植物生态学报 ›› 2024, Vol. 48 ›› Issue (8): 1001-1010.DOI: 10.17521/cjpe.2023.0144 cstr: 32100.14.cjpe.2023.0144
收稿日期:
2023-05-23
接受日期:
2023-08-03
出版日期:
2024-08-20
发布日期:
2023-08-31
通讯作者:
*刘琪璟(809918554@qq.com)
基金资助:
QIAN Ni-Peng, GAO Hao-Xin, SONG Chao-Jie, DONG Chun-Chao, LIU Qi-Jing*()
Received:
2023-05-23
Accepted:
2023-08-03
Online:
2024-08-20
Published:
2023-08-31
Contact:
*LIU Qi-Jing(809918554@qq.com)
Supported by:
摘要:
白桦(Betula platyphylla)作为温带次生林的典型先锋树种, 在森林生长研究中具有重要意义。该研究利用微树芯法连续监测了长白山两个生长季(2020-2021年)白桦径向生长的季节动态, 并分析了其与环境因子的响应关系。结果表明, 白桦形成层于5月中下旬开始活动, 6月和7月为快速生长期, 9月下旬木质化结束。2021年早春温度升高导致白桦径向生长提前开始, 但两年径向生长停止的时间无显著差异。在快速生长期, 白桦径向生长速率与平均气温、最低气温、相对空气湿度和土壤温度呈显著正相关关系, 与饱和水汽压差呈显著负相关关系; 而在慢速生长期, 白桦径向生长速率仅与最低气温和土壤温度呈显著正相关关系; 在较干燥年份, 土壤含水量降低显著抑制了白桦径向生长, 温度始终是影响白桦年内径向生长的主要气候因子。研究结果对白桦林的经营和可持续管理具有参考价值。
钱尼澎, 高浩鑫, 宋超杰, 董淳超, 刘琪璟. 长白山白桦径向生长季节动态及其对环境因子的响应. 植物生态学报, 2024, 48(8): 1001-1010. DOI: 10.17521/cjpe.2023.0144
QIAN Ni-Peng, GAO Hao-Xin, SONG Chao-Jie, DONG Chun-Chao, LIU Qi-Jing. Seasonal dynamics of radial growth of Betula platyphylla and its response to environmental factors in Changbai Mountains. Chinese Journal of Plant Ecology, 2024, 48(8): 1001-1010. DOI: 10.17521/cjpe.2023.0144
图1 长白山北坡天然次生白桦林气候季节变化特征。Tmax, 最高气温; Tmean, 平均气温; Tmin, 最低气温; Ts, 土壤温度。
Fig. 1 Seasonal climate variation characteristics of natural secondary Betula platyphylla forest on the north slope of Changbai Mountains. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative air humidity; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; Ts, soil temperature; VPD, vapor pressure deficit.
图2 白桦木质部发生过程中形成层细胞各分化阶段的变化。点表示对应日期白桦4株样木细胞宽度的平均值, 阴影区域表示标准差。
Fig. 2 Changes of cambium cell in different differentiation stages during xylem formation of Betula platyphylla. The points represent the average cell width of 4 sampled trees on the corresponding date, and the shaded areas represent the standard deviation.
年份 Year | 增大阶段 Enlargement | 细胞分裂持续时间(天) Duration of cell division (d) | 壁增厚阶段 Wall-thickening | 成熟阶段 Lignification | 生长季持续时间(天) Duration of growing season (d) | |||
---|---|---|---|---|---|---|---|---|
开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | |||
2020 | 143 ± 3 | 255 ± 3 | 113 ± 4 | 150 ± 2 | 260 ± 3 | 171 ± 4 | 265 ± 3 | 123 ± 4 |
2021 | 138 ± 2 | 254 ± 3 | 117 ± 4 | 140 ± 4 | 259 ± 4 | 163 ± 3 | 264 ± 4 | 128 ± 3 |
表1 2020和2021年白桦径向生长季节特征(平均值±标准差)
Table 1 Seasonal characteristics of radial growth of Betula platyphylla in 2020 and 2021(mean ± SD)
年份 Year | 增大阶段 Enlargement | 细胞分裂持续时间(天) Duration of cell division (d) | 壁增厚阶段 Wall-thickening | 成熟阶段 Lignification | 生长季持续时间(天) Duration of growing season (d) | |||
---|---|---|---|---|---|---|---|---|
开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | |||
2020 | 143 ± 3 | 255 ± 3 | 113 ± 4 | 150 ± 2 | 260 ± 3 | 171 ± 4 | 265 ± 3 | 123 ± 4 |
2021 | 138 ± 2 | 254 ± 3 | 117 ± 4 | 140 ± 4 | 259 ± 4 | 163 ± 3 | 264 ± 4 | 128 ± 3 |
图3 白桦木质部生长过程的季节模式。点表示白桦各样木径向生长总长度(包括增大细胞、细胞壁增厚细胞和成熟细胞); A、B中曲线为各样木Gompertz模型拟合曲线; C、D中曲线为各样木日生长速率曲线。
Fig. 3 Seasonal patterns of xylem growth in Betula platyphylla. The points represent the total length of radial growth of the sampled tree of Betula platyphylla (including enlarging, wall-thickening and mature cells). Curves in A and B represent the Gompertz fitting curve of the sampled trees; and curves in C and D represent the corresponding daily growth rate.
年份 Year | 样树 Sampled tree | A | β | k | R2 | Rmax (μm·d-1) | Rmean (μm·d-1) | tp (d) |
---|---|---|---|---|---|---|---|---|
2020 | 1 | 876.29 | 4.87 | 0.025 | 0.95 | 8.23 | 5.02 | 191 |
2 | 1 314.61 | 8.09 | 0.043 | 0.90 | 20.97 | 12.79 | 186 | |
3 | 308.11 | 9.65 | 0.056 | 0.85 | 6.41 | 3.91 | 170 | |
4 | 1 814.03 | 7.03 | 0.039 | 0.91 | 25.80 | 15.73 | 182 | |
2021 | 1 | 1 400.39 | 10.39 | 0.061 | 0.84 | 31.33 | 19.11 | 171 |
2 | 2 095.70 | 6.76 | 0.038 | 0.92 | 29.12 | 17.75 | 178 | |
3 | 1 156.22 | 12.53 | 0.076 | 0.96 | 32.38 | 19.74 | 164 | |
4 | 2 303.34 | 5.24 | 0.029 | 0.96 | 24.22 | 14.77 | 184 |
表2 白桦各样树Gompertz函数拟合的参数特征
Table 2 Parameter characteristics of Gompertz function fitting for each sampled tree of Betula platyphylla
年份 Year | 样树 Sampled tree | A | β | k | R2 | Rmax (μm·d-1) | Rmean (μm·d-1) | tp (d) |
---|---|---|---|---|---|---|---|---|
2020 | 1 | 876.29 | 4.87 | 0.025 | 0.95 | 8.23 | 5.02 | 191 |
2 | 1 314.61 | 8.09 | 0.043 | 0.90 | 20.97 | 12.79 | 186 | |
3 | 308.11 | 9.65 | 0.056 | 0.85 | 6.41 | 3.91 | 170 | |
4 | 1 814.03 | 7.03 | 0.039 | 0.91 | 25.80 | 15.73 | 182 | |
2021 | 1 | 1 400.39 | 10.39 | 0.061 | 0.84 | 31.33 | 19.11 | 171 |
2 | 2 095.70 | 6.76 | 0.038 | 0.92 | 29.12 | 17.75 | 178 | |
3 | 1 156.22 | 12.53 | 0.076 | 0.96 | 32.38 | 19.74 | 164 | |
4 | 2 303.34 | 5.24 | 0.029 | 0.96 | 24.22 | 14.77 | 184 |
图4 白桦径向生长速率与环境因子的关系。PAR, 光合有效辐射; Pre, 降水量; RH, 相对湿度; SWC, 土壤含水量; Tmax, 最高气温; Tmean, 平均气温; Tmin, 最低气温; Ts, 土壤温度; VPD, 饱和水汽压差。*, p < 0.05; **, p < 0.01。
Fig. 4 Pearson correlation between radial growth rate of Betula platyphylla and climatic factors. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative air humidity; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; Ts, soil temperature; VPD, vapor pressure deficit. *, p < 0.05; **, p < 0.01.
图5 白桦快速生长期(A)和慢速生长期(B)径向生长速率与气候因子的主成分(PC)分析。PAR, 光合有效辐射; Pre, 降水量; RH, 相对湿度; RGR, 径向生长速率; SWC, 土壤含水量; Tmax, 最高气温; Tmean, 平均气温; Tmin, 最低气温; Ts, 土壤温度; VPD, 饱和水汽压差。
Fig. 5 Principal component (PC) analysis of radial growth rate of Betula platyphylla and climatic factors during rapid (A) and slow (B) growth periods. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative air humidity; RGR, radial growth rate; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; Ts, soil temperature; VPD, vapor pressure deficit.
[1] | Alam SA, Huang JG, Stadt KJ, Comeau PG, Dawson A, Gea-Izquierdo G, Aakala T, Hölttä T, Vesala T, Mäkelä A, Berninger F (2017). Effects of competition, drought stress and photosynthetic productivity on the radial growth of white spruce in western Canada. Frontiers in Plant Science, 8, 1915. DOI: 10.3389/fpls.2017.01915. |
[2] |
Begum S, Kudo K, Matsuoka Y, Nakaba S, Yamagishi Y, Nabeshima E, Rahman MH, Nugroho WD, Oribe Y, Jin HO, Funada R (2016). Localized cooling of stems induces latewood formation and cambial dormancy during seasons of active cambium in conifers. Annals of Botany, 117, 465-477.
DOI PMID |
[3] | Chen S, Wang YC, Yu LL, Zheng T, Wang S, Yue Z, Jiang J, Kumari S, Zheng CF, Tang HB, Li J, Li YQ, Chen JJ, Zhang WB, Kuang HH, et al. (2021). Genome sequence and evolution of Betula platyphylla. Horticulture Research, 8, 37. DOI: 10.1038/s41438-021-00481-7. |
[4] |
Day TA, DeLucia EH, Smith WK (1989). Influence of cold soil and snowcover on photosynthesis and leaf conductance in two Rocky Mountain conifers. Oecologia, 80, 546-552.
DOI PMID |
[5] | Duchesne L, Houle D, D’Orangeville L (2012). Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Québec, Canada. Agricultural and Forest Meteorology, 162- 163, 108-114. |
[6] | Fan Z, Bräuning A, Fu P, Yang R, Qi J, Grießinger J, Gebrekirstos A (2019). Intra-annual radial growth of Pinus kesiya var. langbianensis is mainly controlled by moisture availability in the Ailao Mountains, Southwestern China. Forests, 10, 899. DOI: 10.3390/f10100899. |
[7] |
Gričar J, Zupančič M, Čufar K, Koch G, Schmitt U, Oven P (2006). Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Annals of Botany, 97, 943-951.
DOI PMID |
[8] |
Gruber A, Wieser G, Oberhuber W (2010). Opinion paper: effects of simulated soil temperature on stem diameter increment of Pinus cembra at the alpine timberline: a new approach based on root zone roofing. European Journal of Forest Research, 129, 141-144.
PMID |
[9] | Guo MH, Lu Y, Wang WJ, Cui YZ (1999). The radial variation patterns of wood density and ring width in different Betula platyphylla provenances. Journal of Northeast Forestry University, 27(4), 29-32. |
[郭明辉, 鲁英, 王万进, 崔永志 (1999). 不同种源白桦木材密度和生长轮宽度径向变异模式. 东北林业大学学报, 27(4), 29-32.] | |
[10] |
Han YG, Zhou WM, Qi L, Zhou L, Zhong QL, Dai LM, Yu DP (2019). Tree radial growth-climate relationship in Changbai Mountain, Northeast China. Chinese Journal of Applied Ecology, 30, 1513-1520.
DOI |
[韩艳刚, 周旺明, 齐麟, 周莉, 仲庆林, 代力民, 于大炮 (2019). 长白山树木径向生长对气候因子的响应. 应用生态学报, 30, 1513-1520.]
DOI |
|
[11] | Huang J, Zhang Y, Wang M, Yu X, Deslauriers A, Fonti P, Liang EY, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhai L, Zhang J, et al. (2023). A critical thermal transition driving spring phenology of Northern Hemisphere conifers. Global Change Biology, 29, 1606-1617. |
[12] | Huang W, Zhang SB, Hu H (2015). Insusceptibility of oxygen- evolving complex to high light in Betula platyphylla. Journal of Plant Research, 128, 307-315. |
[13] | IPCC (Intergovernmental Panel on Climate Change) (2021). Climate Change 2021: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[14] | Jiang Y, Wang BQ, Dong MY, Huang YM, Wang MC, Wang B (2015). Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of North China. Trees, 29, 87-96. |
[15] |
Körner C (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
DOI PMID |
[16] | Liu MJ, Chen QW, Lü JL, Li GQ, Du S (2023). Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region. Chinese Journal of Plant Ecology, 47, 227-237. |
[刘美君, 陈秋文, 吕金林, 李国庆, 杜盛 (2023). 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征. 植物生态学报, 47, 227-237.]
DOI |
|
[17] | Malik R, Rossi S, Sukumar R (2020). Cambial phenology in Abies pindrow (Pinaceae) along an altitudinal gradient in northwestern Himalaya. IAWA Journal, 41, 186-201. |
[18] | Meng SW, Fu XL, Zhao B, Dai XQ, Li QK, Yang FT, Kou L, Wang HM (2021). Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees, 35, 1817-1830. |
[19] | Meng SW, Yang FT, Dai XQ, Wang HM (2021). Radial growth dynamics of Chinese fir and its response to seasonal drought. Chinese Journal of Applied Ecology, 32, 3521-3530. |
[孟盛旺, 杨风亭, 戴晓琴, 王辉民 (2021). 杉木径向生长动态及其对季节性干旱的响应. 应用生态学报, 32, 3521-3530.]
DOI |
|
[20] | Peters RL, Steppe K, Cuny HE, De Pauw DJW, Frank DC, Schaub M, Rathgeber CBK, Cabon A, Fonti P (2021). Turgor—A limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229, 213-229. |
[21] | Qian NP, Gao HX, Xu ZZ, Song CJ, Dong CC, Zeng W, Sun Z, Siqing B, Liu QJ (2023). Cambial phenology and wood formation of Korean pine in response to climate change in Changbai Mountain, Northeast China. Dendrochronologia, 77, 126045. DOI: 10.1016/j.dendro.2022.126045. |
[22] | Ren P, Rossi S, Camarero JJ, Ellison AM, Liang E, Peñuelas J (2018). Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the north-eastern Tibetan Plateau. Annals of Botany, 121, 617-624. |
[23] |
Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang J, Jyske T, Kašpar J, King G, Krause C, Liang E, et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 22, 3804-3813.
DOI PMID |
[24] | Shao XM, Wu XD (1997). Reconstruction of climate change on Changbai Mountain, northeast China using tree-ring data. Quaternary Sciences, 17(1), 76-85. |
[邵雪梅, 吴祥定 (1997). 利用树轮资料重建长白山区过去气候变化. 第四纪研究, 17(1), 76-85.] | |
[25] |
Vapaavuori EM, Rikala R, Ryyppö A (1992). Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiology, 10, 217-230.
PMID |
[26] | Wang LL, Gou XH, Xia JQ, Wang F, Zhang F, Zhang JZ (2021). Research progress on cambial activity of trees and the influencing factors. Chinese Journal of Applied Ecology, 32, 3761-3770. |
[王玲玲, 勾晓华, 夏敬清, 王放, 张芬, 张军周 (2021). 树木形成层活动及其影响因素研究进展. 应用生态学报, 32, 3761-3770.]
DOI |
|
[27] | Wang M, Bai SJ, Tao DL, Shan JP (1995). Effect of rise in air-temperature on tree ring growth of forest on Changbai Mountain. Chinese Journal of Applied Ecology, 6, 128-132. |
[王淼, 白淑菊, 陶大立, 单建平 (1995). 大气增温对长白山林木直径生长的影响. 应用生态学报, 6, 128-132.] | |
[28] | Wang XC, Zhang MH, Ji Y, Li ZS, Li M, Zhang YD (2017). Temperature signals in tree-ring width and divergent growth of Korean pine response to recent climate warming in northeast Asia. Trees, 31, 415-427. |
[29] | Xia JQ, Gou XH, Wang LL, Wang F, Zhang JZ, Zhang F (2021). Stem radial growth of Picea crassifolia in response to climatic factors in the western Qilian Mountains, China. Chinese Journal of Applied Ecology, 32, 3585-3593. |
[夏敬清, 勾晓华, 王玲玲, 王放, 张军周, 张芬 (2021). 祁连山西部青海云杉径向生长对气候因子的响应. 应用生态学报, 32, 3585-3593.]
DOI |
|
[30] | Yang JW, Cooper DJ, Zhang X, Song WQ, Li ZS, Zhang YD, Zhao HY, Han SJ, Wang XC (2022). Climatic controls of Pinus pumila radial growth along an altitude gradient. New Forests, 53, 319-335. |
[31] | Yu J, Chen JJ, Meng SW, Zhou H, Zhou G, Gao LS, Wang YP, Liu QJ (2021). Response of radial growth of Pinus sylvestriformis and Picea jezoensis to climate warming in the ecotone of Changbai Mountain, Northeast China. Chinese Journal of Applied Ecology, 32, 46-56. |
[于健, 陈佳佳, 孟盛旺, 周华, 周光, 高露双, 王永平, 刘琪璟 (2021). 长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应. 应用生态学报, 32, 46-56.]
DOI |
|
[32] | Yu J, Luo CW, Xu QQ, Meng SW, Li JQ, Liu QJ (2016). Radial growth of Pinus koraiensis and carbon sequastration potential of the old growth forest in Changbai Mountain, Northeast China. Acta Ecologica Sinica, 36, 2626-2636. |
[于健, 罗春旺, 徐倩倩, 孟盛旺, 李俊清, 刘琪璟 (2016). 长白山原始林红松径向生长及林分碳汇潜力. 生态学报, 36, 2626-2636.] | |
[33] | Yuan DY (2020). Xylem Anatomical Characteristics of Main Trees Species in the East of Northeast China and Their Response to Climate Change. Master degree dissertation, Northeast Forestry University, Harbin. |
[苑丹阳 (2020). 东北东部主要树种木质部解剖特征及其对气候变化的响应. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[34] | Zhang J, Gou X, Manzanedo RD, Zhang F, Pederson N (2018). Cambial phenology and xylogenesis of Juniperus przewalskii over a climatic gradient is influenced by both temperature and drought. Agricultural and Forest Meteorology, 260- 261, 165-175. |
[35] | Zhang JZ (2018). Cambial Phenology and Intra-annual Radial Growth Dynamics of Conifers over the Qilian Mountains. PhD Dissertation, Lanzhou University, Lanzhou. |
[张军周 (2018). 祁连山树木形成层活动及年内径向生长动态监测研究. 博士学位论文, 兰州大学, 兰州.] | |
[36] | Zhang RB, Yuan YJ, Gou XH, Zhang TW, Zou C, Ji CR, Fan ZA, Qin L, Shang HM, Li XJ (2016). Intra-annual radial growth of Schrenk spruce (Picea schrenkiana Fisch. et Mey) and its response to climate on the northern slopes of the Tianshan Mountains. Dendrochronologia, 40, 36-42. |
[37] |
Zweifel R, Sterck F, Braun S, Buchmann N, Eugster W, Gessler A, Häni M, Peters RL, Walthert L, Wilhelm M, Ziemińska K, Etzold S (2021). Why trees grow at night. New Phytologist, 231, 2174-2185.
DOI PMID |
[1] | 马琳, 巢林, 何雨莎, 李忠国, 王爱华, 刘晟源, 胡宝清, 刘艳艳. 热带喀斯特季节性雨林12个树种木质部栓塞抗性与其解剖结构及相关性状间的关系[J]. 植物生态学报, 2024, 48(7): 888-902. |
[2] | 张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 903-914. |
[3] | 常晨晖, 朱彪, 朱江玲, 吉成均, 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[5] | 张雨鉴, 刘艳红. 林火干扰下的树木生理及主要影响因素[J]. 植物生态学报, 2024, 48(3): 269-286. |
[6] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[7] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[8] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[9] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[10] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[11] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[12] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[13] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[14] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[15] | 陈天翌, 娄安如. 青藏高原东侧白桦种群的遗传多样性与遗传结构[J]. 植物生态学报, 2022, 46(5): 561-568. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19