植物生态学报 ›› 2023, Vol. 47 ›› Issue (6): 833-846.DOI: 10.17521/cjpe.2022.0263
李卫英1,2, 章正仁2, 辛雅萱1, 王飞1, 辛培尧1,*(), 高洁2,*(
)
收稿日期:
2022-06-22
接受日期:
2022-10-31
出版日期:
2023-06-20
发布日期:
2022-10-31
通讯作者:
* (Xin PY, 作者简介:
ORCID:李卫英: 0000-0003-1055-2522
基金资助:
LI Wei-Ying1,2, ZHANG Zheng-Ren2, XIN Ya-Xuan1, WANG Fei1, XIN Pei-Yao1,*(), GAO Jie2,*(
)
Received:
2022-06-22
Accepted:
2022-10-31
Online:
2023-06-20
Published:
2022-10-31
Contact:
* (Xin PY, Supported by:
摘要:
研究近缘种复合体的针叶表型变异及其地理分布格局, 有助于从生理生态机制上理解针叶树种的地理变异、种群动态以及对区域气候的响应。云南松(Pinus yunnanensis)、思茅松(P. kesiya var. langbianensis)和卡西亚松(P. kesiya)是一个跨越了东南亚热带和亚热带地区的近缘种复合体, 具有典型的地理替代分布特征, 拥有丰富的表型变异和遗传变异。该研究在3种松树分布区采集了31个代表种群, 每个种群选择10个样木, 测量了针叶长度、气孔密度、气孔保卫细胞长度和宽度、木质增厚层长度和宽度、气孔腔长度和宽度等共8个性状。采用巢式方差分析计算性状在树种间和种群间的差异, 通过主成分分析和聚类分析揭示针叶性状的种群变异结构; 分析针叶性状随纬度的变化规律, 运用多元线性回归模型来确定影响针叶性状变异的主要环境因子。结果表明: (1)针叶性状在种群间的变异系数为12.01%-34.08%, 气孔保卫细胞长度、木质增厚层长度和宽度、针叶长度和气孔密度的表型分化系数较高; (2)云南松和卡西亚松在大多数性状上存在显著差异, 思茅松介于二者之间, 聚类分析结果表明3种松树针叶性状的种群变异结构与其地理区域分布一致; (3)针叶长度和气孔密度与纬度正相关, 气孔腔长度和宽度与纬度负相关; (4)影响针叶性状变化的关键环境因子是最干季平均气温、降水量季节性变异系数、平均气温日较差、最湿月降水量和最干月降水量。3种松树针叶性状具有丰富的种间和种群间变异, 呈现显著的纬度梯度变异趋势, 反映了其对环境长期适应的结果。热带亚热带松树针叶性状变异及其对环境因子的响应可为造林育种的地理种源选择提供科学依据。
李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异. 植物生态学报, 2023, 47(6): 833-846. DOI: 10.17521/cjpe.2022.0263
LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya. Chinese Journal of Plant Ecology, 2023, 47(6): 833-846. DOI: 10.17521/cjpe.2022.0263
物种 Species | 种群地点 Population location | 种群编号 Population No. | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) |
---|---|---|---|---|---|
卡西亚松 P. kesiya | 老挝阿速坡 Attapu, Laos | ASPPk | 107.19 | 15.22 | 1 061 |
缅甸掸邦, 东枝 Dongzhi, Shan State, Myanmar | DZPk | 97.06 | 20.79 | 1 583 | |
老挝川圹, 丰沙湾 Phonsavan, Xieng Khouang, Laos | FSWPk | 103.12 | 19.50 | 1 070 | |
缅甸掸邦, 格劳 GeLao, Shan State, Myanmar | KLPk | 96.55 | 20.65 | 1 022 | |
菲律宾 Philippines | PHP1 | 120.85 | 16.19 | 1 201 | |
菲律宾 Philippines | PHP4 | 120.89 | 17.14 | 751 | |
菲律宾 Philippines | PHP8 | 120.89 | 18.10 | 50 | |
老挝华潘, 桑怒 Sam Neua, Houaphanh, Laos | SNPk | 103.96 | 20.22 | 1 399 | |
越南安沛, 拉潘滩 La Pan Tan, Yen Bai, Vietnam | V04 | 104.13 | 21.75 | 1 410 | |
越南得农 Dak Nong Vietnam | V08 | 107.43 | 12.15 | 847 | |
思茅松 P. kesiya var. langbianensis | 中国云南 Yunnan, China | ||||
景谷 Jinggu | JGPk | 100.50 | 23.49 | 1 707 | |
景洪贺建 Hejian, Jinghong | JHPk02 | 100.51 | 22.25 | 1 244 | |
勐腊 Mengla | MLPk | 101.67 | 21.25 | 921 | |
宁洱 Ning’er | NEPk | 100.97 | 23.19 | 1 004 | |
思茅 Simao | SMPk | 100.95 | 22.71 | 1 340 | |
景洪大渡岗 Dadugang, Jinghong | JHPk01 | 100.99 | 22.42 | 1 113 | |
勐海布朗山 Bulangshan, Menghai | MHPk01 | 100.24 | 21.66 | 885 | |
墨江 Mojiang | MJPk | 101.61 | 23.40 | 1 690 | |
镇沅 Zhengyuan | ZYPk | 101.14 | 23.88 | 1 109 | |
云南松 P. yunnanensis | 中国云南 Yunnan, China | ||||
宾川 Binchuan | BCPy | 100.35 | 25.97 | 1 809 | |
大理云龙 Yunlong, Dali | DLPy | 99.29 | 25.87 | 2 572 | |
景东 Jingdong | JDPy | 100.67 | 24.70 | 1 713 | |
昆明 Kunming | KMPy | 102.62 | 24.91 | 2 041 | |
丽江 Lijiang | LJPy | 100.22 | 26.88 | 2 651 | |
腾冲 Tengchong | TCPy | 98.58 | 24.91 | 1 776 | |
文山 Wenshan | WSPy02 | 104.63 | 23.97 | 1 573 | |
宜良 Yiliang | YLPy | 103.16 | 24.71 | 1 938 | |
玉溪 Yuxi | YXPy | 102.15 | 24.24 | 1 861 | |
中国广西 Guangxi, China | |||||
乐业 Leye | LYPy | 106.37 | 24.80 | 1 336 | |
西林 Xilin | XLPy | 104.62 | 24.59 | 857 | |
隆林 Longlin | LLPy | 104.96 | 24.69 | 1 294 |
表1 云南松、卡西亚松及思茅松采集信息表
Table 1 Sample informations of Pinus yunnanensis, P. kesiya and P. kesiya var. langbianensis
物种 Species | 种群地点 Population location | 种群编号 Population No. | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) |
---|---|---|---|---|---|
卡西亚松 P. kesiya | 老挝阿速坡 Attapu, Laos | ASPPk | 107.19 | 15.22 | 1 061 |
缅甸掸邦, 东枝 Dongzhi, Shan State, Myanmar | DZPk | 97.06 | 20.79 | 1 583 | |
老挝川圹, 丰沙湾 Phonsavan, Xieng Khouang, Laos | FSWPk | 103.12 | 19.50 | 1 070 | |
缅甸掸邦, 格劳 GeLao, Shan State, Myanmar | KLPk | 96.55 | 20.65 | 1 022 | |
菲律宾 Philippines | PHP1 | 120.85 | 16.19 | 1 201 | |
菲律宾 Philippines | PHP4 | 120.89 | 17.14 | 751 | |
菲律宾 Philippines | PHP8 | 120.89 | 18.10 | 50 | |
老挝华潘, 桑怒 Sam Neua, Houaphanh, Laos | SNPk | 103.96 | 20.22 | 1 399 | |
越南安沛, 拉潘滩 La Pan Tan, Yen Bai, Vietnam | V04 | 104.13 | 21.75 | 1 410 | |
越南得农 Dak Nong Vietnam | V08 | 107.43 | 12.15 | 847 | |
思茅松 P. kesiya var. langbianensis | 中国云南 Yunnan, China | ||||
景谷 Jinggu | JGPk | 100.50 | 23.49 | 1 707 | |
景洪贺建 Hejian, Jinghong | JHPk02 | 100.51 | 22.25 | 1 244 | |
勐腊 Mengla | MLPk | 101.67 | 21.25 | 921 | |
宁洱 Ning’er | NEPk | 100.97 | 23.19 | 1 004 | |
思茅 Simao | SMPk | 100.95 | 22.71 | 1 340 | |
景洪大渡岗 Dadugang, Jinghong | JHPk01 | 100.99 | 22.42 | 1 113 | |
勐海布朗山 Bulangshan, Menghai | MHPk01 | 100.24 | 21.66 | 885 | |
墨江 Mojiang | MJPk | 101.61 | 23.40 | 1 690 | |
镇沅 Zhengyuan | ZYPk | 101.14 | 23.88 | 1 109 | |
云南松 P. yunnanensis | 中国云南 Yunnan, China | ||||
宾川 Binchuan | BCPy | 100.35 | 25.97 | 1 809 | |
大理云龙 Yunlong, Dali | DLPy | 99.29 | 25.87 | 2 572 | |
景东 Jingdong | JDPy | 100.67 | 24.70 | 1 713 | |
昆明 Kunming | KMPy | 102.62 | 24.91 | 2 041 | |
丽江 Lijiang | LJPy | 100.22 | 26.88 | 2 651 | |
腾冲 Tengchong | TCPy | 98.58 | 24.91 | 1 776 | |
文山 Wenshan | WSPy02 | 104.63 | 23.97 | 1 573 | |
宜良 Yiliang | YLPy | 103.16 | 24.71 | 1 938 | |
玉溪 Yuxi | YXPy | 102.15 | 24.24 | 1 861 | |
中国广西 Guangxi, China | |||||
乐业 Leye | LYPy | 106.37 | 24.80 | 1 336 | |
西林 Xilin | XLPy | 104.62 | 24.59 | 857 | |
隆林 Longlin | LLPy | 104.96 | 24.69 | 1 294 |
性状 Trait | 云南松 Pinus yunnanensis | 卡西亚松 P. kesiya | 思茅松 P. kesiya var. langbianensis | 种群间 Among populations | ||||
---|---|---|---|---|---|---|---|---|
平均值±标准差 Mean ± SD | 变异系数 CV (%) | 平均值±标准差 Mean ± SD | 变异系数 CV (%) | 平均值±标准差 Mean ± SD | 变异系数 CV (%) | 平均值±标准差 Mean ± SD | 变异系数 CV (%) | |
LSGC (μm) | 30.20 ± 3.41b | 11.30 | 35.45 ± 3.83a | 10.80 | 31.41 ± 3.86b | 12.28 | 32.28 ± 4.32 | 13.39 |
WSGC (μm) | 24.70 ± 2.78b | 11.26 | 27.32 ± 3.17a | 11.62 | 24.94 ± 2.53ab | 10.13 | 25.63 ± 3.08 | 12.01 |
WTLL (μm) | 16.94 ± 2.62b | 15.50 | 22.66 ± 4.64a | 20.49 | 18.31 ± 2.69b | 14.68 | 19.21 ± 4.23 | 22.01 |
WTLW (μm) | 13.84 ± 2.20c | 15.77 | 17.65 ± 2.00a | 11.35 | 15.58 ± 2.18b | 14.01 | 15.63 ± 2.64 | 16.87 |
LSC (μm) | 6.99 ± 2.17a | 31.01 | 8.07 ± 2.96a | 36.70 | 6.57 ± 1.90a | 28.84 | 7.23 ± 2.46 | 34.08 |
WSC (μm) | 5.88 ± 1.45b | 24.56 | 6.95 ± 1.82a | 26.12 | 5.67 ± 1.74b | 30.70 | 6.17 ± 1.74 | 28.26 |
NL (cm) | 21.34 ± 3.57a | 16.72 | 18.43 ± 2.87ab | 15.59 | 14.93 ± 5.45b | 36.53 | 18.53 ± 4.78 | 25.78 |
SD (600 μm-2) | 98.43 ± 25.28a | 25.68 | 68.92 ± 16.11b | 23.38 | 66.87 ± 17.41b | 26.04 | 79.62 ± 25.21 | 31.66 |
表2 云南松、思茅松和卡西亚松天然种群针叶的表型性状、变异系数和种间Tukey’s HSD多重比较
Table 2 Measurement values, variation coefficients and Tukey’s HSD test of the needle morphological traits among the natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya
性状 Trait | 云南松 Pinus yunnanensis | 卡西亚松 P. kesiya | 思茅松 P. kesiya var. langbianensis | 种群间 Among populations | ||||
---|---|---|---|---|---|---|---|---|
平均值±标准差 Mean ± SD | 变异系数 CV (%) | 平均值±标准差 Mean ± SD | 变异系数 CV (%) | 平均值±标准差 Mean ± SD | 变异系数 CV (%) | 平均值±标准差 Mean ± SD | 变异系数 CV (%) | |
LSGC (μm) | 30.20 ± 3.41b | 11.30 | 35.45 ± 3.83a | 10.80 | 31.41 ± 3.86b | 12.28 | 32.28 ± 4.32 | 13.39 |
WSGC (μm) | 24.70 ± 2.78b | 11.26 | 27.32 ± 3.17a | 11.62 | 24.94 ± 2.53ab | 10.13 | 25.63 ± 3.08 | 12.01 |
WTLL (μm) | 16.94 ± 2.62b | 15.50 | 22.66 ± 4.64a | 20.49 | 18.31 ± 2.69b | 14.68 | 19.21 ± 4.23 | 22.01 |
WTLW (μm) | 13.84 ± 2.20c | 15.77 | 17.65 ± 2.00a | 11.35 | 15.58 ± 2.18b | 14.01 | 15.63 ± 2.64 | 16.87 |
LSC (μm) | 6.99 ± 2.17a | 31.01 | 8.07 ± 2.96a | 36.70 | 6.57 ± 1.90a | 28.84 | 7.23 ± 2.46 | 34.08 |
WSC (μm) | 5.88 ± 1.45b | 24.56 | 6.95 ± 1.82a | 26.12 | 5.67 ± 1.74b | 30.70 | 6.17 ± 1.74 | 28.26 |
NL (cm) | 21.34 ± 3.57a | 16.72 | 18.43 ± 2.87ab | 15.59 | 14.93 ± 5.45b | 36.53 | 18.53 ± 4.78 | 25.78 |
SD (600 μm-2) | 98.43 ± 25.28a | 25.68 | 68.92 ± 16.11b | 23.38 | 66.87 ± 17.41b | 26.04 | 79.62 ± 25.21 | 31.66 |
性状 Trait | 均方 Mean square | F | 方差分量 Variance components (%) | VST (%) | |||||
---|---|---|---|---|---|---|---|---|---|
种间 Interspecies | 种内群体间 Populations within species | 残差 Residuals | 种间 Interspecies | 种内群体间 Populations within species | 种间 Interspecies | 种内群体间 Populations within species | 残差 Residuals | ||
LSGC (μm) | 770.50 | 43.80 | 10.40 | 17.59*** | 4.21*** | 34.66 | 16.40 | 48.94 | 67.88 |
WSGC (μm) | 209.53 | 31.04 | 5.71 | 6.75*** | 5.44*** | 17.78 | 25.97 | 56.25 | 40.64 |
WTLL (μm) | 914.30 | 50.20 | 7.80 | 18.21*** | 6.44*** | 41.77 | 21.06 | 37.17 | 66.48 |
WTLW (μm) | 363.60 | 9.30 | 4.00 | 39.10*** | 2.33*** | 43.89 | 6.67 | 49.44 | 86.80 |
LSC (μm) | 56.49 | 21.60 | 4.06 | 2.62*** | 5.32*** | 5.63 | 29.28 | 65.08 | 16.14 |
WSC (μm) | 45.31 | 6.77 | 2.33 | 6.69*** | 2.91*** | 12.24 | 14.50 | 73.26 | 45.79 |
NL (cm) | 1 005.90 | 61.00 | 11.50 | 16.49*** | 5.30*** | 36.54 | 19.68 | 43.78 | 64.99 |
SD (600 μm-2) | 32 767.00 | 1 112.00 | 345.00 | 29.47*** | 3.22*** | 43.03 | 10.72 | 46.25 | 80.06 |
平均值 Mean | 4 516.58 | 166.96 | 48.85 | - | - | 29.44 | 18.04 | 52.52 | 58.60 |
表3 云南松、思茅松和卡西亚松天然种群针叶表型性状变异方差分析
Table 3 Variance portions and differentiation coefficients of the needle morphological traits among the natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya
性状 Trait | 均方 Mean square | F | 方差分量 Variance components (%) | VST (%) | |||||
---|---|---|---|---|---|---|---|---|---|
种间 Interspecies | 种内群体间 Populations within species | 残差 Residuals | 种间 Interspecies | 种内群体间 Populations within species | 种间 Interspecies | 种内群体间 Populations within species | 残差 Residuals | ||
LSGC (μm) | 770.50 | 43.80 | 10.40 | 17.59*** | 4.21*** | 34.66 | 16.40 | 48.94 | 67.88 |
WSGC (μm) | 209.53 | 31.04 | 5.71 | 6.75*** | 5.44*** | 17.78 | 25.97 | 56.25 | 40.64 |
WTLL (μm) | 914.30 | 50.20 | 7.80 | 18.21*** | 6.44*** | 41.77 | 21.06 | 37.17 | 66.48 |
WTLW (μm) | 363.60 | 9.30 | 4.00 | 39.10*** | 2.33*** | 43.89 | 6.67 | 49.44 | 86.80 |
LSC (μm) | 56.49 | 21.60 | 4.06 | 2.62*** | 5.32*** | 5.63 | 29.28 | 65.08 | 16.14 |
WSC (μm) | 45.31 | 6.77 | 2.33 | 6.69*** | 2.91*** | 12.24 | 14.50 | 73.26 | 45.79 |
NL (cm) | 1 005.90 | 61.00 | 11.50 | 16.49*** | 5.30*** | 36.54 | 19.68 | 43.78 | 64.99 |
SD (600 μm-2) | 32 767.00 | 1 112.00 | 345.00 | 29.47*** | 3.22*** | 43.03 | 10.72 | 46.25 | 80.06 |
平均值 Mean | 4 516.58 | 166.96 | 48.85 | - | - | 29.44 | 18.04 | 52.52 | 58.60 |
图2 云南松、思茅松和卡西亚松针叶性状指标的主成分(PC)分析(A)和31个天然群体的针叶性状聚类图(B)。LSC, 气孔腔长度; LSGC, 气孔保卫细胞长度; NL, 针叶长度; SD, 气孔密度; WSC, 气孔腔宽度; WSGC, 气孔保卫细胞宽度; WTLL, 木质增厚层长度; WTLW, 木质增厚层宽度。群体编号信息见表1。
Fig. 2 Scatter diagram of the first two principal coordinates from principal component (PC) analysis (A) and ward cluster (B) for the 31 populations based on needle traits of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya. LSC, length of the stomata cavity; LSGC, length of stomata guard cell; NL, needle length; SD, stomatal density; WSC, width of the stomata cavity; WSGC, width of the stomata guard cell; WTLL, length of the woody thickening layer; WTLW, width of the woody thickening layer. See Table 1 for abbreviations of population ID.
图3 云南松、思茅松和卡西亚松针叶性状与纬度梯度相关性分析。LSC, 气孔腔长度; LSGC, 气孔保卫细胞长度; NL, 针叶长度; SD, 气孔密度; WSC, 气孔腔宽度; WSGC, 气孔保卫细胞宽度; WTLL, 木质增厚层长度; WTLW, 木质增厚层宽度。
Fig. 3 Latitudinal gradients of the needle traits of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya. LSC, length of the stomata cavity; LSGC, length of stomata guard cell; NL, needle length; SD, stomatal density; WSC, width of the stomata cavity; WSGC, width of the stomata guard cell; WTLL, length of the woody thickening layer; WTLW, width of the woody thickening layer.
图4 多元线性模型筛选出的重要气候变量与云南松、思茅松和卡西亚松针叶性状的相关性。LSC, 气孔腔长度; LSGC, 气孔保卫细胞长度; NL, 针叶长度; SD, 气孔密度; WSC, 气孔腔宽度; WSGC, 气孔保卫细胞宽度; WTLL, 木质增厚层长度; WTLW, 木质增厚层宽度。BIO2, 平均气温日较差; BIO9, 最干季平均气温; BIO13, 最湿月降水量; BIO14, 最干月降水量; BIO15, 降水量季节变异系数。r, 相关系数。所有值为基于lg转换。
Fig. 4 Significant correlation between the needle traits and climatic variables (selected by the multiple linear regression model) of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya. LSC, length of the stomata cavity; LSGC, length of stomata guard cell; NL, needle length; SD, stomatal density; WSC, width of the stomata cavity; WSGC, width of the stomata guard cell; WTLL, length of the woody thickening layer; WTLW, width of the woody thickening layer. BIO2, mean temperature diurnal range; BIO9, mean temperature of driest quarter; BIO13, precipitation of wettest month; BIO14, precipitation of driest month; BIO15, precipitation seasonality. r, correlation coefficient. The values was lg transformed.
图5 云南松、思茅松和卡西亚松的针叶表型性状主成分分析中第一主成分的群体分值(PC1)随重要气候变量(多元线性模型筛选)的地理变异趋势。BIO2, 平均气温日较差; BIO9, 最干季平均气温; BIO13, 最湿月降水量; BIO14, 最干月降水量; BIO15, 降水量季节变异系数。所有值为基于lg转换后扩大100倍。
Fig. 5 Distribution patterns of the population score of the first principal component value (PC1) based on the analysis of conifer phenotypic traits of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya was the geographical variation trend of important climatic variables (multivariate linear model screening). BIO2, mean temperature diurnal range; BIO9, mean temperature of driest quarter; BIO13, precipitation of wettest month; BIO14, precipitation of driest month; BIO15, precipitation seasonality. The values was lg transformed and multiplied by 100.
性状 Trait | 截距 Intercept | 平均气温日较差 BIO2 | 最湿季平均气温 BIO8 | 最干季平均气温 BIO9 | 最湿月降水量 BIO13 | 最干月降水量 BIO14 | 降水量季节变异系数 BIO15 |
---|---|---|---|---|---|---|---|
LSGC (μm) | -0.000 8 | 0.1 759 | 0.7 516 | -0.3 924 | |||
WSGC (μm) | -0.054 6 | -0.5 432 | 0.6 846 | 0.3 786 | |||
WTLL (μm) | 0.007 7 | 0.2 861 | 0.6 523 | -0.4 449 | |||
WTLW (μm) | -0.008 3 | -0.3 561 | 0.9 913 | 0.1 731 | |||
LSC (μm) | -0.031 4 | -0.4 884 | 0.7 315 | 0.7 785 | -1.3 658 | ||
WSC (μm) | -0.027 5 | 0.4 550 | -0.3 918 | ||||
NL (cm) | -0.007 0 | -0.3 137 | -0.5 250 | ||||
SD ( 600 μm-2) | -0.018 1 | -0.8 011 | 0.1 918 |
表4 多元线性回归模型筛选的影响云南松、思茅松和卡西亚松种群针叶表型性状变异的气候变量
Table 4 Multiple linear regression models selected the climatic variables that predict variation in measured traits across all populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya.
性状 Trait | 截距 Intercept | 平均气温日较差 BIO2 | 最湿季平均气温 BIO8 | 最干季平均气温 BIO9 | 最湿月降水量 BIO13 | 最干月降水量 BIO14 | 降水量季节变异系数 BIO15 |
---|---|---|---|---|---|---|---|
LSGC (μm) | -0.000 8 | 0.1 759 | 0.7 516 | -0.3 924 | |||
WSGC (μm) | -0.054 6 | -0.5 432 | 0.6 846 | 0.3 786 | |||
WTLL (μm) | 0.007 7 | 0.2 861 | 0.6 523 | -0.4 449 | |||
WTLW (μm) | -0.008 3 | -0.3 561 | 0.9 913 | 0.1 731 | |||
LSC (μm) | -0.031 4 | -0.4 884 | 0.7 315 | 0.7 785 | -1.3 658 | ||
WSC (μm) | -0.027 5 | 0.4 550 | -0.3 918 | ||||
NL (cm) | -0.007 0 | -0.3 137 | -0.5 250 | ||||
SD ( 600 μm-2) | -0.018 1 | -0.8 011 | 0.1 918 |
[1] | Androsiuk P, Kaczmarek Z, Urbaniak L (2011). The morphological traits of needles as markers of geographical differentiation in european Pinus sylvestris populations. Dendrobiology, 65, 3-16. |
[2] |
Blackman CJ, Aspinwall MJ, Tissue DT, Rymer PD (2017). Genetic adaptation and phenotypic plasticity contribute to greater leaf hydraulic tolerance in response to drought in warmer climates. Tree Physiology, 37, 583-592.
DOI PMID |
[3] |
Businský R, Frantík T, Vít P (2014). Morphological evaluation of the Pinus kesiya complex (Pinaceae). Plant Systematics and Evolution, 300, 273-285.
DOI URL |
[4] | Cai JF, Yu WW, Wang GB, Cao FL (2021). Analysis on phenotypic variations of fruit and core traits of Melia azedarach from different seed sources. Journal of Central South University of Forestry & Technology, 41(11), 1-9. |
[蔡金峰, 郁万文, 汪贵斌, 曹福亮 (2021). 不同产地苦楝果实和果核表型多样性分析. 中南林业科技大学学报, 41(11), 1-9.] | |
[5] | Chen F, Wang JM, Sun BG, Chen XM, Yang ZX, Duan ZY (2012). Relationship between geographical distribution of Pinus yunnanensis and climate. Forest Research, 25(2), 163-168. |
[陈飞, 王健敏, 孙宝刚, 陈晓鸣, 杨子祥, 段兆尧 (2012). 云南松的地理分布与气候关系. 林业科学研究, 25(2), 163-168.] | |
[6] | Dai KJ, He F, Shen YX, Zhou WJ, Li YP, Tang L (2006). Advances in the research on Pinus yunnanensis forest. Journal of Central South Forestry University, 26(2), 138-142. |
[戴开结, 何方, 沈有信, 周文君, 李扬苹, 唐丽 (2006). 云南松研究综述. 中南林学院学报, 26(2), 138-142.] | |
[7] |
Dobbertin M, Eilmann B, Bleuler P, Giuggiola A, Pannatier EG, Landolt W, Dong N, Prentice IC, Wright IJ, Evans BJ, Togashi HF, Caddy-Retalic S, McInerney FA, Sparrow B, Leitch E, Lowe AJ (2020). Components of leaf-trait variation along environmental gradients. New Phytologist, 228, 82-94.
DOI URL |
[8] |
Eguchi N, Fukatsu E, Funada R, Tobita H, Kitao M, Maruyama Y, Koike T (2004). Changes in morphology, anatomy, and photosynthetic capacity of needles of Japanese larch (Larix kaempferi) seedlings grown in high CO2 concentrations. Photosynthetica, 42, 173-178.
DOI URL |
[9] | Farjon A, Styles BT (1997). Pinus (Pinaceae): Flora Neotropica Monograph 75. The New York Botanical Garden, New York. |
[10] | Fu B, Hu GD, Yang F, Wang L (2014). Analysis on the “normalization” of drought in Yunnan Province. Journal of China Hydrology, 34(4), 82-85. |
[付奔, 胡关东, 杨帆, 王龙 (2014). 云南干旱“常态化”的分析. 水文, 34(4), 82-85.] | |
[11] |
Gao J, Wang BS, Mao JF, Ingvarsson P, Zeng QY, Wang XR (2012). Demography and speciation history of the homoploid hybrid pine Pinus densata on the Tibetan Plateau. Molecular Ecology, 21, 4811-4827.
DOI URL |
[12] | Ge S, Wang MX, Chen YW (1988). Study on genetic structure of Pinus massoniana population by isozyme. Forest Science, 24, 399-409. |
[葛颂, 王明庥, 陈岳武 (1988). 用同工酶研究马尾松群体的遗传结构. 林业科学, 24, 399-409.] | |
[13] | Gu YJ, Luo JX, Wu YW, Cao XJ (2009). Phenotypic diversity in natural populations of Picea balfouriana in Sichuan, China. Chinese Journal of Plant Ecology, 33, 291-301. |
[辜云杰, 罗建勋, 吴远伟, 曹小军 (2009). 川西云杉天然种群表型多样性. 植物生态学报, 33, 291-301.]
DOI |
|
[14] |
Huang YJ, Mao JF, Chen ZQ, Meng JX, Xu YL, Duan AN, Li Y (2016). Genetic structure of needle morphological and anatomical traits of Pinus yunnanensis. Journal of Forestry Research, 27, 13-25.
DOI URL |
[15] |
Jankowski A, Wyka TP, Zytkowiak R, DanuseviCius D, Oleksyn J (2019). Does climate-related in situ variability of Scots pine (Pinus sylvestris L.) needles have a genetic basis? Evidence from common garden experiments. Tree Physiology, 39, 573-589.
DOI PMID |
[16] |
Jasińska AK, Boratyńska K, Sobierajska K, Romo A, Ok T, Kharat MBD, Boratyński A (2013). Relationships among Cedrus libani, C. brevifolia and C. atlantica as revealed by the morphological and anatomical needle characters. Plant Systematics and Evolution, 299, 35-48.
DOI URL |
[17] | Jia ZR, Zhang SG, Wang JH (2011). Genetic variation and spatial geographical trend of needles, cones and seeds traits for natural populations of Picea linzhinesis. Forest Research, 24, 428-436. |
[贾子瑞, 张守攻, 王军辉 (2011). 林芝云杉天然群体针叶与种实的变异及其地理趋势. 林业科学研究, 24, 428-436.] | |
[18] |
Jin WT, Gernandt DS, Wehenkel C, Xia XM, Wei XX, Wang XQ (2021). Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022302118. DOI: 10.1073/pnas.2022302118.
DOI |
[19] |
Li L, Xing JY, Ma HY, Liu FL, Wang YS (2021). In situ determination of guard cell ion flux underpins the mechanism of ABA-mediated stomatal closure in barley plants exposed to PEG-induced drought stress. Environmental and Experimental Botany, 187, 104468. DOI: 10.1016/j.envexpbot.2021.104468.
DOI |
[20] |
Li SF, Su JR, Liu WD, Lang XD, Zhang ZJ, Su L, Jia CXZ, Yang HJ (2013). Phenotypic variations in cones and seeds of natural Pinus kesiya var. langbianensis populations in Yunnan Province, China. Chinese Journal of Plant Ecology, 37, 998-1009.
DOI URL |
[李帅锋, 苏建荣, 刘万德, 郎学东, 张志钧, 苏磊, 贾呈鑫卓, 杨华景 (2013). 思茅松天然群体种实表型变异. 植物生态学报, 37, 998-1009.]
DOI |
|
[21] | Liu YL (2011). The Variation and Trend of Needle Trait Indexes of Pinus tabulaeformis Carr. Geographic Populations. Master degree dissertation, Beijing Forestry University, Beijing. |
[刘永良 (2011). 油松地理种群针叶性状指标的变异与趋势. 硕士学位论文, 北京林业大学, 北京.] | |
[22] | Luo JX, Gu WC (2004). Studies on the variation of fruiting traits in natural populations of Picea asperata. Journal of Northwest A&F University (Natural Science Edition), 32(8), 60-66. |
[罗建勋, 顾万春 (2004). 云杉天然群体种实性状变异研究. 西北农林科技大学学报(自然科学版), 32(8), 60-66.] | |
[23] |
Mao QZ, Watanabe M, Imori M, Kim YS, Kita K, Koike I (2012). Photosynthesis and nitrogen allocation in needles in the sun and shade crowns of hybrid larch saplings: effect of nitrogen application. Photosynthetica, 50, 422-428.
DOI URL |
[24] |
McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57.
DOI URL |
[25] |
Meng JX, Chen XY, Huang YJ, Wang LM, Xing FQ, Li Y (2019). Environmental contribution to needle variation among natural populations of Pinus tabuliformis. Journal of Forestry Research, 30, 1311-1322.
DOI |
[26] |
Missanjo E, Matsumura J (2016). Wood density and mechanical properties of Pinus kesiya Royle ex Gordon in Malawi. Forests, 7, 135. DOI: 10.3390/f7070135.
DOI |
[27] | Nobis MP, Traiser C, Roth-Nebelsick A (2012). Latitudinal variation in morphological traits of the genus Pinus and its relation to environmental and phylogenetic signals. Plant Ecology & Diversity, 5, 1-11. |
[28] | Peak D, Mott KA (2011). A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant Cell & Environment, 34, 162-178. |
[29] |
Reich PB, Oleksyn J, Modrzynski J, Tjoelker MG (1996). Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. Tree Physiology, 16, 643-647.
PMID |
[30] | Santisuk T (1997). Geographical and ecological distributions of the two tropical pines, Pinus kesiya and Pinus merkusii, in southeast Asia. Thai Forest Bulletin, 25, 102-123. |
[31] | Sevik H, Ayan S, Turna I, Yahyaoglu Z (2010). Genetic diversity among populations in Scotch pine (Pinus silvestris L.) seed stands of Western Black Sea Region in Turkey. African Journal of Biotechnology, 9, 7266-7272. |
[32] | Turna I, Güney D (2009). Altitudinal variation of some morphological characters of scots pine (Pinus sylvestris L.) in Turkey. African Journal of Biotechnology, 8, 202-208. |
[33] | Turnbull JW, Armitage FB, Burley J (1980). Distribution and ecology of the Pinus kesiya complex//Armitage FB, Burley J. Tropical Forestry Papers 9—Pinus kesiya. University of Oxford, United Kingdom. 13-45. |
[34] |
Wang BS, Mao JF, Gao J, Zhao W, Wang XR (2011). Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata. Molecular Ecology, 20, 3796-3811.
DOI URL |
[35] | Wang XR, Szmidt AE, Lu MZ (1996). Genetic evidence for the presence of cytoplasmic DNA in pollen and megagametophytes and maternal inheritance of mitochondrial DNA in Pinus. Forest Genetics, 3, 37-44. |
[36] |
Willmore KE, Young NM, Richtsmeier JT (2007). Phenotypic variability: its components, measurement and underlying developmental processes. Evolutionary Biology, 34, 99-120.
DOI URL |
[37] | Wu ZL (1994). A review of the research status of Pinus kesiya var. langbianensis in southwestern China. Scientia Silvae Sinicae, 30(2), 151-157. |
[吴兆录 (1994). 思茅松研究现状的探讨. 林业科学, 30(2), 151-157.] | |
[38] | Wu ZY, Chen J, Chen SK (1986). Flora of Yunnan: Vol. 4. Science Press, Beijing. |
[吴征镒, 陈介, 陈书坤 (1986). 云南植物志: 第四卷. 科学出版社, 北京.] | |
[39] |
Xing FQ, Mao JF, Meng JX, Dai JF, Zhao W, Liu H, Xing Z, Zhang H, Wang XR, Li Y (2014). Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis. Ecology and Evolution, 4, 1890-1902.
DOI URL |
[40] |
Xing YW, Liu YS, Su T, Jacques FMB, Zhou ZK (2010). Pinus prekesiya sp nov from the upper miocene of Yunnan, southwestern China and its biogeographical implications. Review of Palaeobotany and Palynology, 160, 1-9.
DOI URL |
[41] |
Xu H, Liu MG, Dong SJ, Wu YL, Zhang HK (2019). Diversity and geographical variations of germplasm resources of Armeniaca mandshurica. Chinese Journal of Plant Ecology, 43, 585-600.
DOI URL |
[徐豪, 刘明国, 董胜君, 吴月亮, 张皓凯 (2019). 东北杏种质资源多样性及其地理变化. 植物生态学报, 43, 585-600.]
DOI |
|
[42] | Xu HC (1992). Geographical Variation and Provenance Selection of Pinus tabulaeformis. China Forestry Publishing House, Beijing. |
徐化成 (1992). 油松地理变异和种源选择. 中国林业出版社, 北京.] | |
[43] | Xu YL, Cai NH, Chen S, Wang DW, Duan AA, Kang XY (2018). Study on the phenotypic differentiation of cone traits among Pinus yunnanensis Franch. natural populations. Seed, 37(1), 62-67. |
[许玉兰, 蔡年辉, 陈诗, 王大玮, 段安安, 康向阳 (2018). 云南松天然群体球果表型变异研究. 种子, 37(1), 62-67.] | |
[44] | Xu Y, Zhou L, Cai NH, Deng LL, Wang DW, Duan AA, He CZ, Xu YL (2016). Needle Phenotypic Variation among Populations of Pinus yunnanensis at Different Altitude. Journal of Yunnan Agricultural University (Natural Sciences), 31(1), 109-114. |
[徐杨, 周丽, 蔡年辉, 邓丽丽, 王大玮, 段安安, 何承忠, 许玉兰.(2016). 云南松不同海拔群体的针叶性状表型多样性研究. 云南农业大学学报(自然科学), 31(1), 109-114.] | |
[45] |
Yang CP, Tuo YF, Ma JM, Zhang D (2019). Spatial and temporal evolution characteristics of drought in Yunnan Province from 1969 to 2018 based on SPI/SPEI. Water, Air, & Soil Pollution, 230, 269. DOI: 10.1007/s11270-019-4287-6.
DOI |
[46] |
Yang RQ, Fu PL, Fan ZX, Panthi S, Gao J, Niu Y, Li ZS, Bräuning A (2022). Growth-climate sensitivity of two pine species shows species-specific changes along temperature and moisture gradients in southwest China. Agricultural and Forest Meteorology, 318, 108907. DOI: 10.1016/j.agrformet.2022.108907.
DOI |
[47] | Yang XY, Xu JM, Zhu YA, Shen L, Li GY, Wu SJ, Luo YC, Liu JW, Chen LY (2019). Growth rhythm for half-sib families of young Pinus kesiya plantations in southern Yunnan, China. Journal of Tropical and Subtropical Botany, 27, 399-407. |
[杨雪艳, 徐建民, 朱映安, 沈乐, 李光友, 吴世军, 罗亚春, 刘继伟, 陈礼勇 (2019). 卡西亚松家系幼林的生长节律. 热带亚热带植物学报, 27, 399-407.] | |
[48] | Zhang HG (2000). Study on the Genetic Diversity of Picea koraiensis. PhD dissertation, Northeast Forestry University, Haerbin. |
[张含国 (2000). 红皮云杉遗传多样性的研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[49] |
Zhang MY, Meng JX, Zhang ZJ, Zhu S, Li Y (2017). Genetic analysis of needle morphological and anatomical traits among nature populations of Pinus tabuliformis. Journal of Plant Studies, 6, 62-75.
DOI URL |
[50] | Zhang XL, Yu H, Li B, Li WJ, Li XY, Bao CY (2014). Discrimination of Pinus yunnanensis, P. kesiya and P. densata by FT-NIR. Journal of Chemical and Pharmaceutical Research, 6, 142-149. |
[51] |
Zhang ZR, Li WY, Dong YY, Liu JX, Lan QY, Yang X, Xin PY, Gao J (2022). Geographic cline and genetic introgression effects on seed morphology variation and germination fitness in two closely related pine species in southeast Asia. Forests, 3, 374. DOI: 10.3390/f13030374.
DOI |
[52] | Zheng WJ, Fu LG (1978). Flora of China: Tomus 7. Science Press. Chinese Academy of Sciences, Beijing. |
[郑万钧, 傅立国(1978). 中国植物志: 第七卷. 科学出版社, 北京.] | |
[53] |
Zhu H, Zhu SX, Li YF, Yi XG, Duan YF, Wang XR (2018). Leaf phenotypic variation in natural populations of Cerasus dielsiana. Chinese Journal of Plant Ecology, 42, 1168-1178.
DOI URL |
[朱弘, 朱淑霞, 李涌福, 伊贤贵, 段一凡, 王贤荣 (2018). 尾叶樱桃天然种群叶表型性状变异研究. 植物生态学报, 42, 1168-1178.]
DOI |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[4] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[5] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[6] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[7] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[8] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[9] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[10] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[11] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[12] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[13] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[14] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[15] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19