植物生态学报 ›› 2024, Vol. 48 ›› Issue (3): 306-316.DOI: 10.17521/cjpe.2023.0134 cstr: 32100.14.cjpe.2023.0134
所属专题: 全球变化与生态系统; 生态系统碳水能量通量; 美丽中国建设
收稿日期:
2023-05-14
接受日期:
2023-08-03
出版日期:
2024-03-20
发布日期:
2024-02-28
通讯作者:
*(laiquan@imnu.edu.cn)
基金资助:
YANG Yu-Meng1, LAI Quan1,2,*(), LIU Xin-Yi1
Received:
2023-05-14
Accepted:
2023-08-03
Online:
2024-03-20
Published:
2024-02-28
Contact:
*(laiquan@imnu.edu.cn)
Supported by:
摘要:
内蒙古自治区作为中国北方重要的生态安全屏障, 研究其植被变化对北方地区的生态安全意义重大。该研究基于1982-2017年内蒙古地区的涡流协方差-光利用效率模型反演的植被总初级生产力(EC-LUE GPP)等多源遥感数据, 利用趋势分析和相关性分析法, 分析了内蒙古地区植被GPP的时空变化特征及其与气温、降水和土壤湿度的相关性。在此基础上, 采用多元线性回归和残差分析方法, 分解并量化气候变化和人类活动影响下的GPP, 分不同时间段开展了其对植被GPP影响的分析, 探索不同植被类型GPP对驱动因素的响应。主要结果有: (1)三种气象要素与植被GPP表现出良好的相关性, 其中降水和土壤湿度与GPP的相关性更高。(2) 1982-1990年期间植被GPP呈现不显著波动上升, 其余3个时间段(1991-2000、2001-2010、2011-2017年)呈不显著波动下降趋势。整体上呈下降趋势的区域占内蒙古植被总面积的55%, 另外45%的区域呈显著上升趋势。(3)除2001-2010年期间外, 其他3个时间段内(1982-1990、1991-2000、2011-2017年)气候变化对植被恢复起决定性作用, 分别解释20%、16%、13%的植被恢复; 人类活动在植被退化区占主导地位, 分别解释13%、19%、20%的植被退化。研究结果可为内蒙古生态环境保护与管理政策的实施以及绿色可持续发展提供科学参考。
杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响. 植物生态学报, 2024, 48(3): 306-316. DOI: 10.17521/cjpe.2023.0134
YANG Yu-Meng, LAI Quan, LIU Xin-Yi. Quantitative analysis of climate change and human activities on vegetation gross primary productivity in Nei Mongol, China. Chinese Journal of Plant Ecology, 2024, 48(3): 306-316. DOI: 10.17521/cjpe.2023.0134
方法(比较斜率值) Method (compare slope value) | 预测和残差 Predictions and residuals | 相对作用率 Relative action rate (%) | 解释 Description | ||
---|---|---|---|---|---|
S(GPPa) | S(GPPh) | 气候变化 Climate change | 人类活动 Human activities | ||
S(GPPa) > 0 | >0 | <0 | 100 | 0 | 气候变化导致GPP增加 Climate changes increase GPP |
<0 | >0 | 0 | 100 | 人类活动导致GPP增加 Human activities increase GPP | |
>0 | >0 | 气候变化和人类活动共同导致GPP增加 Climate changes and human activities increase GPP | |||
S(GPPa) = 0 | 0 | 0 | 0 | 0 | GPP不发生变化 GPP unchanged |
S(GPPa) < 0 | <0 | >0 | 100 | 0 | 气候变化导致GPP减少 Climate changes reduce GPP |
>0 | <0 | 0 | 100 | 人类活动导致GPP减少 Human activities reduce GPP | |
<0 | <0 | 气候变化和人类活动共同导致GPP减少 Climate changes and human activities reduce GPP |
表1 评估气候变化和人类活动的相对作用率的方法(Wen et al., 2017; Liu et al., 2019b)
Table 1 Methods for assessing the relative rates of contribution of climate change and human activities (Wen et al., 2017; Liu et al., 2019b)
方法(比较斜率值) Method (compare slope value) | 预测和残差 Predictions and residuals | 相对作用率 Relative action rate (%) | 解释 Description | ||
---|---|---|---|---|---|
S(GPPa) | S(GPPh) | 气候变化 Climate change | 人类活动 Human activities | ||
S(GPPa) > 0 | >0 | <0 | 100 | 0 | 气候变化导致GPP增加 Climate changes increase GPP |
<0 | >0 | 0 | 100 | 人类活动导致GPP增加 Human activities increase GPP | |
>0 | >0 | 气候变化和人类活动共同导致GPP增加 Climate changes and human activities increase GPP | |||
S(GPPa) = 0 | 0 | 0 | 0 | 0 | GPP不发生变化 GPP unchanged |
S(GPPa) < 0 | <0 | >0 | 100 | 0 | 气候变化导致GPP减少 Climate changes reduce GPP |
>0 | <0 | 0 | 100 | 人类活动导致GPP减少 Human activities reduce GPP | |
<0 | <0 | 气候变化和人类活动共同导致GPP减少 Climate changes and human activities reduce GPP |
图2 1982-2017年内蒙古研究区植被总初级生产力(GPP)年际变化(A)及与GPP最相关气候要素的空间分布(B)。
Fig. 2 Interannual variation of vegetation gross primary productivity (GPP) (A) and spatial distribution of most correlating climatic factors of GPP (B) in research area in Nei Mongol from 1982 to 2017.
图3 1982-2017年内蒙古研究区不同植被类型总初级生产力(GPP)年际变化(A)及不同时间段的植被GPP变化趋势(B-F)。a, 森林; b, 草甸草原; c, 典型草原; d, 荒漠草原; e, 农田。NT, 负趋势; PT, 正趋势。
Fig. 3 Interannual variation of vegetation gross primary productivity (GPP) of different vegetation types (A) and change trend of vegetation GPP in different periods (B-F) in research area in Nei Mongol from 1982 to 2017. a, forest; b, meadow steppe; c, typical steppe; d, desert steppe; e, cropland. NT, negative trend; PT, positive trend.
图4 1982-2017年气候变化和人类活动对内蒙古研究区植被总初级生产力(GPP)变化的相对贡献。a, 森林; b, 草甸草原; c, 典型草原; d, 荒漠草原; e, 农田。
Fig. 4 Relative contributions of climate change and human activities to vegetation gross primary productivity (GPP) changes in research area in Nei Mongol from 1982 to 2017. a, forest; b, meadow steppe; c, typical steppe; d, desert steppe; e, cropland.
时间 Year | 正效应 Positive effect (%) | 负效应 Negative effect (%) |
---|---|---|
1982-1990 | 2.61 | 41.61 |
1991-2000 | 4.44 | 16.17 |
2001-2010 | 37.02 | 10.82 |
表2 人类活动在鄂尔多斯市对植被总初级生产力(GPP)所产生的正负效应所占总面积比例
Table 2 Positive and negative effects of human activities on vegetation gross primary productivity (GPP) in Ordos City as a proportion of the total area
时间 Year | 正效应 Positive effect (%) | 负效应 Negative effect (%) |
---|---|---|
1982-1990 | 2.61 | 41.61 |
1991-2000 | 4.44 | 16.17 |
2001-2010 | 37.02 | 10.82 |
[1] | Alves TLB, de Azevedo PV, dos Santos CAC (2017). Influence of climate variability on land degradation (desertification) in the watershed of the upper Paraíba River. Theoretical and Applied Climatology, 27, 741-751. |
[2] | Cai HY, Yang XH, Xu XL (2015). Human-induced grassland degradation/restoration in the central Tibetan Plateau: the effects of ecological protection and restoration projects. Ecological Engineering, 83, 112-119. |
[3] | Chen Y, Mu S, Sun Z, Gang C, Li J, Padarian J, Groisman P, Chen J, Li S (2016). Grassland carbon sequestration ability in China: a new perspective from terrestrial aridity zones. Rangeland Ecology & Management, 69, 84-94. |
[4] | Dang XH, Gao SW, Tao R, Liu GB, Xia ZD, Fan LX, Bi W (2020). Do environmental conservation programs contribute to sustainable livelihoods? Evidence from China’s grain- for-green program in northern Shaanxi Province. Science of the Total Environment, 719, 137436. DOI: 10.1016/j.scitotenv.2020.137436. |
[5] | Evans J, Geerken R (2004). Discrimination between climate and human-induced dryland degradation. Journal of Arid Environments, 57, 535-554. |
[6] | Fang JY, Piao SL, He JS, Ma WH (2004). Increasing terrestrial vegetation activity in China, 1982-1999. Science in China Series C: Life Sciences, 47, 229-240. |
[7] | Gao WD, Zheng C, Liu XH, Lu YD, Chen YF, Wei Y, Ma YD (2022). NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: a case study in the Mu Us Sandy Land, China. Ecological Indicators, 137, 108745. DOI: 10.1016/j.ecolind.2022.108745. |
[8] | Ge WY, Han JQ, Zhang D, Wang F (2021). Divergent impacts of droughts on vegetation phenology and productivity in the Yungui Plateau, southwest China. Ecological Indicators, 127, 107743. DOI: 10.1016/j.ecolind.2021.107743. |
[9] | Guo E, Wang Y, Wang C, Sun Z, Bao Y, Mandula N, Jirigala B, Bao Y, Li H (2021). NDVI indicates long-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian Plateau. Remote Sensing, 13, 688. DOI: 10.3390/rs13040688. |
[10] | He CY, Tian J, Gao B, Zhao YY (2015). Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China. Environmental Monitoring and Assessment, 187, 4199. DOI: 10.1007/s10661-014-4199-2. |
[11] | Horion S, Cornet Y, Erpicum M, Tychon B (2013). Studying interactions between climate variability and vegetation dynamic using a phenology based approach. International Journal of Applied Earth Observation and Geoinformation, 20, 20-32. |
[12] | Hu YG, Li H, Wu D, Chen W, Zhao X, Hou ML, Li AJ, Zhu YJ (2021). LAI-indicated vegetation dynamic in ecologically fragile region: a case study in the Three-North Shelter Forest program region of China. Ecological Indicators, 120, 106932. DOI: 10.1016/j.ecolind.2020.106932. |
[13] | Jiang HL, Xu X, Guan MX, Wang LF, Huang YM, Jiang Y (2020). Determining the contributions of climate change and human activities to vegetation dynamics in agro- pastural transitional zone of northern China from 2000 to 2015. Science of the Total Environment, 718, 134871. DOI: 10.1016/j.scitotenv.2019.134871. |
[14] | Li YR, Cao Z, Long HL, Liu YS, Li WJ (2017). Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban-rural development: the case of Mu Us Sandy Land, China. Journal of Cleaner Production, 142, 697-715. |
[15] | Lin M, Hou LZ, Qi ZM, Wan L (2022). Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000-2019. Ecological Indicators, 142, 109164. DOI: 10.1016/j.ecolind.2022.109164. |
[16] | Liu SS, Du W, Su H, Wang SQ, Guan QF (2018). Quantifying impacts of land-use/cover change on urban vegetation gross primary production: a case study of Wuhan, China. Sustainability, 10, 714. DOI: 10.3390/su10030714. |
[17] | Liu YY, Wang Q, Zhang ZY, Tong LJ, Wang ZQ, Li JL (2019a). Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Science of the Total Environment, 690, 27-39. |
[18] | Liu Y, Zhang Z, Tong L, Khalifa M, Wang Q, Gang C, Wang Z, Li J, Sun Z (2019b). Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecological Indicators, 106, 105504. DOI: 10.1016/j.ecolind.2019.105504. |
[19] | Ma M, Qiao GH (2015). Correlation analysis between the institutional changes and grassland degradation: a case study of Xilinguole. Research of Agricultural Modernization, 36, 803-810. |
[马梅, 乔光华 (2015). 制度变迁与草地退化的关联性分析——以锡林郭勒盟为例. 农业现代化研究, 36, 803-810.] | |
[20] | Mariano DA, dos Santos CAC, Wardlow BD, Anderson MC, Schiltmeyer AV, Tadesse T, Svoboda MD (2018). Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sensing of Environment, 213, 129-143. |
[21] | Mohammat A, Wang X, Xu X, Peng L, Yang Y, Zhang X, Myneni RB, Piao S (2013). Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agricultural and Forest Meteorology, 178-179, 21-30. |
[22] |
Mowll W, Blumenthal DM, Cherwin K, Smith A, Symstad AJ, Vermeire LT, Collins SL, Smith MD, Knapp AK (2015). Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming. Oecologia, 177, 959-969.
DOI PMID |
[23] | Shi SY, Yu JJ, Wang F, Wang P, Zhang YC, Jin K (2021). Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Science of the Total Environment, 755, 142419. DOI: 10.1016/j.scitotenv.2020.142419. |
[24] | Tong SQ, Lai Q, Zhang JQ, Bao YH, Lusi A, Ma QY, Li XQ, Zhang F (2018). Spatiotemporal drought variability on the Mongolian Plateau from 1980-2014 based on the SPEI- PM, intensity analysis and Hurst exponent. Science of the Total Environment, 615, 1557-1565. |
[25] | Tong S, Li X, Zhang J, Bao Y, Bao Y, Na L, Lusi A (2019). Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960-2017. Science of the Total Environment, 649, 75-89. |
[26] | Wang HT (2011). Present situation and countermeasures of grassland ecological environment degradation in Inner Mongolia. Review of Economic Research Reference, (47), 24-27. |
[王皓田 (2011). 内蒙古草原生态环境退化现状及应对措施. 经济研究参考, (47), 24-27.] | |
[27] | Wen ZF, Wu SJ, Chen JL, Lv MQ (2017). NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Science of the Total Environment, 574, 947-959. |
[28] | Wu X, Zhang R, Bento VA, Leng S, Qi J, Zeng J, Wang Q (2022). The effect of drought on vegetation gross primary productivity under different vegetation types across China from 2001 to 2020. Remote Sensing, 14, 4658. DOI: 10.3390/rs14184658. |
[29] | Wu XT, Wang S, Fu BJ, Feng XM, Chen YZ (2019). Socio- ecological changes on the Loess Plateau of China after Grain to Green Program. Science of the Total Environment, 678, 565-573. |
[30] | Xie SD, Mo XG, Hu S, Liu SX (2020). Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP trends in the Three-North Region of China. Agricultural and Forest Meteorology, 295, 108183. DOI: 10.1016/j.agrformet.2020.108183. |
[31] | Yang AL, Zhang XP, Li ZX, Li YC, Nan FS (2023). Quantitative analysis of the impacts of climate change and human activities on vegetation NPP in the Qilian Mountain National Park. Acta Ecologica Sinica, 43, 1784-1792. |
[杨安乐, 张小平, 李宗省, 李玉辰, 南富森 (2023). 气候变化和人类活动对祁连山国家公园植被净初级生产力的定量影响. 生态学报, 43, 1784-1792.] | |
[32] | Yang HF, Zhong XN, Deng SQ, Xu H (2021). Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River Basin, China. Catena, 206, 105542. DOI: 10.1016/j.catena.2021.105542. |
[33] | Yang Y, Wang Z, Li J, Gang C, Zhang Y, Zhang Y, Odeh I, Qi J (2016). Comparative assessment of grassland degradation dynamics in response to climate variation and human activities in China, Mongolia, Pakistan and Uzbekistan from 2000 to 2013. Journal of Arid Environments, 135, 164-172. |
[34] | Yin H, Pflugmacher D, Li A, Li Z, Hostert P (2018). Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs. Remote Sensing of Environment, 204, 918-930. |
[35] | You NS, Meng JJ, Zhu LJ, Jiang S, Zhu LK, Li F, Kuo LJ (2020). Isolating the impacts of land use/cover change and climate change on the GPP in the Heihe River Basin of China. Journal of Geophysical Research: Biogeosciences, 125, e2020JG005734. DOI: 10.1029/2020JG005734. |
[36] | Yuan W, Liu S, Zhou G, Zhou G, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu Y, Law BE, Stoy PC, Vesala T, Wofsy SC (2007). Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 143, 189-207. |
[37] | Zhang LY, Liu AJ, Xing Q, Liu DF, Gao W (2006). Trend and analysis of vegetation variation of typical rangeland in Inner Mongolia—A case study of typical rangeland of Xilinguole. Journal of Arid Land Resources and Environment, 20, 185-190. |
[张连义, 刘爱军, 邢旗, 刘德福, 高娃 (2006). 内蒙古典型草原区植被动态与植被恢复——以锡林郭勒盟典型草原区为例. 干旱区资源与环境, 20, 185-190.] | |
[38] | Zhang XY, Zhou YL, He W, Ju WM, Liu YB, Bi WJ, Cheng N, Wei XN (2022). Land cover change instead of solar radiation change dominates the forest GPP increase during the recent phase of the Shelterbelt Program for Pearl River. Ecological Indicators, 136, 108664. DOI: 10.1016/j.ecolind.2022.108664. |
[39] | Zhang Z, Zhang Y, Zhang Y, Gobron N, Frankenberg C, Wang S, Li Z (2020). The potential of satellite FPAR product for GPP estimation: an indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111686. DOI: 10.1016/j.rse.2020.111686. |
[40] | Zhao XN, Huang MT, Pang B (2022). The IPCC has released Climate Change 2021: a public summary. China Meteorological News, 2022-11-11. |
[赵晓妮, 黄萌田, 庞博 (2022). IPCC最新发布《气候变化2021: 公众摘要》. 中国气象报, 2022-11-11.] | |
[41] | Zhou W, Yang H, Huang L, Chen C, Lin XS, Hu ZJ, Li JL (2017). Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecological Indicators, 83, 303-313. |
[1] | 王音 同小娟 张劲松 李俊 孟平 刘沛荣 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 0-0. |
[2] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[3] | 史倩, 同小娟, 许玲玲, 孟平, 于裴洋, 李俊, 杨铭鑫. 油松早晚材径向生长对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 988-1000. |
[4] | 陈以恒, 玉素甫江•如素力, 阿卜杜热合曼•吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[7] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[8] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[9] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[10] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[11] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[12] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[13] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[14] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[15] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19