植物生态学报 ›› 2021, Vol. 45 ›› Issue (3): 242-252.DOI: 10.17521/cjpe.2020.0280
王钊颖1, 陈晓萍1, 程英2, 王满堂3, 钟全林1,4, 李曼1, 程栋梁1,4,*()
收稿日期:
2020-08-14
接受日期:
2021-01-26
出版日期:
2021-03-20
发布日期:
2021-05-17
通讯作者:
程栋梁
作者简介:
* (chengdl02@aliyun.com)基金资助:
WANG Zhao-Ying1, CHEN Xiao-Ping1, CHENG Ying2, WANG Man-Tang3, ZHONG Quan-Lin1,4, LI Man1, CHENG Dong-Liang1,4,*()
Received:
2020-08-14
Accepted:
2021-01-26
Online:
2021-03-20
Published:
2021-05-17
Contact:
CHENG Dong-Liang
Supported by:
摘要:
植物经济谱能够阐述维管植物在资源获取和储存之间的权衡策略, 为理解生态位分化和物种共存机制等提供科学依据。该研究通过对武夷山49种木本植物的单叶面积(ILA)、比叶面积(SLA)、叶碳含量(LCC)、叶氮含量(LNC)和叶磷含量(LPC)等5个叶片性状以及根组织密度(RTD)、比根长(SRL)、比根面积(SRA)、根碳含量(RCC)、根氮含量(RNC)和根磷含量(RPC)等6个细根性状进行测定, 探讨木本植物叶片与细根经济谱是否存在以及常绿和落叶物种间的植物经济谱差异。结果表明: 沿着性状贡献率相对较大的PC1轴, 能够定义出叶经济谱(LES)、根经济谱(RES)和整株植物经济谱(WPES)。大部分常绿物种分布在经济谱保守的一侧, 而大部分落叶物种聚集在获取的一侧。此外, 叶片PC1、细根PC1和整株植物PC1的两两得分之间均存在显著正相关关系, 常绿和落叶物种具有共同的异速指数, 但不存在共同的异速常数。这些结果揭示了亚热带物种叶片与细根的策略遵循着WPES的协调整合, 表明叶片、细根以及整株植物之间是采取协同变化的资源策略, 而分布于经济谱两端的常绿和落叶物种则是通过不同的方式来构建WPES。
王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱. 植物生态学报, 2021, 45(3): 242-252. DOI: 10.17521/cjpe.2020.0280
WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains. Chinese Journal of Plant Ecology, 2021, 45(3): 242-252. DOI: 10.17521/cjpe.2020.0280
群落 Community | 林分密度 Stand density (trees·hm-2) | 平均胸径 Mean DBH (cm) | 平均树高 Mean height (m) | 土壤总碳含量 Soil total C content (mg·g-1) | 土壤总氮含量 Soil total N content (mg·g-1) | 土壤总磷含量 Soil total P content (mg·g-1) |
---|---|---|---|---|---|---|
EF | 3 033.33 ± 200.00 a | 13.77 ± 1.46 b | 7.87 ± 0.07 b | 68.88 ± 0.59 a | 4.84 ± 0.04 a | 0.46 ± 0.01 b |
MF | 1 133.33 ± 164.15 b | 21.39 ± 0.80 a | 10.56 ± 0.21 a | 78.71 ± 4.36 a | 5.25 ± 0.27 a | 0.38 ± 0.02 c |
DF | 2 725.00 ± 163.94 a | 11.47 ± 0.67 b | 6.94 ± 0.24 b | 75.16 ± 5.23 a | 6.05 ± 0.22 a | 0.65 ± 0.01 a |
表1 武夷山不同群落的样地概况(平均值±标准误)
Table 1 Site status of different forest communities in the Wuyi Mountains (mean ± SE)
群落 Community | 林分密度 Stand density (trees·hm-2) | 平均胸径 Mean DBH (cm) | 平均树高 Mean height (m) | 土壤总碳含量 Soil total C content (mg·g-1) | 土壤总氮含量 Soil total N content (mg·g-1) | 土壤总磷含量 Soil total P content (mg·g-1) |
---|---|---|---|---|---|---|
EF | 3 033.33 ± 200.00 a | 13.77 ± 1.46 b | 7.87 ± 0.07 b | 68.88 ± 0.59 a | 4.84 ± 0.04 a | 0.46 ± 0.01 b |
MF | 1 133.33 ± 164.15 b | 21.39 ± 0.80 a | 10.56 ± 0.21 a | 78.71 ± 4.36 a | 5.25 ± 0.27 a | 0.38 ± 0.02 c |
DF | 2 725.00 ± 163.94 a | 11.47 ± 0.67 b | 6.94 ± 0.24 b | 75.16 ± 5.23 a | 6.05 ± 0.22 a | 0.65 ± 0.01 a |
性状 Trait | 单位 Unit | 平均值(±标准误) Mean (±SE) | 最大值 Max | 最小值 Min | 变异系数 CV |
---|---|---|---|---|---|
ILA | cm2 | 22.98 ± 1.68 | 56.03 | 0.24 | 56.79 |
SLA | cm2·g-1 | 164.54 ± 8.45 | 386.95 | 79.54 | 39.78 |
LCC | mg·g-1 | 477.56 ± 3.32 | 525.14 | 371.38 | 5.39 |
LNC | mg·g-1 | 21.07 ± 0.88 | 38.75 | 9.54 | 32.36 |
LPC | mg·g-1 | 1.34 ± 0.05 | 2.40 | 0.66 | 27.91 |
RTD | g·cm-3 | 0.10 ± 0.003 | 0.18 | 0.05 | 24.23 |
SRL | cm·g-1 | 1 809.01 ± 56.49 | 3 284.93 | 749.73 | 24.19 |
SRA | cm2·g-1 | 477.00 ± 11.31 | 825.78 | 283.10 | 18.37 |
RCC | mg·g-1 | 481.55 ± 3.48 | 526.99 | 374.11 | 5.60 |
RNC | mg·g-1 | 10.19 ± 0.47 | 27.14 | 5.88 | 35.56 |
RPC | mg·g-1 | 0.60 ± 0.02 | 1.34 | 0.27 | 32.31 |
表2 武夷山49种木本植物叶片和细根测量的性状
Table 2 Plant leaf and fine root traits measured from sampled 49 woody species in the Wuyi Mountains
性状 Trait | 单位 Unit | 平均值(±标准误) Mean (±SE) | 最大值 Max | 最小值 Min | 变异系数 CV |
---|---|---|---|---|---|
ILA | cm2 | 22.98 ± 1.68 | 56.03 | 0.24 | 56.79 |
SLA | cm2·g-1 | 164.54 ± 8.45 | 386.95 | 79.54 | 39.78 |
LCC | mg·g-1 | 477.56 ± 3.32 | 525.14 | 371.38 | 5.39 |
LNC | mg·g-1 | 21.07 ± 0.88 | 38.75 | 9.54 | 32.36 |
LPC | mg·g-1 | 1.34 ± 0.05 | 2.40 | 0.66 | 27.91 |
RTD | g·cm-3 | 0.10 ± 0.003 | 0.18 | 0.05 | 24.23 |
SRL | cm·g-1 | 1 809.01 ± 56.49 | 3 284.93 | 749.73 | 24.19 |
SRA | cm2·g-1 | 477.00 ± 11.31 | 825.78 | 283.10 | 18.37 |
RCC | mg·g-1 | 481.55 ± 3.48 | 526.99 | 374.11 | 5.60 |
RNC | mg·g-1 | 10.19 ± 0.47 | 27.14 | 5.88 | 35.56 |
RPC | mg·g-1 | 0.60 ± 0.02 | 1.34 | 0.27 | 32.31 |
性状 Trait | lg ILA | lg SLA | lg LCC | lg LNC | lg LPC | lg RTD | lg SRL | lg SRA | lg RCC | lg RNC |
---|---|---|---|---|---|---|---|---|---|---|
lg SLA | 0.107 | |||||||||
lg LCC | -0.075 | -0.367** | ||||||||
lg LNC | 0.140 | 0.708** | -0.253 | |||||||
lg LPC | -0.003 | 0.458** | 0.018 | 0.776** | ||||||
lg RTD | -0.037 | -0.24 | 0.022 | -0.295* | -0.236 | |||||
lg SRL | 0.276* | 0.014 | -0.077 | 0.003 | -0.116 | -0.200 | ||||
lg SRA | 0.202 | 0.163 | -0.074 | 0.199 | 0.081 | -0.777** | 0.768** | |||
lg RCC | -0.049 | -0.114 | 0.596** | -0.094 | 0.036 | 0.078 | -0.119 | -0.163 | ||
lg RNC | -0.006 | 0.147 | -0.113 | 0.413** | 0.310* | -0.462** | 0.192 | 0.435** | -0.224 | |
lg RPC | -0.081 | 0.194 | -0.207 | 0.362** | 0.310* | -0.572** | 0.113 | 0.451** | -0.381** | 0.786** |
表3 叶片和细根性状间的相关系数
Table 3 Correlation coefficients among the measured leaf and fine root traits on log scale
性状 Trait | lg ILA | lg SLA | lg LCC | lg LNC | lg LPC | lg RTD | lg SRL | lg SRA | lg RCC | lg RNC |
---|---|---|---|---|---|---|---|---|---|---|
lg SLA | 0.107 | |||||||||
lg LCC | -0.075 | -0.367** | ||||||||
lg LNC | 0.140 | 0.708** | -0.253 | |||||||
lg LPC | -0.003 | 0.458** | 0.018 | 0.776** | ||||||
lg RTD | -0.037 | -0.24 | 0.022 | -0.295* | -0.236 | |||||
lg SRL | 0.276* | 0.014 | -0.077 | 0.003 | -0.116 | -0.200 | ||||
lg SRA | 0.202 | 0.163 | -0.074 | 0.199 | 0.081 | -0.777** | 0.768** | |||
lg RCC | -0.049 | -0.114 | 0.596** | -0.094 | 0.036 | 0.078 | -0.119 | -0.163 | ||
lg RNC | -0.006 | 0.147 | -0.113 | 0.413** | 0.310* | -0.462** | 0.192 | 0.435** | -0.224 | |
lg RPC | -0.081 | 0.194 | -0.207 | 0.362** | 0.310* | -0.572** | 0.113 | 0.451** | -0.381** | 0.786** |
图1 叶片、细根和整株植物性状的主成分分析。A, 叶片性状的主成分分析。B, 细根性状的主成分分析。C, 整株植物性状的主成分分析。ILA, 单叶面积; LCC, 叶碳含量; LNC, 叶氮含量; LPC, 叶磷含量; RCC, 根碳含量; RNC, 根氮含量; RPC, 根磷含量; RTD, 根组织密度; SLA, 比叶面积; SRA, 比根面积; SRL, 比根长。
Fig. 1 Principal components analysis (PCA) of the leaf traits, fine root traits and whole-plant traits. A, PCA of leaf traits. B, PCA of fine root traits. C, PCA of whole-plant traits. ILA, individual leaf area; LCC, leaf carbon content; LNC, leaf nitrogen content; LPC, leaf phosphor content; RCC, root carbon content; RNC, root nitrogen content; RPC, root phosphor content; RTD, root tissue density; SLA, specific leaf area; SRA, specific root surface area; SRL, specific root length.
性状 Trait | 叶片 Leaf | 细根 Fine root | 整株植物 Whole-plant | ||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | ||
叶片 Leaf | lg ILA | -0.094 | 0.283* | -0.039 | -0.003 | ||
lg SLA | -0.843** | -0.159 | -0.550** | 0.535** | |||
lg LCC | 0.382** | 0.797** | 0.385** | -0.124 | |||
lg LNC | -0.931** | 0.132 | -0.679** | 0.593** | |||
lg LPC | -0.776** | 0.433** | -0.502** | 0.608** | |||
细根 Fine root | lg RTD | 0.775** | 0.100 | 0.698** | 0.284* | ||
lg SRL | -0.545** | -0.666** | -0.344** | -0.641** | |||
lg SRA | -0.862** | -0.478** | -0.684** | -0.596** | |||
lg RCC | 0.385** | -0.372** | 0.408** | 0.109 | |||
lg RNC | -0.760** | 0.419** | -0.754** | -0.098 | |||
lg RPC | -0.801** | 0.471** | -0.791** | -0.111 |
表4 叶片、细根和整株植物经济谱中各个性状与第一和第二主成分得分之间的相关系数
Table 4 Correlation coefficients between individual traits and the scores of the first and second principal components in each of the leaf, fine root and whole-plant economics spectrum
性状 Trait | 叶片 Leaf | 细根 Fine root | 整株植物 Whole-plant | ||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | ||
叶片 Leaf | lg ILA | -0.094 | 0.283* | -0.039 | -0.003 | ||
lg SLA | -0.843** | -0.159 | -0.550** | 0.535** | |||
lg LCC | 0.382** | 0.797** | 0.385** | -0.124 | |||
lg LNC | -0.931** | 0.132 | -0.679** | 0.593** | |||
lg LPC | -0.776** | 0.433** | -0.502** | 0.608** | |||
细根 Fine root | lg RTD | 0.775** | 0.100 | 0.698** | 0.284* | ||
lg SRL | -0.545** | -0.666** | -0.344** | -0.641** | |||
lg SRA | -0.862** | -0.478** | -0.684** | -0.596** | |||
lg RCC | 0.385** | -0.372** | 0.408** | 0.109 | |||
lg RNC | -0.760** | 0.419** | -0.754** | -0.098 | |||
lg RPC | -0.801** | 0.471** | -0.791** | -0.111 |
主成分分析 PCA | 轴 Axis | 叶习性 Leaf habit | 显著性检验 Significance test | ||
---|---|---|---|---|---|
常绿 Evergreen | 落叶 Deciduous | t | p | ||
叶片 Leaf | PC1 | 0.93 ± 0.19 a | -1.06 ± 0.24 b | 6.569 | 0 |
PC2 | -0.04 ± 0.23 a | 0.05 ± 0.12 a | -0.364 | 0.717 | |
细根 Fine root | PC1 | 0.27 ± 0.30 a | -0.31 ± 0.32 a | 1.340 | 0.185 |
PC2 | -0.14 ± 0.23 a | 0.16 ± 0.19 a | -0.998 | 0.322 | |
整株植物 Whole-plant | PC1 | 0.76 ± 0.31 a | -0.87 ± 0.31 b | 3.694 | 0 |
PC2 | -0.58 ± 0.23 b | 0.67 ± 0.23 a | -3.833 | 0 |
表5 常绿和落叶物种PC1和PC2得分的差异(平均值±标准误)
Table 5 Differences in PC1 and PC2 scores between evergreen and deciduous species (mean ± SE)
主成分分析 PCA | 轴 Axis | 叶习性 Leaf habit | 显著性检验 Significance test | ||
---|---|---|---|---|---|
常绿 Evergreen | 落叶 Deciduous | t | p | ||
叶片 Leaf | PC1 | 0.93 ± 0.19 a | -1.06 ± 0.24 b | 6.569 | 0 |
PC2 | -0.04 ± 0.23 a | 0.05 ± 0.12 a | -0.364 | 0.717 | |
细根 Fine root | PC1 | 0.27 ± 0.30 a | -0.31 ± 0.32 a | 1.340 | 0.185 |
PC2 | -0.14 ± 0.23 a | 0.16 ± 0.19 a | -0.998 | 0.322 | |
整株植物 Whole-plant | PC1 | 0.76 ± 0.31 a | -0.87 ± 0.31 b | 3.694 | 0 |
PC2 | -0.58 ± 0.23 b | 0.67 ± 0.23 a | -3.833 | 0 |
图2 叶片PC1、细根PC1和整株植物PC1之间的回归关系。A, 叶片PC1和细根PC1之间的关系。B, 叶片PC1和整株植物PC1之间的关系。C, 细根PC1和整株植物PC1之间的关系。
Fig. 2 Regression relationships among leaf PC1, fine root PC1 and whole-plant PC1. A, Regression relationships of leaf PC1 and fine root PC1. B, Regression relationships of leaf PC1 and whole-plant PC1. C, Regression relationships of fine root PC1 and whole-plant PC1.
[1] |
Aerts R (1995). The advantages of being evergreen. Trends in Ecology & Evolution, 10, 402-407.
DOI URL |
[2] |
Aerts R (1999). Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. Journal of Experimental Botany, 50, 29-37.
DOI URL |
[3] | Bai KD, Mo L, Liu M, Zhang DN, He CX, Wan XC, Jiang DB (2015). Nutrient resorption patterns of evergreen and deciduous tree species at different altitudes on Mao’er Mountain, Guangxi. Acta Ecologica Sinica, 35, 5776-5787. |
[白坤栋, 莫凌, 刘铭, 张德楠, 何成新, 万贤崇, 蒋得斌 (2015). 广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式. 生态学报, 35, 5776-5787.] | |
[4] |
Baraloto C, Timothy Paine CE, Poorter L, Beauchene J, Bonal D, Domenach AM, Hérault B, Patiño S, Roggy JC, Chave J (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-1347.
DOI URL |
[5] |
Chabot BF, Hicks DJ (1982). The ecology of leaf life spans. Annual Review of Ecology and Systematics, 13, 229-259.
DOI URL |
[6] |
Chapin III FS (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260.
DOI URL |
[7] |
Chen GS, Hobbie SE, Reich PB, Yang YS, Robinson D (2019). Allometry of fine roots in forest ecosystems. Ecology Letters, 22, 322-331.
DOI URL |
[8] |
Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[9] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[10] |
Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478.
PMID |
[11] |
Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19.
DOI URL |
[12] |
de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R (2016). A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? Journal of Vegetation Science, 27, 187-199.
DOI URL |
[13] |
Díaz S, Cabido M, Casanoves F (1998). Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122.
DOI URL |
[14] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL |
[15] |
Ding JX, Kong DL, Zhang ZL, Cai Q, Xiao J, Liu Q, Yin HJ (2020). Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal-dominated alpine coniferous forests. Journal of Ecology, 108, 2544-2556.
DOI URL |
[16] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1-60. |
[17] |
Fortunel C, Fine PVA, Baraloto C (2012). Leaf, stem and root tissue strategies across 758 Neotropical tree species. Functional Ecology, 26, 1153-1161.
DOI URL |
[18] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Evidence of the “plant economics spectrum” in a subarctic flora. Journal of Ecology, 98, 362-373.
DOI URL |
[19] |
Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu WD, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao JP, Cornelissen JHC (2013). Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology, 101, 943-952.
DOI URL |
[20] |
Funk JL, Cornwell WK (2013). Leaf traits within communities: context may affect the mapping of traits to function. Ecology, 94, 1893-1897.
DOI URL |
[21] |
Geng Y, Wang L, Jin DM, Liu HY, He JS (2014). Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia, 175, 445-455.
DOI PMID |
[22] | Givnish TJ (2002). Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica, 36, 703-743. |
[23] |
Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, et al. (1997). Integrated screening validates primary axes of specialisation in plants. Oikos, 79, 259-281.
DOI URL |
[24] |
He YY, Guo SL, Wang Z (2019). Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 43, 1021-1035.
DOI URL |
[何芸雨, 郭水良, 王喆 (2019). 植物功能性状权衡关系的研究进展. 植物生态学报, 43, 1021-1035.]
DOI |
|
[25] |
Isaac ME, Martin AR, de Melo Virginio Filho E, Rapidel B, Roupsard O, van den Meersche K (2017). Intraspecific trait variation and coordination: root and leaf economics spectra in coffee across environmental gradients. Frontiers in Plant Science, 8, 1196. DOI: 10.3389/fpls.2017.01196.
DOI |
[26] |
Kong DL, Wang JJ, Kardol P, Wu HF, Zeng H, Deng XB, Deng Y (2016). Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences, 13, 415-424.
DOI URL |
[27] |
Kong DL, Wang JJ, Wu HF, Valverde-Barrantes OJ, Wang RL, Zeng H, Kardol P, Zhang HY, Feng YL (2019). Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 10, 2203. DOI: 10.1038/s41467-019-10245-6.
DOI |
[28] |
Li FL, Hu H, McCormlack ML, Feng DF, Liu X, Bao WK (2019). Community-level economics spectrum of fine-roots driven by nutrient limitations in subalpine forests. Journal of Ecology, 107, 1238-1249.
DOI URL |
[29] |
Li JH, Peng GQ, Yang DM (2017). Effect of stem length to stem slender ratio of current-year twigs on the leaf display efficiency in evergreen and deciduous broadleaved trees. Chinese Journal of Plant Ecology, 41, 650-660.
DOI URL |
[李俊慧, 彭国全, 杨冬梅 (2017). 常绿和落叶阔叶物种当年生小枝茎长度和茎纤细率对展叶效率的影响. 植物生态学报, 41, 650-660.]
DOI |
|
[30] |
Liu GF, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010). Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist, 188, 543-553.
DOI URL |
[31] |
Liu L, Ge JL, Shu HW, Zhao CM, Xu WT, Shen GZ, Xie ZQ (2019). C, N and P stoichiometric ratios in mixed evergreen and deciduous broadleaved forests in Shennongjia, China. Chinese Journal of Plant Ecology, 43, 482-489.
DOI URL |
[刘璐, 葛结林, 舒化伟, 赵常明, 徐文婷, 申国珍, 谢宗强 (2019). 神农架常绿落叶阔叶混交林碳氮磷化学计量比. 植物生态学报, 43, 482-489.]
DOI |
|
[32] | Liu XZ, Fang FS (2001). Scientific Survey of the Wuyishan Nature Reserve in Jiangxi. China Forestry Publishing House, Beijing. |
[刘信中, 方福生 (2001). 江西武夷山自然保护区科学考察集. 中国林业出版社, 北京.] | |
[33] |
Lusk CH, Reich PB, Montgomery RA, Ackerly DD, Cavender- Bares J (2008). Why are evergreen leaves so contrary about shade? Trends in Ecology & Evolution, 23, 299-303.
DOI URL |
[34] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI |
[35] | Mao W, Li YL, Zhang TH, Zhao XY, Huang YX, Song LL (2012). Research advances of plant leaf traits at different ecology scales. Journal of Desert Research, 32, 33-41. |
[毛伟, 李玉霖, 张铜会, 赵学勇, 黄迎新, 宋琳琳 (2012). 不同尺度生态学中植物叶性状研究概述. 中国沙漠, 32, 33-41.] | |
[36] |
Medeiros JS, Burns JH, Nicholson J, Rogers L, Valverde- Barrantes O (2017). Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron. American Journal of Botany, 104, 803-816.
DOI PMID |
[37] |
Méndez-Alonzo R, Paz H, Zuluaga RC, Rosell JA, Olson ME (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93, 2397-2406.
PMID |
[38] |
Monk CD (1966). An ecological significance of evergreenness. Ecology, 47, 504-505.
DOI URL |
[39] |
Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E (2012). Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a Mediterranean rangeland of southern France. Journal of Ecology, 100, 1315-1327.
DOI URL |
[40] |
Poorter H, Lambers H, Evans JR (2014). Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. New Phytologist, 201, 378-382.
DOI URL |
[41] |
Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N, Roupsard O, Thammahacksa C, Stokes A (2015). Root functional parameters along a land-use gradient: evidence of a community- level economics spectrum. Journal of Ecology, 103, 361-373.
DOI URL |
[42] | Qu P, Xing YJ, Wang QG (2018). Research progress of plant economic spectrum. Chinese Agricultural Science Bulletin, 34, 88-94. |
[曲鹏, 邢亚娟, 王庆贵 (2018). 植物经济谱研究进展. 中国农学通报, 34, 88-94.] | |
[43] |
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[44] |
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955-1969.
DOI URL |
[45] |
Reich PB, Tjoelker MG, Walters MB, Vanderklein DW, Buschena C (1998). Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology, 12, 327-338.
DOI URL |
[46] | Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734. |
[47] |
Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164.
DOI URL |
[48] |
Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao KF, Stokes A (2016). Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytologist, 210, 815-826.
DOI URL |
[49] |
Tang QQ, Huang YT, Ding Y, Zang RG (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270.
DOI URL |
[唐青青, 黄永涛, 丁易, 臧润国 (2016). 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.]
DOI |
|
[50] |
Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508.
PMID |
[51] |
van Ommen Kloeke AEE, Douma JC, Ordoñez JC, Reich PB, van Bodegom PM (2012). Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21, 224-235.
DOI URL |
[52] | Venables WN, Smith DM, The R Core Team (2019). An introduction to R. Notes on R: a programming environment for data analysis and graphics. Version 3.6.0 RC (2019-04- 24). [2019-04-27]. http://ydl.oregonstate.edu/pub/cran/doc/manuals/r-patched/R-intro.pdf. |
[53] |
Wang M, Wan PC, Guo JC, Xu JS, Chai YF, Yue M (2017). Relationships among leaf, stem and root traits of the dominant shrubs from four vegetation zones in Shaanxi Province, China. Israel Journal of Ecology and Evolution, 63, 25-32.
DOI URL |
[54] |
Warren CR, Adams MA (2004). Evergreen trees do not maximize instantaneous photosynthesis. Trends in Plant Science, 9, 270-274.
DOI URL |
[55] |
Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174.
DOI URL |
[56] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
PMID |
[57] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[58] |
Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397.
DOI URL |
[59] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421.
DOI URL |
[60] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
PMID |
[61] |
Xiao D, Wang XJ, Zhang K, He NP, Hou JH (2016). Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China. Chinese Journal of Plant Ecology, 40, 686-701.
DOI URL |
[肖迪, 王晓洁, 张凯, 何念鹏, 侯继华 (2016). 氮添加对山西太岳山天然油松林主要植物叶片性状的影响. 植物生态学报, 40, 686-701.]
DOI |
|
[62] |
Yu HY, Chen YT, Xu ZZ, Zhou GS (2014). Analysis of relationships among leaf functional traits and economics spectrum of plant species in the desert steppe of Nei Mongol. Chinese Journal of Plant Ecology, 38, 1029-1040.
DOI URL |
[于鸿莹, 陈莹婷, 许振柱, 周广胜 (2014). 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析. 植物生态学报, 38, 1029-1040.]
DOI |
|
[63] | Zhao YT, Ali A, Yan ER (2017). The plant economics spectrum is structured by leaf habits and growth forms across subtropical species. Tree Physiology, 37, 173-185. |
[64] | Zheng CY, Liu ZL, Fang JY (2004). Tree species diversity along altitudinal gradient on southeastern and northwestern slopes of Mt. Huanggang, Wuyi Mountains, Fujian, China. Biodiversity Science, 12, 63-74. |
郑成洋, 刘增力, 方精云 (2004). 福建黄岗山东南坡和西北坡乔木物种多样性及群落特征的垂直变化. 生物多样性, 12, 63-74.].
DOI |
[1] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[2] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[3] | 祁鲁玉 陈浩楠 库丽洪·赛热别力 籍天宇 孟高德 秦慧颖 王宁 宋逸欣 刘春雨 杜宁 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略分析[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[4] | 罗源林 马文红 张芯毓 苏闯 史亚博 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[5] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[6] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[7] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[8] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
[9] | 潘权, 郑华, 王志恒, 文志, 杨延征. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 1140-1153. |
[10] | 刘润红, 白金连, 包含, 农娟丽, 赵佳佳, 姜勇, 梁士楚, 李月娟. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联[J]. 植物生态学报, 2020, 44(8): 828-841. |
[11] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[12] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[13] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
[14] | 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. 长期氮添加对典型草原植物多样性与初级生产力的影响及途径[J]. 植物生态学报, 2020, 44(1): 22-32. |
[15] | 赵丹丹, 马红媛, 李阳, 魏继平, 王志春. 水分和养分添加对羊草功能性状和地上生物量的影响[J]. 植物生态学报, 2019, 43(6): 501-511. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19