植物生态学报 ›› 2024, Vol. 48 ›› Issue (8): 988-1000.DOI: 10.17521/cjpe.2023.0206 cstr: 32100.14.cjpe.2023.0206
史倩1, 同小娟1,*(), 许玲玲2,3, 孟平2,3, 于裴洋1, 李俊4, 杨铭鑫1
收稿日期:
2023-07-18
接受日期:
2024-01-16
出版日期:
2024-08-20
发布日期:
2024-01-22
通讯作者:
*同小娟(tongxj@bjfu.edu.cn)
基金资助:
SHI Qian1, TONG Xiao-Juan1,*(), XU Ling-Ling2,3, MENG Ping2,3, YU Pei-Yang1, LI Jun4, YANG Ming-Xin1
Received:
2023-07-18
Accepted:
2024-01-16
Online:
2024-08-20
Published:
2024-01-22
Contact:
*TONG Xiao-Juan(tongxj@bjfu.edu.cn)
Supported by:
摘要:
全球变暖背景下, 油松(Pinus tabuliformis)人工林生态系统对气候变化响应更为敏感, 但目前对于气候变化下油松早材和晚材的径向生长还不完全了解。研究油松早材和晚材径向生长对气候变化的响应, 对预测人工林生产力与植被动态具有重要意义。该研究选取华北和西北地区5个油松人工林, 基于树木年代学方法构建油松树木年轮标准年表, 分析了气候因子对油松径向生长的影响。结果表明, 1980-2020年间研究区气温呈显著上升趋势, 区域气候向暖干化发展。康乐(KL)、天水(TS)、灵寿(LS)油松树轮宽度高于旬邑(XY)和淳化(CH), 且TS、KL、LS油松的整轮和早材树轮宽度下降更为平缓。油松的早材宽度与上年9月、当年生长季前降水量呈正相关关系。而晚材宽度则大都与气温正相关。在LS、CH、TS、KL, 气温对晚材宽度变化的相对影响较早材分别上升了21.89%、8.63%、3.31%和7.25%。因此, 与早材相比, 晚材对气温变化更为敏感, 并受到早春季节干旱的限制。综上所述, 该研究利用早材和晚材径向生长对气候变化的响应分离了油松人工林生长季不同时段的气候信号, 早材径向生长主要反映了生长季早期的降水信号, 晚材径向生长主要反映了生长季后期的温度信号。在今后的预测模型中考虑这一差异性影响将有助于提高区域气候重建的准确性。
史倩, 同小娟, 许玲玲, 孟平, 于裴洋, 李俊, 杨铭鑫. 油松早晚材径向生长对气候因子的响应. 植物生态学报, 2024, 48(8): 988-1000. DOI: 10.17521/cjpe.2023.0206
SHI Qian, TONG Xiao-Juan, XU Ling-Ling, MENG Ping, YU Pei-Yang, LI Jun, YANG Ming-Xin. Response of radial growth of early and late wood of planted Pinus tabuliformis to climate variables. Chinese Journal of Plant Ecology, 2024, 48(8): 988-1000. DOI: 10.17521/cjpe.2023.0206
样地 Site | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 胸径(平均值±标准差) DBH (mean ± SD) (cm) | 树高(平均值±标准差) Tree height (mean ± SD) (m) | 株数 Number of plants | 密度 Density (Ind.·hm-2) | 气象时间序列 Meteorological series |
---|---|---|---|---|---|---|---|
旬邑县 XY | 35.07° N, 108.50° E | 1 647 | 20.64 ± 5.64 | 11.90 ± 1.23 | 183 | 976 | 1973-2020 |
淳化县 CH | 34.83° N, 108.65° E | 1 189 | 16.56 ± 3.38 | 14.40 ± 1.65 | 83 | 1 328 | 1980-2020 |
天水市小陇山 TS | 35.32° N, 106.43° E | 1 633 | 21.66 ± 4.93 | 13.56 ± 1.93 | 104 | 549 | 1977-2020 |
康乐县太子山 KL | 35.25° N, 103.42° E | 2 493 | 23.79 ± 4.79 | 13.49 ± 1.89 | 112 | 581 | 1975-2020 |
灵寿县五岳寨 LS | 38.67° N, 103.85° E | 997 | 22.14 ± 6.31 | 10.26 ± 6.22 | 94 | 501 | 1961-2020 |
表1 油松人工林样地基本信息
Table 1 Basic information of Pinus tabuliformis plantations
样地 Site | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 胸径(平均值±标准差) DBH (mean ± SD) (cm) | 树高(平均值±标准差) Tree height (mean ± SD) (m) | 株数 Number of plants | 密度 Density (Ind.·hm-2) | 气象时间序列 Meteorological series |
---|---|---|---|---|---|---|---|
旬邑县 XY | 35.07° N, 108.50° E | 1 647 | 20.64 ± 5.64 | 11.90 ± 1.23 | 183 | 976 | 1973-2020 |
淳化县 CH | 34.83° N, 108.65° E | 1 189 | 16.56 ± 3.38 | 14.40 ± 1.65 | 83 | 1 328 | 1980-2020 |
天水市小陇山 TS | 35.32° N, 106.43° E | 1 633 | 21.66 ± 4.93 | 13.56 ± 1.93 | 104 | 549 | 1977-2020 |
康乐县太子山 KL | 35.25° N, 103.42° E | 2 493 | 23.79 ± 4.79 | 13.49 ± 1.89 | 112 | 581 | 1975-2020 |
灵寿县五岳寨 LS | 38.67° N, 103.85° E | 997 | 22.14 ± 6.31 | 10.26 ± 6.22 | 94 | 501 | 1961-2020 |
采样点 Site | 样芯数 Number of core sample | 时间序列 Period | 类型 Type | 平均敏感度 MS | 信噪比 SNR | 一阶自相关系数 AR | 样本总体代表性 EPS |
---|---|---|---|---|---|---|---|
CH | 43 | 1980-2020 | 整轮 Total ring width | 0.396 | 8.067 | 0.580 | 0.890 |
早材 Earlywood width | 0.418 | 7.060 | 0.570 | 0.876 | |||
晚材 Latewood width | 0.567 | 11.501 | 0.358 | 0.920 | |||
XY | 127 | 1973-2020 | 整轮 Total ring width | 0.264 | 12.794 | 0.673 | 0.928 |
早材 Earlywood width | 0.310 | 13.555 | 0.679 | 0.931 | |||
晚材 Latewood width | 0.353 | 11.975 | 0.347 | 0.923 | |||
TS | 124 | 1977-2020 | 整轮 Total ring width | 0.245 | 10.465 | 0.673 | 0.913 |
早材 Earlywood width | 0.224 | 8.778 | 0.690 | 0.898 | |||
晚材 Latewood width | 0.374 | 21.569 | 0.371 | 0.956 | |||
KL | 132 | 1975-2020 | 整轮 Total ring width | 0.239 | 30.446 | 0.622 | 0.968 |
早材 Earlywood width | 0.282 | 35.760 | 0.610 | 0.973 | |||
晚材 Latewood width | 0.363 | 23.433 | 0.246 | 0.959 | |||
LS | 128 | 1962-2020 | 整轮 Total ring width | 0.429 | 10.767 | 0.444 | 0.915 |
早材 Earlywood width | 0.409 | 9.883 | 0.457 | 0.908 | |||
晚材 Latewood width | 0.570 | 8.716 | 0.315 | 0.897 | |||
ALL | 553 | 1962-2020 | 整轮 Total ring width | 0.429 | 20.236 | 0.474 | 0.953 |
早材 Earlywood width | 0.409 | 16.176 | 0.501 | 0.942 | |||
晚材 Latewood width | 0.570 | 21.754 | 0.307 | 0.956 |
表2 5个研究点油松树轮宽度标准年表基本信息统计
Table 2 Statistics of standard tree ring-width chronologies of Pinus tabuliformis at five sites
采样点 Site | 样芯数 Number of core sample | 时间序列 Period | 类型 Type | 平均敏感度 MS | 信噪比 SNR | 一阶自相关系数 AR | 样本总体代表性 EPS |
---|---|---|---|---|---|---|---|
CH | 43 | 1980-2020 | 整轮 Total ring width | 0.396 | 8.067 | 0.580 | 0.890 |
早材 Earlywood width | 0.418 | 7.060 | 0.570 | 0.876 | |||
晚材 Latewood width | 0.567 | 11.501 | 0.358 | 0.920 | |||
XY | 127 | 1973-2020 | 整轮 Total ring width | 0.264 | 12.794 | 0.673 | 0.928 |
早材 Earlywood width | 0.310 | 13.555 | 0.679 | 0.931 | |||
晚材 Latewood width | 0.353 | 11.975 | 0.347 | 0.923 | |||
TS | 124 | 1977-2020 | 整轮 Total ring width | 0.245 | 10.465 | 0.673 | 0.913 |
早材 Earlywood width | 0.224 | 8.778 | 0.690 | 0.898 | |||
晚材 Latewood width | 0.374 | 21.569 | 0.371 | 0.956 | |||
KL | 132 | 1975-2020 | 整轮 Total ring width | 0.239 | 30.446 | 0.622 | 0.968 |
早材 Earlywood width | 0.282 | 35.760 | 0.610 | 0.973 | |||
晚材 Latewood width | 0.363 | 23.433 | 0.246 | 0.959 | |||
LS | 128 | 1962-2020 | 整轮 Total ring width | 0.429 | 10.767 | 0.444 | 0.915 |
早材 Earlywood width | 0.409 | 9.883 | 0.457 | 0.908 | |||
晚材 Latewood width | 0.570 | 8.716 | 0.315 | 0.897 | |||
ALL | 553 | 1962-2020 | 整轮 Total ring width | 0.429 | 20.236 | 0.474 | 0.953 |
早材 Earlywood width | 0.409 | 16.176 | 0.501 | 0.942 | |||
晚材 Latewood width | 0.570 | 21.754 | 0.307 | 0.956 |
图1 5个研究点平均气温(Ta)、最高气温(Tmax)、最低气温(Tmin)、降水量(P)、饱和水汽压差(VPD)、标准化降水蒸散指数(SPEI)的年变化。直线表示气候因子变化显著(p < 0.05)。样地CH、KL、LS、TS、XY见表1。
Fig. 1 Trend of annual average air temperature (Ta), annual maximum air temperature (Tmax), annual minimum air temperature (Tmin), annual precipitation (P), vapor pressure deficit (VPD) and standardized precipitation evapotranspiration index (SPEI) in the five study areas. The straight line represents significant changes in climate factors (p < 0.05). Site LS, CH, XY, TS and KL see Table 1.
图2 5个研究点油松的标准年表(STD)。EW, 早材; LW, 晚材; RW, 整轮。样地ALL、CH、KL、LS、TS、XY见表1。
Fig. 2 Standard chronology (STD) of Pinus tabuliformis in the five study areas. EW, earlywood width; LW, latewood width; RW, total ring width. Site ALL, CH, KL, LS, TS and XY see Table 1.
图3 5个研究点油松生长树轮宽度变化。EW, 早材; LW, 晚材; RW, 整轮。样地ALL、CH、KL、LS、TS、XY见表1。
Fig. 3 Variation of radial growth of Pinus tabuliformis in the five study areas. EW, earlywood width; LW, latewood width; RW, total ring width. Site ALL, CH, KL, LS, TS, XY see Table 1.
图4 油松整轮、早材和晚材年表与气候因子的相关系数。样地CH、KL、LS、TS、XY见表1。EW, 早材; LW, 晚材; RW, 整轮。P, 降水量; pre, 上年; SPEI, 标准化降水蒸散指数; Ta, 平均气温; Tmax, 最高气温; Tmin, 最低气温; VPD, 饱和水汽压差。*, p < 0.05; **, p < 0.01。
Fig. 4 Correlation between total ring width, earlywood width and latewood width chronology of Pinus tabuliformis and climate factors. Site CH, KL, LS, TS, XY see Table 1. EW, earlywood width; LW, latewood width; RW, total ring width. P, precipitation; pre, the last year; SPEI, standardized precipitation evapotranspiration index; Ta, mean air temperature; Tmax, maximum air temperature; Tmin, minimum air temperature; VPD, vapor pressure deficit. *, p < 0.05; **, p < 0.01.
图5 气候因子对油松径向生长的相对影响。样地CH、KL、LS、TS、XY见表1。EW, 早材; LW, 晚材; RW, 整轮。Ta、P、VPD、SPEI见图4。
Fig. 5 Relative influence of climate factors to radial growth of Pinus tabuliformis. Site CH, KL, LS, TS, XY see Table 1. EW, earlywood width; LW, latewood width; RW, total ring width. Ta, P, VPD and SPEI see Fig. 4.
[1] | Babst F, Bodesheim P, Charney N, Friend AD, Girardin MP, Klesse S, Moore DJP, Seftigen K, Björklund J, Bouriaud O, Dawson A, DeRose RJ, Dietze MC, Eckes AH, Enquist B, et al. (2018). When tree rings go global: challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 197, 1-20. |
[2] | Busetto L, Colombo R, Migliavacca M, Cremonese E, Meroni M, Galvagno M, Rossini M, Siniscalco C, Morra Di Cella U, Pari E (2010). Remote sensing of larch phenological cycle and analysis of relationships with climate in the alpine region. Global Change Biology, 16, 2504-2517. |
[3] | Buttò V, Deslauriers A, Rossi S, Rozenberg P, Shishov V, Morin H (2020). The role of plant hormones in tree-ring formation. Trees, 34, 315-335. |
[4] | Cai LX, Li JX, Bai XP, Jin YT, Chen ZJ (2020). Variations in the growth response of Pinus tabulaeformis to a warming climate at the northern limits of its natural range. Trees, 34, 707-719. |
[5] | Chen K, Jiao L, Liu XP, Qi CL, Xue RH (2021a). Evaluation of the response stability of two dominant conifer species to climate change in the southern margin of the Tengger Desert. Global Ecology and Conservation, 25, e01439. DOI: 10.1016/j.gecco.2020.e01439. |
[6] | Chen M, Zhang X, Li M, Zhang JJ, Cao Y (2021b). Climate- growth pattern of Pinus tabulaeformis plantations and their resilience to drought events in the Loess Plateau. Forest Ecology and Management, 499, 119642. DOI: 10.1016/j.foreco.2021.119642. |
[7] |
Claeys H, Inzé D (2013). The agony of choice: How plants balance growth and survival under water-limiting conditions. Plant Physiology, 162, 1768-1779.
DOI PMID |
[8] | Cui JY, Peng JF, Li JR, Li X, Peng M, Yang L (2021). Responses of tree-ring width of Pinus tabuliformis plantation to climatic factors in Songshan Mountains, central China. Chinese Journal of Applied Ecology, 32, 3497-3504. |
[崔佳月, 彭剑峰, 李静茹, 李轩, 彭猛, 杨柳 (2021). 嵩山地区油松人工林树轮宽度对气候因子的响应. 应用生态学报, 32, 3497-3504.]
DOI |
|
[9] |
Deslauriers A, Beaulieu M, Balducci L, Giovannelli A, Gagnon MJ, Rossi S (2014). Impact of warming and drought on carbon balance related to wood formation in black spruce. Annals of Botany, 114, 335-345.
DOI PMID |
[10] | Dong MY, Jiang Y, Wang MC, Zhang WT, Yang HC (2012). Seasonal variations in the stems of Larix principis- rupprechtii at the treeline of the Luya Mountains. Acta Ecologica Sinica, 32, 7430-7439. |
[董满宇, 江源, 王明昌, 张文涛, 杨浩春 (2012). 芦芽山林线华北落叶松径向变化季节特征. 生态学报, 32, 7430-7439.] | |
[11] | Gao J, Yang B, Peng X, Rossi S (2021). Tracheid development under a drought event producing intra-annual density fluctuations in the semi-arid China. Agricultural and Forest Meteorology, 308-309, 108572. DOI: 10.1016/j.agrformet.2021.108572. |
[12] | Gao JN, Yang B, Qin C (2021). Response of intra-annual stem radial growth to drought events: a case study of Pinus tabuliformis in the Helan Mountains, China. Chinese Journal of Applied Ecology, 32, 3505-3511. |
[高佳妮, 杨保, 秦春 (2021). 树木年内径向生长对干旱事件的响应——以贺兰山油松为例. 应用生态学报, 32, 3505-3511.]
DOI |
|
[13] | Giovannelli A, Mattana S, Emiliani G, Anichini M, Traversi ML, Pavone FS, Cicchi R (2022). Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings. Tree Physiology, 42, 1149-1163. |
[14] | Guan CF, Zheng JS, Li YJ, Zhang LX, Hu MJ, Zhang JS, Meng P, Sun SJ (2023). Effects of climate and density on the radial growth and drought vulnerability of Robinia pseudoacacia. Acta Ecologica Sinica, 43, 3261-3272. |
[管崇帆, 郑京生, 李雅婧, 张蓝霄, 胡美均, 张劲松, 孟平, 孙守家 (2023). 气候和密度对刺槐径向生长和干旱脆弱性的影响. 生态学报, 43, 3261-3272.] | |
[15] | Guo BD, Xu J (2021). Response of radial growth of Pinus koraiensis to climate change in the Xiao Hinggan Ling. Inner Mongolia Forestry Investigation and Design, 44(2), 90-94. |
[郭滨德, 徐静 (2021). 小兴安岭红松径向生长对气候变化的响应. 内蒙古林业调查设计, 44(2), 90-94.] | |
[16] | Guo YL, Li SH, Wang JC, Han YJ (2022). Response divergence of radial growth to climate change in earlywood and latewood of Larix principis-rupprechtii in Luya Mountain. Arid Zone Research, 39, 1449-1463. |
[郭伊利, 李书恒, 王嘉川, 韩宜洁 (2022). 芦芽山华北落叶松早晚材径向生长对气候变化响应的分离效应. 干旱区研究, 39, 1449-1463.]
DOI |
|
[17] |
Han C, Xiao SC, Ding AJ, Teng ZY (2020). Radial growth climatic response characteristics and tree ring climate records of conifer species at south margin of Tengger Desert, China. Journal of Desert Research, 40(2), 50-58.
DOI |
[韩超, 肖生春, 丁爱军, 滕泽宇 (2020). 腾格里沙漠南缘青海云杉(Picea crassifolia)和油松(Pinus tabulaeformis)年轮记录的气候变化. 中国沙漠, 40(2), 50-58.]
DOI |
|
[18] | IPCC (2021). Climate Change 2021: the Physical Science Basis. Contribution of Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[19] | Jiang SX, Yuan YJ, Yu SL, Shang HM, Zhang RB, Qin L, Zhang HL, Zhang TW (2020). Development of multiple tree-ring width chronologies of Picea obovata for the Altay Mountains, China, and their climate response. Journal of Earth Environment, 11, 616-628. |
[姜盛夏, 袁玉江, 喻树龙, 尚华明, 张瑞波, 秦莉, 张合理, 张同文 (2020). 阿尔泰山西伯利亚云杉多种树轮宽度年表研制及其气候响应研究. 地球环境学报, 11, 616-628.] | |
[20] | Jiao L, Xue RH, Qi CL, Chen K, Liu XP (2021). Comparison of the responses of radial growth to climate change for two dominant coniferous tree species in the eastern Qilian Mountains, northwestern China. International Journal of Biometeorology, 65, 1823-1836. |
[21] | Kaczka RJ, Spyt B, Janecka K, Beil I, Büntgen U, Scharnweber T, Nievergelt D, Wilmking M (2018). Different maximum latewood density and blue intensity measurements techniques reveal similar results. Dendrochronologia, 49, 94-101. |
[22] |
Kannenberg SA, Schwalm CR, Anderegg WRL (2020). Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecology Letters, 23, 891-901.
DOI PMID |
[23] | Keyimu M, Li ZS, Fu BJ, Liu GH, Zeng FJ, Chen WL, Fan ZX, Fang KY, Wu XC, Wang XC (2021). A 406-year non-growing-season precipitation reconstruction in the southeastern Tibetan Plateau. Climate of the Past, 17, 2381-2392. |
[24] | Lebourgeois F, Rathgeber CBK, Ulrich E (2010). Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). Journal of Vegetation Science, 21, 364-376. |
[25] | Lei S, Zhang JS, Meng P, He ZB, Cheng S, Sun SJ (2020). Differences in tree-ring growth response of Pinus sylvestris var. mongolica to climatic variation at different locations in Northern China. Acta Ecologica Sinica, 40, 4479-4492. |
[雷帅, 张劲松, 孟平, 何子兵, 程顺, 孙守家 (2020). 中国北部不同地点樟子松人工林径向生长对气候响应的差异. 生态学报, 40, 4479-4492.] | |
[26] | Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723. |
[27] | Li X, Bounthong P, Kang WH, Ji XD, Zhang HJ, Xue ZG, Zhang ZQ (2022). Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China. Chinese Journal of Plant Ecology, 46, 919-931. |
[李肖, Bounthong P, 康文辉, 冀晓东, 张海江, 薛治国, 张志强 (2022). 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应. 植物生态学报, 46, 919-931.]
DOI |
|
[28] | Li X, Peng JF, Li JR, Yang L, Cui JY, Peng M, Li CX (2022). Climate-growth response of Pinus tabulaeformis in the south slope of Longchiman, Mt. Funiu, central China. Acta Ecologica Sinica, 42, 2865-2877. |
[李轩, 彭剑峰, 李静茹, 杨柳, 崔佳月, 彭猛, 李成蹊 (2022). 伏牛山龙池墁南坡油松径向生长对气候变化的响应. 生态学报, 42, 2865-2877.] | |
[29] | Li XR, Chen YX, Chen JF, Zhu JY, Sun GP, Wei LD, Zhang XN, Xu CY (2022). Comparative study on the effects of climate change on radial growth of Pinus tabuliformis in near and outer suburbs of Beijing. Journal of Beijing Forestry University, 44(1), 19-28. |
[李夏榕, 陈怡歆, 陈静飞, 朱济友, 孙广鹏, 韦柳端, 张新娜, 徐程扬 (2022). 气候变化对北京近远郊地区油松径向生长影响的比较研究. 北京林业大学学报, 44(1), 19-28.] | |
[30] | Li YH, Qi GZ, Feng RR, Liu K (2022). Responses of radial growth of Pinus tabuliformis to climate change at the northern slopes of Qinling Mountains, China. Chinese Journal of Applied Ecology, 33, 2043-2050. |
[李颖辉, 齐贵增, 冯荣荣, 刘康 (2022). 秦岭北麓油松径向生长对气候变化的响应. 应用生态学报, 33, 2043-2050.]
DOI |
|
[31] | Liang E, Dawadi B, Pederson N, Eckstein D (2014). Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology, 95, 2453-2465. |
[32] |
Liang E, Wang Y, Piao S, Lu X, Camarero JJ, Zhu H, Zhu L, Ellison AM, Ciais P, Peñuelas J (2016). Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 113, 4380-4385.
DOI PMID |
[33] | Liu W, Wei TX, Zhu QK (2018). Growing season sap flow of Populus hopeiensis and Pinus tabulaeformis in the semi- arid Loess Plateau, China. Journal of Zhejiang A&F University, 35, 1045-1053. |
[刘崴, 魏天兴, 朱清科 (2018). 半干旱黄土丘陵区河北杨和油松生长季树干液流特征. 浙江农林大学学报, 35, 1045-1053.] | |
[34] | Liu YY, Mao WJ, Li SQ, Zhao XY, Zhang XW, Wu HJ, Su XL (2022). Spatiotemporal evolution characteristics of meteorological droughts in northwest China. Journal of Water Resources and Water Engineering, 33(1), 86-92. |
[刘杨奕, 毛文静, 李思琦, 赵鑫雨, 张学武, 吴海江, 粟晓玲 (2022). 中国西北地区气象干旱时空演变特征. 水资源与水工程学报, 33(1), 86-92.] | |
[35] | Ma XQ, Shi JF, Shi SY, Zhao YS, Zhang WJ, Zhu YX (2020). Climatic significance of the earlywood and latewood width of Pinus taiwanesisin Sanqingshan, Jiangxi Province of China. Resources and Environment in the Yangtze Basin, 29, 1825-1834. |
[马晓琦, 史江峰, 史逝远, 赵业思, 张伟杰, 朱玙馨 (2020). 江西三清山黄山松树轮早晚材宽度所指示的气候意义. 长江流域资源与环境, 29, 1825-1834.] | |
[36] | Mellerowicz EJ, Coleman WK, Riding RT, Little CHA (1992). Periodicity of cambial activity in Abies balsamea. I. Effects of temperature and photoperiod on cambial dormancy and frost hardiness. Physiologia Plantarum, 85, 515-525. |
[37] | Niu Y, Yang RQ, Fu PL, Zhao F, Fan ZX (2020). Climate responses of tree-ring widths and stable oxygen isotopes of Pinus kesiya in Xishuangbanna, southwestern China. Journal of Earth Environment, 11, 595-605. |
[牛颖, 杨绕琼, 付培立, 赵凡, 范泽鑫 (2020). 西双版纳思茅松(Pinus kesiya)年轮宽度和早晚材稳定氧同位素对气候因子的响应. 地球环境学报, 11, 595-605.] | |
[38] | Peng JF, Li JB, Yang L, Li JR, Huo JX (2020). A 216-year tree-ring reconstruction of April-July relative humidity from Mt. Shiren, central China. International Journal of Climatology, 40, 6055-6066. |
[39] | Qi CL, Jiao LA, Xue RH, Wu XA, Du DS (2022). Timescale effects of radial growth responses of two dominant coniferous trees on climate change in the eastern Qilian Mountains. Forests, 13, 72. DOI: 10.3390/f13010072. |
[40] | Qiu T, Sharma S, Woodall CW, Clark JS (2021). Niche shifts from trees to fecundity to recruitment that determine species response to climate change. Frontiers in Ecology and Evolution, 9, 719141. DOI: 10.3389/fevo.2021.719141. |
[41] | Song W, Zhao B, Mu C, Ballikaya P, Cherubini P, Wang X (2022). Moisture availability influences the formation and characteristics of earlywood of Pinus tabuliformis more than latewood in Northern China. Agricultural and Forest Meteorology, 327, 109219. DOI: 10.1016/j.agrformet.2022.109219. |
[42] | Splechtna BE, Dobrys J, Klinka K (2000). Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Annals of Forest Science, 57, 89-100. |
[43] | Tang XJ, Wang WF, Xiao SZ, Zhang XD (2020). Plants and soil C, N and P ecological stoichiometry of Pinus tabulaeformis plantations in Chifeng City, Inner Mongolia. Areal Research and Development, 39, 162-167. |
[唐学君, 王伟峰, 肖舜祯, 张旭东 (2020). 内蒙古赤峰市油松人工林植物和土壤C、N、P生态化学计量特征. 地域研究与开发, 39, 162-167.] | |
[44] | Traversari S, Giovannelli A, Emiliani G (2022). Wood formation under changing environment: omics approaches to elucidate the mechanisms driving the early-to-latewood transition in conifers. Forests, 13, 608. DOI: 10.3390/f13040608. |
[45] | Wang A, Gao XR, Zhou ZY, Yang H, Zhao XH, Wang YM, Li M, Zhao XN (2022). Dynamic responses of tree-ring growth to drought over Loess Plateau in the past three decades. Ecological Indicators, 143, 109423. DOI: 10.1016/j.ecolind.2022.109423. |
[46] | Wang JR, Sun CJ, Zheng ZJ, Li XM (2021). Drought characteristics of the Loess Plateau in the past 60 years and its relationship with changes in atmospheric circulation. Acta Ecologica Sinica, 41, 5340-5351. |
[王佳瑞, 孙从建, 郑振婧, 李晓明 (2021). 近57年来黄土高原干旱特征及其与大气环流的关系. 生态学报, 41, 5340-5351.] | |
[47] | Wang X, Pederson N, Chen Z, Lawton K, Zhu C, Han S (2019). Recent rising temperatures drive younger and southern Korean pine growth decline. Science of the Total Environment, 649, 1105-1116. |
[48] | Xu HY, Liu LB, Guo YM, Liang H, Ni J (2018). Tree-rings of dominant species in karst forests in southwestern China and their responses to climate change. Earth and Environment, 46, 23-32. |
[许海洋, 刘立斌, 郭银明, 梁辉, 倪健 (2018). 我国西南地区喀斯特森林树木年轮对气候变化的响应. 地球与环境, 46, 23-32.] | |
[49] |
Xu LL, Tong XJ, Zhang JS, Meng P, Wang X, Li J (2020). Response of radial growth of Pinus tabulaeformis to climatic factors in the Lingkong Mountain, Shanxi Province. Chinese Journal of Agrometeorology, 41, 357-367.
DOI |
[许玲玲, 同小娟, 张劲松, 孟平, 王鑫, 李俊 (2020). 山西灵空山油松径向生长对气候变化的响应. 中国农业气象, 41, 357-367.]
DOI |
|
[50] | Yang YR, Zhang MS, Zhang LN, Lu QQ, Hong YX, Liu XH (2022). Different responses of radial growth of Pinus tabuliformis to climate in the middle and western Qinling Mountains. Acta Ecologica Sinica, 42, 1474-1486. |
[杨镒如, 张茗珊, 张凌楠, 路强强, 洪艺雪, 刘晓宏 (2022). 秦岭中西部油松径向生长对气候因子的响应差异研究. 生态学报, 42, 1474-1486.] | |
[51] | Zhao Y, Shi J, Shi S, Ma X, Zhang W, Wang B, Sun X, Lu H, Bräuning A (2019). Early summer hydroclimatic signals are captured well by tree-ring earlywood width in the eastern Qinling Mountains, central China. Climate of the Past, 15, 1113-1131. |
[52] | Zhao YS, Shi JF, Shi SY, Wang BW, Yu JA (2017). Summer climate implications of tree-ring latewood width: a case study of Tsuga longibracteata in South China. Asian Geographer, 34, 131-146. |
[53] | Zhou P, Huang J, Liang H, Rossi S, Bergeron Y, Shishov VV, Jiang S, Kang J, Zhu H, Dong Z (2021). Radial growth of Larix sibirica was more sensitive to climate at low than high altitudes in the Altai Mountains, China. Agricultural and Forest Meteorology, 304-305, 108392. DOI: 10.1016/j.agrformet.2021.108392. |
[1] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[2] | 陈以恒, 玉素甫江•如素力, 阿卜杜热合曼•吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[6] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[9] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[10] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[11] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[12] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[13] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[14] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[15] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19