on the components of forest litterfall production.Chinese Agricultural Science Bulletin, 30, 1-6. (in Chinese with English abstract)[吕国红, 李荣平, 温日红, 谢艳兵, 王笑影 (2014). 森林凋落物组分的气象影响分析. 中国农学通报, 30, 1-6. ] |
[17] | Ma YZ, Cheng DL, Zhong QL, Jin BJ, Xu CB, Hu B (2013). Allometric relationships among different components of forest litterfall in China.Chinese Journal of Plant Ecology, 37, 1071-1079. (in Chinese with English abstract)[马玉珠, 程栋梁, 钟全林, 靳冰洁, 徐朝斌, 胡波 (2013). 中国森林凋落物不同组分异速比例关系. 植物生态学报, 37, 1071-1079. ] |
[18] | Marty C, Houle D, Gagnon C (2015). Variation in stocks and distribution of organic C in soils across 21 eastern Canadian temperate and boreal forests.Forest Ecology and Management, 345, 29-38. |
[19] | Matthews E (1997). Global litter production, pools, and turnover times: Estimates from measurement data and regression models. Journal of Geophysical Research: Atmospheres, 102, 18771-18800. |
[20] | [中华人民共和国环境保护部, 中国科学院(. Cited: 2016-06-14. |
[21] | Parsons SA, Congdon RA, Lawler IR (2014a). Determinants of the pathways of litter chemical decomposition in a tropical region.New Phytologist, 203, 873-882. |
[22] | Parsons SA, Congdon RA, Shoo LP, Valdez-Ramirez V, Williams SE (2014b). Spatial variability in litterfall, litter standing crop and litter quality in a tropical rain forest region.Biotropica, 46, 378-386. |
[23] | Peng SL, Liu Q (2002) The dynamics of forest litter and its responses to global warming.Acta Ecologica Sinica, 22, 1534-1544. (in Chinese with English abstract)[彭少麟, 刘强 (2002). 森林凋落物动态及其对全球变暖的响应. 生态学报, 22, 1534-1544. ] |
[24] | Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China.Nature, 458, 1009-1013. |
[25] | Pitkänen A, Simola H, Turunen J (2012). Dynamics of organic matter accumulation and decomposition in the surface soil of forestry-drained peatland sites in Finland.Forest Ecology and Management, 284, 100-106. |
[26] | Portillo-Estrada M, Pihlatie M, Korhonen JF, Levula J, Frumau AK, Ibrom A, Lembrechts JJ, Morillas L, Horváth L, Jones SK (2016). Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments.Biogeosciences, 13, 1621-1633. |
[27] | Ray-Mukherjee J, Nimon K, Mukherjee S, Morris DW, Slotow R, Hamer M (2014). Using commonality analysis in multiple regressions: A tool to decompose regression effects in the face of multicollinearity.Methods in Ecology and Evolution, 5, 320-328. |
[28] | Salinas N, Malhi Y, Meir P, Silman M, Roman Cuesta R, Huaman J, Salinas D, Huaman V, Gibaja A, Mamani M (2011). The sensitivity of tropical leaf litter decomposition to temperature: Results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests.New Phytologist, 189, 967-977. |
[29] | Schreeg LA, Mack MC, Turner BL (2013). Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology, 94, 94-105. |
[30] | Simmons JA, Fernandez IJ, Briggs RD, Delaney MT (1996). Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA.Forest Ecology and Management, 84, 81-95. |
[31] | Sun X, Kang H, Chen HYH, Berg B, Bartels SF, Liu C (2016). Biogeographic patterns of nutrient resorption from Quercus variabilis Blume leaves across China. Plant Biology, 18, 505-513. |
[32] | Tang SS, Yang WQ, Yin R, Xiong L, Wang HP, Wang B, Zhang Y, Peng YJ, Chen QS, Xu ZF (2014). Spatial characteristics in decomposition rate of foliar litter and controlling factors in Chinese forest ecosystems.Chinese Journal of Plant Ecology, 38, 529-539. (in Chinese with English abstract)[唐仕姗, 杨万勤, 殷睿, 熊莉, 王海鹏, 王滨, 张艳, 彭艳君, 陈青松, 徐振锋 (2014). 中国森林生态系统凋落叶分解速率的分布特征及其控制因子. 植物生态学报, 38, 529-539.] |
[33] | Technical Manual Writing Group of Ecosystem Carbon Sequestration Project (2015). Observation and Investigation for Carbon Sequestration in Terrestrial Ecosystems. Science Press, Beijing. (in Chinese)[生态系统固碳项目技术规范编写组 (2015). 生态系统固碳观测与调查技术规范. 科学出版社, 北京. ] |
[34] | Twilley RW, Lugo AE, Patterson-Zucca C (1986). Litter production and turnover in basin mangrove forests in southwest Florida.Ecology, 67, 670-683. |
[35] | Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants.Ecological Monograph, 82, 205-220. |
[36] | Wang SL, Chen CY (2010). The Ecology of Forest Litter. Science Press, Beijing.(in Chinese) [汪思龙, 陈楚莹 (2010). 森林残留物生态学. 科学出版社, 北京.] |
[37] | Wen D, He NP (2016). Spatial patterns of litter density and their controlling factors in forest and grasslands of China. Acta Ecologica Sinica, 36, 2876-2884. (in Chinese with English abstract)[温丁, 何念鹏 (2016). 中国森林和草地凋落物现存量的空间分布格局及其控制因素. 生态学报, 36, 2876-2884.] |
[38] | Westcott V, Enright N, Miller B, Fontaine J, Lade J, Lamont B (2014). Biomass and litter accumulation patterns in species-rich shrublands for fire hazard assessment.International Journal of Wildland Fire, 23, 860-871. |
[39] | Wu ZY (1980). Vegetation of China. Science Press, Beijing. (in Chinese)[吴征镒 (1980). 中国植被. 科学出版社, 北京.] |
[40] | Yan ER, Wang XH, Zhou W (2008). Characteristics of litterfall in relation to soil nutrients in mature and degraded evergreen broad-leaved forests of Tiantong, East China.Journal of Plant Ecology (Chinese Version), 32, 1-12. (in Chinese with English abstract)[阎恩荣, 王希华, 周武 (2008). 天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系. 植物生态学报, 32, 1-12.] |
[41] | Zhang D, Hui D, Luo Y, Zhou G (2008). Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors.Journal of Plant Ecology, 1, 85-93. |
[42] | Zhang X, Wang W (2015). Control of climate and litter quality on leaf litter decomposition in different climatic zones.Journal of Plant Research, 128, 791-802. |
[43] | Zhang XP, Wang XP, Zhu B, Zong ZJ, Peng CH, Fang JY (2008). Litter fall production in relation to enviromental factors in northeast China’s forests.Journal of Plant Ecology (Chinese Version), 32, 1031-1040. (in Chinese with English abstract)[张新平, 王襄平, 朱彪, 宗占江, 彭长辉, 方精云 (2008). 我国东北主要森林类型的凋落物产量及其影响因素. 植物生态学报, 32, 1031-1040.] |
[44] | Zhao HM, Huang G, Ma J, Li Y, Zhou L (2012). Responses of surface litter decomposition to seasonal water addition in desert.Chinese Journal of Plant Ecology, 36, 471-482. (in Chinese with English abstract)[赵红梅, 黄刚, 马健, 李彦, 周丽 (2012). 荒漠区地表凋落物分解对季节性降水增加的响应. 植物生态学报, 36, 471-482.] |
[45] | Zheng L, Lu LH (2012). Standing crop and nutrient characteristics of forest floor litter in China.Journal of Northwest Forestry University, 27, 63-69. (in Chinese with English abstract)[郑路, 卢立华 (2012). 我国森林地表凋落物现存量及养分特征. 西北林学院学报, 27, 63-69.] |
[46] | Zhou X, Talley M, Luo Y (2009). Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains, USA.Ecosystems, 12, 1369-1380. |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[7] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[8] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[9] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[10] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[11] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[12] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[13] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[14] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[15] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19