植物生态学报 ›› 2023, Vol. 47 ›› Issue (7): 1032-1042.DOI: 10.17521/cjpe.2022.0130
所属专题: 土壤呼吸
• 研究论文 • 上一篇
沈健1,2, 何宗明1,2,*(), 董强1, 郜士垒1,2, 林宇3
收稿日期:
2022-04-11
接受日期:
2022-12-03
出版日期:
2023-07-20
发布日期:
2023-07-21
通讯作者:
*何宗明(基金资助:
SHEN Jian1,2, HE Zong-Ming1,2,*(), DONG Qiang1, GAO Shi-Lei1,2, LIN Yu3
Received:
2022-04-11
Accepted:
2022-12-03
Online:
2023-07-20
Published:
2023-07-21
Contact:
*HE Zong-Ming(Supported by:
摘要:
探究轻度火烧后土壤呼吸及其组分变化规律以及对林地环境因子的影响, 可为林火干扰条件下滨海沙地人工林土壤碳排放估算提供科学依据。该研究以闽南沿海地区木麻黄(Casuarina equisetifolia)人工林火烧迹地和对照样地为研究对象, 于2019年9月至2020年8月采用LI-8100土壤碳通量自动测量系统测定土壤总呼吸速率(RS)和异养呼吸速率(RH), 同时测定10 cm深处的土壤温度(T10)、湿度(W10)和0-10 cm土壤的物理化学性质, 探讨轻度火烧对林地土壤RS和RH以及非生物因子的影响。结果表明: 火烧迹地土壤全年平均RS和RH分别为(2.37 ± 0.65)和(2.05 ± 0.63) μmol·m-2·s-1, 对照样地土壤全年平均RS和RH分别为(2.86 ± 1.08)和(2.51 ± 1.08) μmol·m-2·s-1, 火烧迹地与对照样地土壤呼吸速率及其组分存在显著差异。除对照样地土壤RH外, 两块样地土壤呼吸速率及其组分与土壤温度呈极显著指数相关关系, 与土壤水分的相关关系均未达到显著水平。土壤呼吸速率与土壤可溶性有机碳、土壤微生物生物量氮含量呈极显著正相关关系, 与土壤可溶性有机氮含量呈显著正相关关系, 与土壤微生物生物量碳含量呈显著负相关关系。轻度火烧对木麻黄人工林土壤呼吸及其组分均有抑制作用, 说明林火干扰对森林生态系统土壤呼吸和碳循环具有重要影响。
沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响. 植物生态学报, 2023, 47(7): 1032-1042. DOI: 10.17521/cjpe.2022.0130
SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation. Chinese Journal of Plant Ecology, 2023, 47(7): 1032-1042. DOI: 10.17521/cjpe.2022.0130
样点 Site | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 土壤pH Soil pH | 土壤密度 Soil density (g·cm-3) | 郁闭度 Canopy density | 存活率 Survival rate (%) |
---|---|---|---|---|---|---|
火烧迹地 Burned plot | 9.77 ± 0.40 | 11.13 ± 0.44 | 5.22 ± 0.14 | 1.29 ± 0.02 | 0.85 | 78.44 |
对照样地 Control plot | 10.40 ± 0.42 | 12.87 ± 0.53 | 5.06 ± 0.04 | 1.24 ± 0.08 | 0.91 | 82.45 |
表1 滨海沙地木麻黄人工林实验样地基本概况(平均值±标准差)
Table 1 Basic information of test plots in coastal sandy Casuarina equisetifolia plantation (mean ± SD)
样点 Site | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 土壤pH Soil pH | 土壤密度 Soil density (g·cm-3) | 郁闭度 Canopy density | 存活率 Survival rate (%) |
---|---|---|---|---|---|---|
火烧迹地 Burned plot | 9.77 ± 0.40 | 11.13 ± 0.44 | 5.22 ± 0.14 | 1.29 ± 0.02 | 0.85 | 78.44 |
对照样地 Control plot | 10.40 ± 0.42 | 12.87 ± 0.53 | 5.06 ± 0.04 | 1.24 ± 0.08 | 0.91 | 82.45 |
图1 滨海沙地木麻黄人工林火烧迹地和对照样地土壤总呼吸速率(RS)和异养呼吸速率(RH)的月变化(平均值±标准差)。
Fig. 1 Monthly change of soil total respiration rate (RS) and heterotrophic respiration rate (RH) in the burned and control plots in coastal sandy Casuarina equisetifolia plantation (mean ± SD).
图2 滨海沙地木麻黄人工林火烧迹地和对照样地10 cm深处土壤温度的月际变化(平均值±标准差)。
Fig. 2 Monthly change of soil temperature at 10 cm depth in the burned and control plots in coastal sandy Casuarina equisetifolia plantation (mean ± SD).
图3 滨海沙地木麻黄人工林火烧迹地和对照样地10 cm深处土壤体积含水量的月际变化(平均值±标准差)。
Fig. 3 Monthly change of soil volumetric water content at 10 cm depth in the burned and control plots in coastal sandy Casuarina equisetifolia plantation (mean ± SD).
样点 Site | 休眠季 Dormant season | 生长季 Growing season | 全年 Whole year | |||
---|---|---|---|---|---|---|
RS | RH | RS | RH | RS | RH | |
火烧迹地 Burned polt | 1.91 ± 0.37Ab | 1.55 ± 0.28Ab | 2.69 ± 0.61Ba | 2.41 ± 0.56Ba | 2.37 ± 0.65Ba | 2.05 ± 0.63Ba |
对照样地 Control plot | 1.88 ± 0.32Ac | 1.53 ± 0.36Ac | 3.56 ± 0.87Aa | 3.22 ± 0.84Aa | 2.86 ± 1.08Ab | 2.51 ± 1.08Ab |
表2 滨海沙地木麻黄人工林不同季节火烧迹地和对照样地的土壤总呼吸速率(RS)和异养呼吸速率(RH) (平均值±标准差)
Table 2 Total soil respiration rate (RS) and heterotrophic respiration rate (RH) of the burned and control plots in different seasons in coastal sandy Casuarina equisetifolia plantation (mean ± SD)
样点 Site | 休眠季 Dormant season | 生长季 Growing season | 全年 Whole year | |||
---|---|---|---|---|---|---|
RS | RH | RS | RH | RS | RH | |
火烧迹地 Burned polt | 1.91 ± 0.37Ab | 1.55 ± 0.28Ab | 2.69 ± 0.61Ba | 2.41 ± 0.56Ba | 2.37 ± 0.65Ba | 2.05 ± 0.63Ba |
对照样地 Control plot | 1.88 ± 0.32Ac | 1.53 ± 0.36Ac | 3.56 ± 0.87Aa | 3.22 ± 0.84Aa | 2.86 ± 1.08Ab | 2.51 ± 1.08Ab |
项目 Item | 是否断根 Trenched or not | 样点 Site | 休眠季 Dormant season | 生长季 Growing season | 全年 Whole year |
---|---|---|---|---|---|
土壤温度 Soil temperature (℃) | 未断根 Untrenched | 火烧迹地 Burned plot | 15.84 ± 3.74Ac | 23.77 ± 3.08Aa | 20.47 ± 5.17Ab |
对照样地 Control plot | 15.13 ± 3.40Ac | 23.64 ±3.12Aa | 20.10 ± 5.30Ab | ||
断根 Trenched | 火烧迹地 Burned plot | 16.05 ± 3.73Ac | 24.01 ± 3.16Aa | 20.63 ± 5.20Ab | |
对照样地 Control plot | 15.35 ± 3.48Ac | 23.70 ± 3.15Aa | 20.22 ± 5.27Ab | ||
土壤含水量 Soil water content (%) | 未断根 Untrenched | 火烧迹地 Burned plot | 4.58 ± 1.34Aa | 4.00 ± 1.76Aa | 4.25 ± 1.63Aa |
对照样地 Control plot | 3.45 ± 1.23Ba | 3.82 ± 1.75Ba | 3.67 ± 1.56Ba | ||
断根 Trenched | 火烧迹地 Burned plot | 5.11 ± 1.47Aa | 4.47 ± 1.77Aa | 4.57 ± 1.76Aa | |
对照样地 Control plot | 4.42 ± 1.64Aa | 5.34 ± 2.68Aa | 4.96 ± 2.35Aa |
表3 滨海沙地木麻黄人工林火烧迹地和对照样地断根样方内外土壤温度和土壤含水量(平均值±标准差)
Table 3 Statistics of soil temperature and soil water content between the trenched and untrenched plots in the burned and control plots in coastal sandy Casuarina equisetifolia plantation (mean ± SD)
项目 Item | 是否断根 Trenched or not | 样点 Site | 休眠季 Dormant season | 生长季 Growing season | 全年 Whole year |
---|---|---|---|---|---|
土壤温度 Soil temperature (℃) | 未断根 Untrenched | 火烧迹地 Burned plot | 15.84 ± 3.74Ac | 23.77 ± 3.08Aa | 20.47 ± 5.17Ab |
对照样地 Control plot | 15.13 ± 3.40Ac | 23.64 ±3.12Aa | 20.10 ± 5.30Ab | ||
断根 Trenched | 火烧迹地 Burned plot | 16.05 ± 3.73Ac | 24.01 ± 3.16Aa | 20.63 ± 5.20Ab | |
对照样地 Control plot | 15.35 ± 3.48Ac | 23.70 ± 3.15Aa | 20.22 ± 5.27Ab | ||
土壤含水量 Soil water content (%) | 未断根 Untrenched | 火烧迹地 Burned plot | 4.58 ± 1.34Aa | 4.00 ± 1.76Aa | 4.25 ± 1.63Aa |
对照样地 Control plot | 3.45 ± 1.23Ba | 3.82 ± 1.75Ba | 3.67 ± 1.56Ba | ||
断根 Trenched | 火烧迹地 Burned plot | 5.11 ± 1.47Aa | 4.47 ± 1.77Aa | 4.57 ± 1.76Aa | |
对照样地 Control plot | 4.42 ± 1.64Aa | 5.34 ± 2.68Aa | 4.96 ± 2.35Aa |
图4 滨海沙地木麻黄人工林火烧迹地和对照样地土壤总呼吸速率(RS)和异养呼吸速率(RH)与土壤温度的关系。
Fig. 4 Relationship between soil total respiration rate (RS) and heterotrophic respiration rate (RH) and soil temperature in the burned and control plots in coastal sandy Casuarina equisetifolia plantation.
图5 滨海沙地木麻黄人工林火烧迹地和对照样地土壤呼吸与土壤含水量的关系。
Fig. 5 Relationship between soil respiration and soil water content in the burned and control plots in coastal sandy Casuarina equisetifolia plantation.
样点 Site | 土壤可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 土壤可溶性有机氮 Dissolved organic nitrogen (mg·kg-1) | 土壤微生物生物量碳 Microbial biomass carbon (mg·kg-1) | 土壤微生物生物量氮 Microbial biomass nitrogen (mg·kg-1) | 铵态氮 NH+ 4-N (mg·kg-1) | 硝态氮 NO- 3-N (mg·kg-1) | 矿物质氮 Mineral nitrogen (mg·kg-1) |
---|---|---|---|---|---|---|---|
火烧迹地 Burned plot | 22.43 ± 1.98b | 1.17 ± 0.17b | 45.18 ± 0.81b | 5.55 ± 0.69a | 1.85 ± 0.44a | 0.83 ± 0.21a | 2.68 ± 0.37a |
对照样地 Control plot | 36.55 ± 1.26a | 1.99 ± 0.30a | 59.81 ± 4.82a | 7.44 ± 0.71a | 2.26 ± 0.52a | 1.66 ± 0.08a | 3.92 ± 0.55a |
表4 滨海沙地木麻黄人工林火烧迹地与对照样地土壤有机碳氮组分含量(平均值±标准差)
Table 4 Component content of soil carbon and nitrogen in the burned area and control plot in coastal sandy Casuarina equisetifolia plantation (mean ± SD)
样点 Site | 土壤可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 土壤可溶性有机氮 Dissolved organic nitrogen (mg·kg-1) | 土壤微生物生物量碳 Microbial biomass carbon (mg·kg-1) | 土壤微生物生物量氮 Microbial biomass nitrogen (mg·kg-1) | 铵态氮 NH+ 4-N (mg·kg-1) | 硝态氮 NO- 3-N (mg·kg-1) | 矿物质氮 Mineral nitrogen (mg·kg-1) |
---|---|---|---|---|---|---|---|
火烧迹地 Burned plot | 22.43 ± 1.98b | 1.17 ± 0.17b | 45.18 ± 0.81b | 5.55 ± 0.69a | 1.85 ± 0.44a | 0.83 ± 0.21a | 2.68 ± 0.37a |
对照样地 Control plot | 36.55 ± 1.26a | 1.99 ± 0.30a | 59.81 ± 4.82a | 7.44 ± 0.71a | 2.26 ± 0.52a | 1.66 ± 0.08a | 3.92 ± 0.55a |
土壤呼吸速率 RS | DOC含量 DOC content | DON含量 DON content | MBC含量 MBC content | MBN含量 MBN content | 铵态氮含量 NH+ 4-N content | 硝态氮含量 NO- 3-N content | 矿物质氮含量 Mineral nitrogen content | 土壤pH Soil pH | |
---|---|---|---|---|---|---|---|---|---|
土壤呼吸速率 RS | 1.000 | ||||||||
DOC含量 DOC content | 0.840** | 1.000 | |||||||
DON含量 DON content | 0.724* | 0.852** | 1.000 | ||||||
MBC含量 MBC content | 0.727* | 0.827* | 0.937** | 1.000 | |||||
MBN含量MBN content | 0.797* | 0.667 | 0.440 | 0.308 | 1.000 | ||||
铵态氮含量 NH+ 4-N content | 0.249 | 0.513 | 0.565 | 0.342 | 0.376 | 1.000 | |||
硝态氮含量 NO- 3-N content | 0.7.00 | 0.846** | 0.729* | 0.720* | 0.540 | 0.165 | 1.000 | ||
矿物质氮含量 Mineral nitrogen content | 0.535 | 0.816* | 0.802* | 0.619 | 0.561 | 0.881** | 0.612 | 1.000 | |
土壤pH Soil pH | -0.395 | -0.552 | -0.475 | -0.624 | -0.065 | -0.416 | -0.144 | -0.402 | 1.000 |
表5 滨海沙地木麻黄人工林土壤呼吸速率与土壤理化性质的相关性
Table 5 Correlation coefficients between soil respiration rate (RS) and soil properties in coastal sandy Casuarina equisetifolia plantation
土壤呼吸速率 RS | DOC含量 DOC content | DON含量 DON content | MBC含量 MBC content | MBN含量 MBN content | 铵态氮含量 NH+ 4-N content | 硝态氮含量 NO- 3-N content | 矿物质氮含量 Mineral nitrogen content | 土壤pH Soil pH | |
---|---|---|---|---|---|---|---|---|---|
土壤呼吸速率 RS | 1.000 | ||||||||
DOC含量 DOC content | 0.840** | 1.000 | |||||||
DON含量 DON content | 0.724* | 0.852** | 1.000 | ||||||
MBC含量 MBC content | 0.727* | 0.827* | 0.937** | 1.000 | |||||
MBN含量MBN content | 0.797* | 0.667 | 0.440 | 0.308 | 1.000 | ||||
铵态氮含量 NH+ 4-N content | 0.249 | 0.513 | 0.565 | 0.342 | 0.376 | 1.000 | |||
硝态氮含量 NO- 3-N content | 0.7.00 | 0.846** | 0.729* | 0.720* | 0.540 | 0.165 | 1.000 | ||
矿物质氮含量 Mineral nitrogen content | 0.535 | 0.816* | 0.802* | 0.619 | 0.561 | 0.881** | 0.612 | 1.000 | |
土壤pH Soil pH | -0.395 | -0.552 | -0.475 | -0.624 | -0.065 | -0.416 | -0.144 | -0.402 | 1.000 |
[1] |
Allison SD, Czimczik CI, Treseder KK (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14, 1156-1168.
DOI URL |
[2] |
Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572.
DOI URL |
[3] |
Burton AJ, Pregitzer KS, Zogg GP, Zak DR (1998). Drought reduces root respiration in sugar maple forests. Ecological Applications, 8, 771-778.
DOI URL |
[4] | Chen BY, Liu SR, Ge JP, Wang H, Chang JG, Sun TT, Ma JM, Shi GJ (2007). The relationship between soil respiration and the temperature at different soil depths in subalpine coniferous forest of western Sichuan Province. Chinese Journal of Applied Ecology, 18, 1219-1224. |
[陈宝玉, 刘世荣, 葛剑平, 王辉, 常建国, 孙甜甜, 马姜明, 施恭暕 (2007). 川西亚高山针叶林土壤呼吸速率与不同土层温度的关系. 应用生态学报, 18, 1219-1224.] | |
[5] |
Chen J, Luo YQ, Xia JY, Wilcox KR, Cao JJ, Zhou XH, Jiang LF, Niu SL, Estera KY, Huang RJ, Wu F, Hu TF, Liang JY, Shi Z, Guo JF, Wang RW (2017). Warming effects on ecosystem carbon fluxes are modulated by plant functional types. Ecosystems, 20, 515-526.
DOI |
[6] |
Chen J, Shi WY, Cao JJ (2015). Effects of grazing on ecosystem CO2 exchange in a meadow grassland on the Tibetan Plateau during the growing season. Environmental Management, 55, 347-359.
DOI PMID |
[7] |
Chen WJ, Gong L, Liu YT (2018). Effects of seasonal snow cover on decomposition and carbon, nitrogen and phosphorus release of Picea schrenkiana leaf litter in Mt. Tianshan, Northwest China. Chinese Journal of Plant Ecology, 42, 487-497.
DOI URL |
[陈文静, 贡璐, 刘雨桐 (2018). 季节性雪被对天山雪岭云杉凋落叶分解和碳氮磷释放的影响. 植物生态学报, 42, 487-497.]
DOI |
|
[8] |
Davidson EA, Janssens IA, Luo YQ (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154-164.
DOI URL |
[9] | Duan BX, Man XL, Song H, Liu JL (2018). Soil respiration and its component characteristics under different types of Larix gmelinii forests in the north of Daxing’an Mountains of northeastern China. Journal of Beijing Forestry University, 40(2), 40-50. |
[段北星, 满秀玲, 宋浩, 刘家霖 (2018). 大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征. 北京林业大学学报, 40(2), 40-50.] | |
[10] |
Francos M, Pereira P, Mataix-Solera J, Arcenegui V, Alcañiz M, Úbeda X (2018). How clear-cutting affects fire severity and soil properties in a Mediterranean ecosystem. Journal of Environmental Management, 206, 625-632.
DOI PMID |
[11] | Gao ML, Man XL, Duan BX (2021). Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China. Journal of Beijing Forestry University, 43(3), 55-65. |
[高明磊, 满秀玲, 段北星 (2021). 林下植被和凋落物对我国寒温带天然林土壤CO2通量的短期影响. 北京林业大学学报, 43(3), 55-65.] | |
[12] | Geng YQ, Zhou RW, Li T, Ren YM, Wang XH (2007). Influences of forest fire on soil properties in Xishan area of Beijing. Science of Soil and Water Conservation, (5), 66-70. |
[耿玉清, 周荣伍, 李涛, 任云卯, 王晓辉 (2007). 北京西山地区林火对土壤性质的影响. 中国水土保持科学, (5), 66-70.] | |
[13] |
Hu HQ, Hu TX, Sun L (2016). Spatial heterogeneity of soil respiration in a Larix gmelinii forest and the response to prescribed fire in the Greater Xing’an Mountains, China. Journal of Forestry Research, 27, 1153-1162.
DOI URL |
[14] | Hu HQ, Wu W, Yue CL, Chen WT, Zhang R, Li Y, Sun L (2015). Effect of fire disturbances on short-term soil respiration and its components of Larix gmelinii and Betula platyphylla forests in Xiaoxing’an Mountains. Bulletin of Botanical Research, 35, 279-288. |
[胡海清, 吴畏, 岳彩玲, 陈婉婷, 张冉, 李莹, 孙龙 (2015). 火干扰后短期白桦林和落叶松林土壤呼吸及其组分的影响. 植物研究, 35, 279-288.]
DOI |
|
[15] | Hu HQ, Zhang FS, Wei SJ, Sun L, Wang MY (2013). Research progress on effects of forest fire disturbance on soil respiration and measuring methods. Forest Engineering, 29(1), 1-8. |
[胡海清, 张富山, 魏书精, 孙龙, 王明玉 (2013). 火干扰对土壤呼吸的影响及测定方法研究进展. 森林工程, 29(1), 1-8.] | |
[16] | Hu TX, Hu HQ, Sun L (2018). Effects of fire disturbances on soil respiration in Dahurian Larch (Larix gmelinii) forests. Acta Ecologica Sinica, 38, 2915-2924. |
[胡同欣, 胡海清, 孙龙 (2018). 中度火干扰对兴安落叶松林土壤呼吸的影响. 生态学报, 38, 2915-2924.] | |
[17] |
Hu TX, Sun L, Hu HQ, Weise DR, Guo FT (2017). Soil respiration of the dahurian larch (Larix gmelinii) forest and the response to fire disturbance in Da Xing’an Mountains, China. Scientific Reports, 7, 2967. DOI: 10.1038/s41598-017-03325-4.
DOI |
[18] | Hu ZD, Liu SR, Hu J, Liu XL, Yu H, Li DF, He F (2018). Soil respiration characteristics and impacting factors in burned area of Quercus aquifolioides in western Sichuan, China. Scientia Silvae Sinicae, 54(2), 18-29. |
[胡宗达, 刘世荣, 胡璟, 刘兴良, 余昊, 李登峰, 何飞 (2018). 川西亚高山川滇高山栎林火烧迹地土壤呼吸特征及其影响因素. 林业科学, 54(2), 18-29.] | |
[19] |
Katherinep ON, Danield R, Erics K (2006). Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry, 80, 1-20.
DOI URL |
[20] |
Kelly R, Genet H, McGuire AD, Hu FS (2016). Palaeodata- informed modelling of large carbon losses from recent burning of boreal forests. Nature Climate Change, 6, 79-82.
DOI |
[21] |
Kim Y (2015). Effect of thaw depth on fluxes of CO2 and CH4 in manipulated Arctic coastal tundra of Barrow, Alaska. Science of the Total Environment, 505, 385-389.
DOI URL |
[22] | Kimmins JP (1987). Forest Ecology. Macmillan Publishing Company, New York. 112-136. |
[23] |
Köster E, Köster K, Berninger F, Prokushkin A, Aaltonen H, Zhou X, Pumpanen J (2018). Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. Journal of Environmental Management, 228, 405-415.
DOI PMID |
[24] |
Langer M, Westermann S, Heikenfeld M, Dorn W, Boike J (2013). Satellite-based modeling of permafrost temperatures in a tundra lowland landscape. Remote Sensing of Environment, 135, 12-24.
DOI URL |
[25] | Li P, Zhou M, Zhao PW, Wei JS, Wang QH, Chen X, Qin KZ (2013). Soil respiration and its relationships with hydrothermic factors in the burned areas of Daxingan Mountain. Chinese Journal of Ecology, 32, 3305-3311. |
[李攀, 周梅, 赵鹏武, 魏江生, 王庆海, 陈翔, 秦可珍 (2013). 大兴安岭火烧迹地土壤呼吸及其与水热因子的关系. 生态学杂志, 32, 3305-3311.] | |
[26] |
Liang N, Hirano T, Zheng ZM, Tang J, Fujinuma Y (2010). Soil CO2 efflux of a larch forest in northern Japan. Biogeosciences, 7, 3447-3457.
DOI URL |
[27] |
Liu WY, Fox J, Xu ZF (2003). Litterfall and nutrient dynamics in a montane moist evergreen broad-leaved forest in Ailao Mountains, SW China. Plant Ecology, 164, 157-170.
DOI URL |
[28] | Lu B, Wang SH, Mao ZJ, Sun T, Jia GM, Jin SB, Sun PF, Cheng CX (2010). Soil respiration characteristics of four primary Korean pine communities in growing season at Xiaoxing’an Mountain, China. Acta Ecologica Sinica, 30, 4065-4074. |
[陆彬, 王淑华, 毛子军, 孙涛, 贾桂梅, 靳世波, 孙鹏飞, 程春香 (2010). 小兴安岭4种原始红松林群落类型生长季土壤呼吸特征. 生态学报, 30, 4065-4074.] | |
[29] |
Ma ZL, Zhao WQ, Liu M, Zhu P, Liu Q (2018). Research progress on the responses of soil respiration components to climatic warming. Chinese Journal of Applied Ecology, 29, 3477-3486.
DOI |
[马志良, 赵文强, 刘美, 朱攀, 刘庆 (2018). 土壤呼吸组分对气候变暖的响应研究进展. 应用生态学报, 29, 3477-3486.]
DOI |
|
[30] |
Michelsen A, Andersson M, Jensen M, Kjøller A, Gashew M (2004). Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems. Soil Biology & Biochemistry, 36, 1707-1717.
DOI URL |
[31] |
Muñoz-Rojas M, Lewandrowski W, Erickson TE, Dixon KW, Merritt DJ (2016). Soil respiration dynamics in fire affected semi-arid ecosystems: effects of vegetation type and environmental factors. Science of the Total Environment, 572, 1385-1394.
DOI URL |
[32] |
Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias- Fauria M, Forbes BC (2015). Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change, 5, 887-891.
DOI |
[33] |
Ngao J, Epron D, Delpierre N, Bréda N, Granier A, Longdoz B (2012). Spatial variability of soil CO2 efflux linked to soil parameters and ecosystem characteristics in a temperate beech forest. Agricultural and Forest Meteorology, 154-155, 136-146.
DOI URL |
[34] |
O’Neill KP, Richter DD, Kasischke ES (2006). Succession- driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry, 80, 1-20.
DOI URL |
[35] |
Plaza-Álvarez P, Lucas-Borja M, Sagra J, Moya D, Fontúrbel T, de las Heras J, (2017). Soil respiration changes after prescribed fires in Spanish black pine (Pinus nigra Arn. ssp. salzmannii) monospecific and mixed forest stands. Forests, 8, 248. DOI: 10.3390/f8070248.
DOI URL |
[36] |
Smith DR, Kaduk JD, Balzter H, Wooster MJ, Mottram GN, Hartley G, Lynham TJ, Studens J, Curry J, Stocks BJ (2010). Soil surface CO2 flux increases with successional time in a fire scar chronosequence of Canadian boreal jack pine forest. Biogeosciences, 7, 1375-1381.
DOI URL |
[37] |
Sun L, Hu TX, Kim JH, Guo FT, Song H, Lv XS, Hu HQ (2014). The effect of fire disturbance on short-term soil respiration in typical forest of Greater Xing’an Range, China. Journal of Forestry Research, 25, 613-620.
DOI URL |
[38] | Sun L, Li Y, Zhao BQ, Li F, Hu TX (2019). Effects of moderate fire disturbance on soil respiration components and soil microbial biomass in secondary forest of Maoer mountains, China. Journal of Northeast Forestry University, 47(7), 90-98. |
[孙龙, 李远, 赵彬清, 李飞, 胡同欣 (2019). 中度火干扰对帽儿山次生林土壤呼吸组分及土壤微生物生物量的影响. 东北林业大学学报, 47(7), 90-98.] | |
[39] | Sun L, Sun AB, Hu TX (2021). Research progress on effects of fire disturbance on soil respiration components in forest ecosystems. Acta Ecologica Sinica, 41, 7073-7083. |
[孙龙, 孙奥博, 胡同欣 (2021). 火干扰对森林生态系统土壤呼吸组分的影响研究进展. 生态学报, 41, 7073-7083.] | |
[40] |
Waldrop MP, Harden JW (2008). Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Global Change Biology, 14, 2591-2602.
DOI URL |
[41] |
Wang CK, Han Y, Chen JQ, Wang XC, Zhang QZ, Bond-Lamberty B, (2013). Seasonality of soil CO2 efflux in a temperate forest: biophysical effects of snowpack and spring freeze-thaw cycles. Agricultural and Forest Meteorology, 177, 83-92.
DOI URL |
[42] | Wang ZX, Zhou M, Zhao PW, Wang D, Shi L, Zhao W, Liu XC (2021). Relationship between soil respiration and its components, soil temperature and moisture factors in the early stage of fire interference recovery. Journal of Northeast Forestry University, 49(8), 78-83. |
[王梓璇, 周梅, 赵鹏武, 王鼎, 石亮, 赵威, 刘喜才 (2021). 火干扰恢复初期土壤呼吸及其组分与土壤温湿度关系. 东北林业大学学报, 49(8), 78-83.] | |
[43] |
Wu JJ, Yang ZJ, Liu XF, Xiong DC, Lin WS, Chen CQ, Wang XH (2014). Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations. Chinese Journal of Plant Ecology, 38, 45-53.
DOI URL |
[吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红 (2014). 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 38, 45-53.]
DOI |
|
[44] |
Yang Z, Gamadaerji, Tan XR, You CH, Wang YB, Yang JJ, Han XG, Chen SP (2020). Effects of nitrogen addition amount and frequency on soil respiration and its components in a temperate semiarid grassland. Chinese Journal of Plant Ecology, 44, 1059-1072.
DOI URL |
[杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹 (2020). 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响. 植物生态学报, 44, 1059-1072.] | |
[45] |
Yin HJ, Zhang ZL, Liu Q (2018). Root exudates and their ecological consequences in forest ecosystems: problems and perspective. Chinese Journal of Plant Ecology, 42, 1055-1070.
DOI URL |
[尹华军, 张子良, 刘庆 (2018). 森林根系分泌物生态学研究: 问题与展望. 植物生态学报, 42, 1055-1070.]
DOI |
|
[46] | Zhao BQ, Wang YQ, Wang B, Wang YJ, Zhang HL (2014). Role of environmental factors on forest soil respiration characteristics in Jinyun Mountain of Chongqing, southwestern China. Journal of Beijing Forestry University, 36(3), 83-89. |
[赵冰清, 王云琦, 王彬, 王玉杰, 张会兰 (2014). 环境因子对重庆缙云山林地土壤呼吸动态特征的作用. 北京林业大学学报, 36(3), 83-89.] | |
[47] | Zheng W, Li C, Yuan XC, Zheng Y, Chen YM, Lin WS, Yang YS (2017). The impact of clear-cutting and slash burning on soil CO2 flux at different soil depths in a subtropical forest. Acta Ecologica Sinica, 37, 1221-1231. |
[郑蔚, 李超, 元晓春, 郑永, 陈岳民, 林伟盛, 杨玉盛 (2017). 皆伐火烧对亚热带森林不同深度土壤CO2通量的影响. 生态学报, 37, 1221-1231.] | |
[48] | Zhu F, Wang GJ, Tian DL, Yan WD, Xiang WH, Liang XC (2010). Seasonal variation of root respiration and the controlling factors in Pinus massoniana plantation. Scientia Silvae Sinicae, 46(7), 36-41. |
[朱凡, 王光军, 田大伦, 闫文德, 项文化, 梁小翠 (2010). 马尾松人工林根呼吸的季节变化及影响因子. 林业科学, 46(7), 36-41.] | |
[49] | Zuo M, Chen QB, Li JQ, Yang GL, Hu J, Sun K (2021). Effects of alteration in forest litter input on CO2release in Pinus yunnanensis forestland in central Yunnan Plateau. Acta Ecologica Sinica, 41, 4552-4561. |
[左嫚, 陈奇伯, 黎建强, 杨关吕, 胡景, 孙轲 (2021). 枯落物输入变化对云南松林地CO2释放的影响. 生态学报, 41, 4552-4561.] |
[1] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[2] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[3] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[4] | 李伟晶, 陈世苹, 张兵伟, 谭星儒, 王珊珊, 游翠海. 半干旱草原土壤呼吸组分区分与菌根呼吸的贡献[J]. 植物生态学报, 2018, 42(8): 850-862. |
[5] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[6] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
[7] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[8] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[9] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[10] | 姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云. 北京东灵山3种温带森林土壤呼吸及其20年的变化[J]. 植物生态学报, 2015, 39(9): 849-856. |
[11] | 许洺山, 黄海侠, 史青茹, 杨晓东, 周刘丽, 赵延涛, 张晴晴, 阎恩荣. 浙东常绿阔叶林植物功能性状对土壤含水量变化的响应[J]. 植物生态学报, 2015, 39(9): 857-866. |
[12] | 李明泽, 王斌, 范文义, 赵丹丹. 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究[J]. 植物生态学报, 2015, 39(4): 322-332. |
[13] | 王清奎, 李艳鹏, 张方月, 贺同鑫. 短期施氮肥降低杉木幼林土壤的根系和微生物呼吸[J]. 植物生态学报, 2015, 39(12): 1166-1175. |
[14] | 王铭, 刘兴土, 张继涛, 李秀军, 王国栋, 鲁新蕊, 李晓宇. 松嫩平原西部草甸草原5种典型植物群落土壤呼吸的时空动态[J]. 植物生态学报, 2014, 38(4): 396-404. |
[15] | 李悦, 刘颖慧, 申卫军, 徐霞, 田玉强. 内蒙古克氏针茅草原土壤异养呼吸对土壤温度和水分变化的响应[J]. 植物生态学报, 2014, 38(3): 238-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19