植物生态学报 ›› 2015, Vol. 39 ›› Issue (9): 857-866.DOI: 10.17521/cjpe.2015.0082
所属专题: 植物功能性状
许洺山, 黄海侠, 史青茹, 杨晓东, 周刘丽, 赵延涛, 张晴晴, 阎恩荣*()
收稿日期:
2015-03-23
接受日期:
2015-08-04
出版日期:
2015-09-03
发布日期:
2015-09-23
通讯作者:
阎恩荣
作者简介:
* 共同第一作者 Co-first author
基金资助:
XU Ming-Shan, HUANG Hai-Xia, SHI Qing-Ru, YANG Xiao-Dong, ZHOU Liu-Li, ZHAO Yan-Tao, ZHANG Qing-Qing, YAN En-Rong*()
Received:
2015-03-23
Accepted:
2015-08-04
Online:
2015-09-03
Published:
2015-09-23
Contact:
En-Rong YAN
About author:
# Co-first authors
摘要:
研究群落演替过程中植物功能性状与土壤含水量的关系, 揭示植物对水分供给变化的响应策略, 具有重要的生态学意义。该研究以浙江东部天童山、南山和双峰山的3个常绿阔叶林演替系列为对象, 旨在探索不同演替阶段常见植物的功能性状与森林群落土壤含水量的相互关系。研究结果显示: 森林演替中后期的树木高度、树冠面积、叶片干物质含量显著大于演替前期植物; 相反, 叶片净光合速率和蒸腾速率随演替进程而降低。随森林演替, 表层土壤(0-20 cm)的含水量显著增加, 深层土壤(20-40 cm)含水量随演替进程增加但不显著。表层土壤含水量与树木高度、树冠面积和叶片干物质含量显著正相关, 与叶片净光合速率和蒸腾速率显著负相关; 深层土壤含水量与树冠面积显著正相关, 与叶片净光合速率、气孔导度和蒸腾速率显著负相关。树木高度、树冠面积、叶片干物质含量、叶片净光合速率、气孔导度和蒸腾速率均可解释土壤含水量随演替进程的变化趋势, 而冠长比对土壤水分变化的响应最为敏感。
许洺山, 黄海侠, 史青茹, 杨晓东, 周刘丽, 赵延涛, 张晴晴, 阎恩荣. 浙东常绿阔叶林植物功能性状对土壤含水量变化的响应. 植物生态学报, 2015, 39(9): 857-866. DOI: 10.17521/cjpe.2015.0082
XU Ming-Shan,HUANG Hai-Xia,SHI Qing-Ru,YANG Xiao-Dong,ZHOU Liu-Li,ZHAO Yan-Tao,ZHANG Qing-Qing,YAN En-Rong. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province. Chinese Journal of Plant Ecology, 2015, 39(9): 857-866. DOI: 10.17521/cjpe.2015.0082
![]() |
表1 浙东双峰、天童和南山演替系列9个样地的特征
Table 1 Characteristics of selected 9 plots across successional series in Shuangfeng, Tiantong and Nanshan in eastern Zhejing Province
![]() |
图1 浙东常绿阔叶林不同演替阶段群落水平上功能性状的变化(平均值±标准误差)。I, 演替前期; II, 演替中期; III, 演替后期。不同字母表示不同演替阶段间存在显著差异(p < 0.05)。
Fig. 1 Changes of functional traits at the community level across successional stages of evergreen broadleaved forests in eastern Zhejiang Province (mean ± SE). I, early-stage; II, middle-stage; III, late-stage. Different letters indicate significant differences between each pair of successional stages (p < 0.05).
图2 浙东常绿阔叶林不同演替阶段土壤含水量的变化(平均值±标准误差)。I, 演替前期; II, 演替中期; III, 演替后期。不同字母表示不同演替阶段间存在显著差异(p < 0.05)。
Fig. 2 Changes of soil water content across successional stages of evergreen broadleaved forests in eastern Zhejiang Province (mean ± SE). I, early-stage; II, middle-stage; III, late-stage. Different letters indicate significant differences between each pair of successional stages (p < 0.05).
土层 Soil layer | 基径 Basal diameter | 树木高度 Tree height | 树冠面积 Crown area | 冠长比 The ratio of crown depth to tree height | 单叶面积 Individual leaf area | 比叶面积 Specific leaf area | 叶干物质含量 Leaf dry matter content | 最大净光合速率 Max net photosynthetic rate | 气孔导度 Stomatal conductance | 蒸腾速率 Transpiration rate |
---|---|---|---|---|---|---|---|---|---|---|
0-20 cm | -0.24 | 0.85** | 0.71** | -0.04 | 0.11 | -0.69 | 0.82** | -0.80* | -0.45 | -0.80* |
20-40 cm | -0.08 | 0.56 | 0.82** | -0.24 | 0.20 | -0.20 | 0.75 | -0.96*** | -0.88** | -0.75* |
表2 浙东常绿阔叶林演替系列土壤含水量与群落功能性状间的Pearson相关
Table 2 Pearson correlation between soil water content and plant functional traits across successional stages of evergreen broadleaved forests in eastern Zhejiang Province
土层 Soil layer | 基径 Basal diameter | 树木高度 Tree height | 树冠面积 Crown area | 冠长比 The ratio of crown depth to tree height | 单叶面积 Individual leaf area | 比叶面积 Specific leaf area | 叶干物质含量 Leaf dry matter content | 最大净光合速率 Max net photosynthetic rate | 气孔导度 Stomatal conductance | 蒸腾速率 Transpiration rate |
---|---|---|---|---|---|---|---|---|---|---|
0-20 cm | -0.24 | 0.85** | 0.71** | -0.04 | 0.11 | -0.69 | 0.82** | -0.80* | -0.45 | -0.80* |
20-40 cm | -0.08 | 0.56 | 0.82** | -0.24 | 0.20 | -0.20 | 0.75 | -0.96*** | -0.88** | -0.75* |
基径 Basal diameter | 树木高度 Tree height | 树冠面积 Crown area | 冠长比 The ratio of crown depth to tree height | 单叶面积 Individual leaf area | 比叶面积 Specific leaf area | 叶干物质含量 Leaf dry matter content | |
---|---|---|---|---|---|---|---|
最大净光合速率 Max net photosynthetic rate | 0.29** | 0.38** | 0.30** | 0.06 | -0.09 | -0.18* | 0.20** |
气孔导度 Stomatal conductance | 0.03 | 0.08 | 0.01 | -0.03 | -0.07 | 0.11 | 0.17** |
蒸腾速率 Transpiration rate | 0.02 | 0.04 | 0.01 | -0.04 | -0.06 | 0.08 | 0.26** |
表3 浙东常绿阔叶林植物形态功能性状与生理功能性状间的Pearson相关
Table 3 Pearson correlation between morphological and physiological of plant species in evergreen broadleaved forests in eastern Zhejiang Province
基径 Basal diameter | 树木高度 Tree height | 树冠面积 Crown area | 冠长比 The ratio of crown depth to tree height | 单叶面积 Individual leaf area | 比叶面积 Specific leaf area | 叶干物质含量 Leaf dry matter content | |
---|---|---|---|---|---|---|---|
最大净光合速率 Max net photosynthetic rate | 0.29** | 0.38** | 0.30** | 0.06 | -0.09 | -0.18* | 0.20** |
气孔导度 Stomatal conductance | 0.03 | 0.08 | 0.01 | -0.03 | -0.07 | 0.11 | 0.17** |
蒸腾速率 Transpiration rate | 0.02 | 0.04 | 0.01 | -0.04 | -0.06 | 0.08 | 0.26** |
[1] | Bazzaz FA (1979). The physiological ecology of plant succession.Annual Review of Ecology and Systematics, 10, 351-371. |
[2] | Bazzaz FA (1996). Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge University Press, New York. 264-280. |
[3] | Braatne JH, Bliss LC (1999). Comparative physiological ecology of lupines colonizing early successional habitats on Mount St. Helens.Ecology, 80, 891-907. |
[4] | Bu WS, Zang RG, Ding Y, Zhang JY, Ruan YZ (2013). Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China.Biodiversity Science, 21, 278-287.(in Chinese with English abstract) |
[卜文圣, 臧润国, 丁易, 张俊艳, 阮云泽 (2013). 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化. 生物多样性, 21, 278-287.] | |
[5] | Buttle JM, McDonald DJ (2000). Soil macroporosity and infiltration characteristics of a forest podzol.Hydrological Processes, 14, 831-848. |
[6] | Cavender-Bares J, Kitajima K, Bazzaz FA (2004). Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species.Ecological Monographs, 74, 635-662. |
[7] | Chen K, Jiao JY, Yi CY (2009). The morphological and physiological responses of plants to water stress.Hubei Agricultural Sciences, 48, 992-995.(in Chinese with English abstract) |
[陈珂, 焦娟玉, 尹春英 (2009). 植物对水分胁迫的形态及生理响应. 湖北农业科学, 48, 992-995.] | |
[8] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51, 335-380. |
[9] | Davies SJ, Ashton PS (1999). Phenology and fecundity in 11 sympatric pioneer species of Macaranga (Euphorbiaceae) in Borneo.American Journal of Botany, 86, 1786-1795. |
[10] | Ding J, Wu X, Yan H, Zhang SR (2011). Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest.Biodiversity Science, 19, 158-167.(in Chinese with English abstract) |
[丁佳, 吴茜, 闫慧, 张守仁 (2011). 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响. 生物多样性, 19, 158-167.] | |
[11] | Ding SY (2001). The causes of Castanopsis fargesii and Schima superba being dominant species of series of evergreen broad-leaved forest in Zhejiang Tiantong. Journal of Henan University (Natural Science), 31, 79-83.(in Chinese with English abstract) |
[丁圣彦 (2001). 浙江天童常绿阔叶林演替系列栲树和木荷成为优势种的原因. 河南大学学报(自然科学版), 31, 79-83.] | |
[12] | Ding SY, Song YC (1998). Declining causes of Pinus massoniana in the processes of succession of evergreen broad-leaved forest.Acta Botanica Sinica, 40, 755-760.(in Chinese with English abstract) |
[丁圣彦, 宋永昌(1998). 常绿阔叶林演替过程中马尾松消退的原因. 植物学报, 40, 755-760.] | |
[13] | Eviner VT, Chapin FS III (2003). Functional matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes.Annual Review of Ecology, Evolution, and Systematics, 34, 455-485. |
[14] | Fan DY, Xie ZQ (2004). Several controversial viewpoints in studying the cavitation of xylem vessels.Acta Phytoecologica Sinica, 28, 126-132.(in Chinese with English abstract) |
[樊大勇, 谢宗强 (2004). 木质部导管空穴化研究中的几个热点问题. 植物生态学报, 28, 126-132.] | |
[15] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession.Ecology, 85, 2630-2637. |
[16] | Grime JP (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects.Journal of Ecology, 86, 902-910. |
[17] | Hao ZQ, Wang LH (1998). Water conservation capacities of soils with major forest types in mountainous regions of east Liaoning Province.Chinese Journal of Applied Ecology, 9, 237-241.(in Chinese with English abstract) |
[郝占庆, 王力华 (1998). 辽东山区主要森林类型林地土壤涵蓄水性能的研究. 应用生态学报, 9, 237-241.] | |
[18] | Jin MG, Zhang RQ, Sun LF, Gao YF (1999). Temporal and spatial soil water management: A case study in the Heilonggang region, China.Agricultural Water Management, 42, 173-187. |
[19] | Jost G, Heuvelink GBM, Papritz A (2005). Analysing the space-time distribution of soil water storage of a forest ecosystem using spatio-temporal kriging.Geoderma, 128, 258-273. |
[20] | Li QK, Ma KP (2002). Advances in plant succession ecophysiology.Acta Phytoecologica Sinica, 26, 9-19.(in Chinese with English abstract) |
[李庆康, 马克平 (2002). 植物群落演替过程中植物生理生态学特性及其主要环境因子的变化. 植物生态学报, 26, 9-19.] | |
[21] | Li XP, Yang XD, Yu SQ, Yan ER, Zhang JH (2013). Functional trait-based evaluation of plant fireproofing capability for subtropical evergreen broad-leaved woody plants.Acta Ecologica Sinica, 33, 6604-6613.(in Chinese with English abstract) |
[李修鹏, 杨晓东, 余树全, 阎恩荣, 章建红 (2013). 基于功能性状的常绿阔叶植物防火性能评价. 生态学报, 33, 6604-6613.] | |
[22] | Liu LM, Qi H, Luo XL, Zhang X (2008). Coordination effect between vapor water loss through plant stomata and liquid water supply in soil-plant-atmosphere continuum (SPAC): A review.Chinese Journal of Applied Ecology, 19, 2067-2073.(in Chinese with English abstract) |
[刘利民, 齐华, 罗新兰, 张旋 (2008). 植物气孔气态失水与SPAC系统液态供水的相互调节作用研究进展. 应用生态学报, 19, 2067-2073.] | |
[23] | Liu MX, Ma JZ (2013). Functional Feature variations of plant functional traits and environmental factors in south- and north-facing slope.Research of Soil and Water Conservation, 20(1), 102-106.(in Chinese with English abstract) |
[刘旻霞, 马建祖 (2013). 阴阳坡植物功能性状与环境因子的变化特征. 水土保持研究, 20(1), 102-106.] | |
[24] | Liu SR, Wen YG, Wang B (1996). Hydrological Ecological Function Laws of Forest Ecosystems in China. China Forestry Publishing House, Beijing.(in Chinese) |
[刘世荣, 温远光, 王兵 (1996). 中国森林生态系统水文生态功能规律. 中国林业出版社, 北京.] | |
[25] | McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999). Disturbance response in vegetation-towards a global perspective on functional traits.Journal of Vegetation Science, 10, 621-630. |
[26] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165.(in Chinese with English abstract) |
[孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.] | |
[27] | Meng XJ (2013). The Storage and Distribution of Non-struc- tural Carbohydrate of Common Species Seedlings at Tiantong national Forest Park. Master degree dissertation, East China Normal University, Shanghai. 1-41.(in Chinese with English abstract) |
[孟祥娇 (2013). 浙江天童常见种幼苗非结构性碳水化合物储存和分配特征. 硕士学位论文, 华东师范大学, 上海. 1-41.] | |
[28] | Mo F, Li XY, He SX, Wang XX (2011). Evaluation of soil and water conservation capacity of different forest types in Dongling Mountain.Acta Ecologica Sinica, 31, 5009-5016.(in Chinese with English abstract) |
[莫菲, 李叙勇, 贺淑霞, 王晓学 (2011). 东灵山林区不同森林植被水源涵养功能评价. 生态学报, 31, 5009-5016.] | |
[29] | Pang XY, Liu SQ, Liu Q, Wu Y, Lin B, He H, Zhang ZJ (2003). Influence of plant community succession on soil physical properties during subalpine coniferous plantation rehabilitation in Western Sichuan.Journal of Soil and Water Conservation, 17(4), 42-45, 50.(in Chinese with English abstract) |
[庞学勇, 刘世全, 刘庆, 吴彦, 林波, 何海, 张宗锦 (2003). 川西亚高山针叶林植物群落演替对土壤性质的影响. 水土保持学报, 17(4), 42-45, 50.] | |
[30] | Qi Q, Li CR, Xu JW, Wang GX, Wang WD, Wang YH (2005). Study on water conservation capacity of different vegetation types in sandy sea coastal area.Journal of Soil and Water Conservation, 19(6), 104-107.(in Chinese with English abstract) |
[齐清, 李传荣, 许景伟, 王贵霞, 王卫东, 王月海 (2005). 沙质海岸不同植被类型土壤水源涵养功能的研究. 水土保持学报, 19(6), 104-107.] | |
[31] | Quested H, Eriksson O, Fortunel C, Garnier E (2007). Plant traits relate to whole-community litter quality and decomposition following land use change.Functional Ecology, 21, 1016-1026. |
[32] | Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf trait relationships: A test across six biomes.Ecology, 80, 1955-1969. |
[33] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[34] | Shen HT, Wang HR, You WH (2013). Evaluation on water conservation capacity of evergreen broad-leaved forests through succession in Tiantong mountain.Bulletin of Soil and Water Conservation, 33(4), 170-175.(in Chinese with English abstract) |
[沈会涛, 王化儒, 由文辉 (2013). 天童山常绿阔叶林不同演替阶段水源涵养功能评价. 水土保持通报, 33(4), 170-175.] | |
[35] | Six J, Bossuyt H, Degryze S, Denef K (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamic.Soil and Tillage Research, 79, 7-31. |
[36] | Song YC (2001). Vegetation Ecology. East China Normal University Press, Shanghai. 551-552.(in Chinese) |
[宋永昌 (2001). 植被生态学. 华东师范大学出版社, 上海. 551-552.] | |
[37] | Song YC (2013). Evergreen Broad-Leaved Forests in China. Science Press, Beijing.(in Chinese) |
[宋永昌 (2013). 中国常绿阔叶林. 科学出版社, 北京.] | |
[38] | Tilman D (1998). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton. |
[39] | Wan SQ, Chen LZ (1999). Canopy distribution of precipitation in warm temperate deciduous broad-leaved forests.Acta Phytoecologica Sinica, 23, 557-561.(in Chinese with English abstract) |
[万师强, 陈灵芝 (1999). 暖温带落叶阔叶林冠层对降水的分配作用. 植物生态学报, 23, 557-561.] | |
[40] | Wang GX, Li CR, Xu JW, Qi Q, Wang YH, Wang WD (2005). Soil Properties and water conservation function of 5 types of vegetation on sandy coast.Journal of Soil and Water Conservation, 19(2), 142-146.(in Chinese with English abstract) |
[王贵霞, 李传荣, 许景伟, 齐清, 王月海, 王卫东 (2005). 沙质海岸5种植被类型土壤物理性状及其水源涵养功能. 水土保持学报, 19(2), 142-146.] | |
[41] | Wang P, Sheng LX, Yan H, Zhou DW, Song YT (2010). Plant functional traits influence soil carbon sequestration in wetland ecosystem.Acta Ecologica Sinica, 30, 6990-7000.(in Chinese with English abstract) |
[王平, 盛连喜, 燕红, 周道玮, 宋彦涛 (2010). 植物功能性状与湿地生态系统土壤碳汇功能. 生态学报, 30, 6990-7000.] | |
[42] | Wang YM (2000). The canopy precipitation redistribution research review (Ι).Journal of Northwest Forestry University, 15(3), 1-7.(in Chinese with English abstract) |
[王佑民 (2000). 我国林冠降水再分配研究综述(Ι). 西北林学院学报, 15(3), 1-7.] | |
[43] | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies.New Phytologist, 143, 155-162. |
[44] | Wright IJ, Reich P, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats.Functional Ecology, 15, 423-434. |
[45] | Xiao Y, Man XL, Fan JF (2006). Soil fertility and water conservation function of main forest types in Gongbiela river watershed.Journal of Northeast Forestry University, 34, 28-30.(in Chinese with English abstract) |
[肖洋, 满秀玲, 范金凤 (2006). 公别拉河流域主要森林类型的土壤肥力与涵养水源功能. 东北林业大学学报, 34, 28-30.] | |
[46] | Xu YL, Yang XD, Xu Y, Xie YM, Wang LY, Yan ER (2012). Frost-resistance of subtropical evergreen woody plants: An evaluation based on plant functional traits.Chinese Journal of Applied Ecology, 23, 3288-3294.(in Chinese with English abstract) |
[徐艺露, 杨晓东, 许月, 谢一鸣, 王良衍, 阎恩荣 (2012). 基于功能性状的亚热带常绿植物抗雨雪冰冻能力评价. 应用生态学报, 23, 3288-3294.] | |
[47] | Yan ER‚ Wang XH, Scott XC, He FL (2013). Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests.Tree Physiology, 33, 609-617. |
[48] | Yao QD (1996). A study on soil water storage capacity of different mixed stands of Chinese fir.Journal of Fujian College of Forestry, 16, 282-286.(in Chinese with English abstract) |
[姚庆端 (1996). 不同杉木混交模式土壤肥力及土壤蓄水量研究. 福建林学院学报, 16, 282-286.] | |
[49] | Zhang B, Li WH, Xie GD, Xiao Y (2009). Water conservation function and its measurement Methods of forest ecosystem.Chinese Journal of Ecology, 28, 529-534.(in Chinese with English abstract) |
[张彪, 李文华, 谢高地, 肖玉 (2009). 森林生态系统的水源涵养功能及其计量方法. 生态学杂志, 28, 529-534.] | |
[50] | Zhang HW, Ma JY, Sun W, Chen FH (2010). Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China.Acta Ecologica Sinica, 30, 5747-5758.(in Chinese with English abstract) |
[张慧文, 马剑英, 孙伟, 陈发虎 (2010). 不同海拔天山云杉叶功能性状及其与土壤因子的关系. 生态学报, 30, 5747-5758.] |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[3] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[6] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[7] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[8] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[9] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[10] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[11] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[12] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[13] | 朱华. 云南常绿阔叶林的植被地理研究[J]. 植物生态学报, 2021, 45(3): 224-241. |
[14] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[15] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19