植物生态学报 ›› 2021, Vol. 45 ›› Issue (3): 253-264.DOI: 10.17521/cjpe.2020.0352
所属专题: 植物功能性状
收稿日期:
2020-10-26
接受日期:
2021-01-29
出版日期:
2021-03-20
发布日期:
2021-05-17
通讯作者:
刘志理
作者简介:
* (liuzl2093@126.com)基金资助:
ZHANG Zi-Yan1,2, JIN Guang-Ze1,2, LIU Zhi-Li1,2,*()
Received:
2020-10-26
Accepted:
2021-01-29
Online:
2021-03-20
Published:
2021-05-17
Contact:
LIU Zhi-Li
Supported by:
摘要:
叶龄是植株个体发育过程中性状变异的重要影响因素, 不同叶龄下的性状变异可以体现植物针对环境变化做出的响应。该研究以东北地区4个不同区域阔叶红松(Pinus koraiensis)林中的成年红松为研究对象, 测定了4个区域红松的叶寿命和不同针叶年龄叶片的比叶面积(SLA)、叶片干物质含量(LDMC)、针叶密度(ND)以及针叶体积(NV), 探讨了红松叶形态性状间的相关性, 并检验了纬度和针叶年龄对这些相关关系的影响。结果显示: (1)不同纬度下红松叶寿命存在显著差异, 随纬度增加呈单峰模式。(2)针叶年龄在性状变异解释中占比最大(34.2%-80.1%), 对4个叶形态性状均存在显著影响。SLA、LDMC和ND在当年生叶片中均表现了比所有龄级下更大的可塑性, 仅NV在所有龄级下的可塑性大于当年生叶片。(3) 4个性状间的二元相关性显著, 且在不同纬度下多有体现, 但性状间的回归斜率随纬度变化趋势存在差异。(4)不同针叶年龄性状间的相关关系依然显著但变异规律不同, 如SLA与ND的回归斜率随针叶年龄增加而减小, ND与NV则相反。研究结果表明红松叶形态性状的变异和性状间的相关关系受纬度和针叶年龄的显著影响, 性状协同应对不同纬度梯度导致的环境变化以及不同针叶年龄下叶片的资源利用策略存在差异。
张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响. 植物生态学报, 2021, 45(3): 253-264. DOI: 10.17521/cjpe.2020.0352
ZHANG Zi-Yan, JIN Guang-Ze, LIU Zhi-Li. Effects of needle age on leaf traits and their correlations of Pinus koraiensis across different regions. Chinese Journal of Plant Ecology, 2021, 45(3): 253-264. DOI: 10.17521/cjpe.2020.0352
地点 Sites | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 年平均气温 MAT (℃) | 年降水量 MAP (mm) |
---|---|---|---|---|---|
长白山 Changbai Mountain | 42.38° | 128.08° | 852 | 3.6 | 700.0 |
穆棱 Muling | 43.48° | 130.24° | 611 | 2.8 | 513.5 |
丰林 Fenglin | 48.06° | 129.12° | 351 | -0.5 | 640.5 |
胜山 Shengshan | 49.30° | 126.48° | 510 | -2.0 | 519.9 |
表1 样地概况
Table 1 Details of the sample sites
地点 Sites | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 年平均气温 MAT (℃) | 年降水量 MAP (mm) |
---|---|---|---|---|---|
长白山 Changbai Mountain | 42.38° | 128.08° | 852 | 3.6 | 700.0 |
穆棱 Muling | 43.48° | 130.24° | 611 | 2.8 | 513.5 |
丰林 Fenglin | 48.06° | 129.12° | 351 | -0.5 | 640.5 |
胜山 Shengshan | 49.30° | 126.48° | 510 | -2.0 | 519.9 |
图1 不同区域样点间红松叶寿命的比较。CBS, 长白山; ML, 穆棱; FL, 丰林; SS, 胜山。不同小写字母表示不同样点间叶寿命存在显著差异(p < 0.05)。
Fig. 1 Comparison of leaf lifespan of Pinus koraiensis among sites across different regions. CBS, Changbai Mountain; ML, Muling; FL, Fenglin; SS, Shengshan. Different lowercase letters indicate that there were significant differences in leaf lifespan among sites (p < 0.05).
图2 红松叶性状变异的方差分解。LDMC, 叶干物质含量; ND, 针叶密度; NV, 针叶体积; SLA, 比叶面积。
Fig. 2 Variance decomposition of leaf trait variation of Pinus koraiensis. LDMC, leaf dry matter content; ND, needle density; NV, needle volume; SLA, specific leaf area.
图3 红松叶形态性状随针叶年龄的变化及其可塑性(平均值±标准差)。LDMC, 叶干物质含量; ND, 针叶密度; NV, 针叶体积; SLA, 比叶面积。不同小写字母表示性状在不同针叶年龄间有显著差异(p < 0.05)。
Fig. 3 Variation and plasticity of leaf morphological traits of Pinus koraiensis along the gradient of needle ages (mean ± SD). LDMC, leaf dry matter content; ND, needle density; NV, needle volume; SLA, specific leaf area. Different lowercase letters indicate that the traits were significantly different at different needle ages (p < 0.05).
样点 Site | 龄级 Age classes | 比叶面积 SLA (cm2·g-1) | 叶干物质含量 LDMC (g·g-1) | 针叶密度 ND (g·cm-3) | 针叶体积 NV (cm3) |
---|---|---|---|---|---|
长白山 Changbai Mountain | 当年生 Current year | 105.6 (8.06)Ab | 0.29 (0.01)Bc | 0.32 (0.03)Ba | 0.05 (0.01)Ac |
所有龄级 Overall age | 89.7 (4.29)Ba | 0.36 (0.00)Ac | 0.37 (0.02)Aa | 0.04 (0.00)Bd | |
穆棱 Muling | 当年生 Current year | 88.0 (7.37)Ac | 0.34 (0.02)Ba | 0.29 (0.01)Bb | 0.10 (0.02)Aa |
所有龄级 Overall age | 72.3 (5.24)Bc | 0.40 (0.00)Aa | 0.36 (0.03)Aab | 0.11 (0.02)Aa | |
丰林 Fenglin | 当年生 Current year | 113.7 (9.06)Aa | 0.34 (0.02)Bc | 0.26 (0.01)Bc | 0.07 (0.01)Bb |
所有龄级 Overall age | 85.3 (8.17)Ba | 0.38 (0.01)Ab | 0.34 (0.02)Ab | 0.08 (0.01)Ab | |
胜山 Shengshan | 当年生 Current year | 104.2 (7.26)Ab | 0.31 (0.01)Bb | 0.32 (0.03)Ba | 0.07 (0.01)Ab |
所有龄级 Overall age | 78.1 (5.27)Bb | 0.37 (0.02)Abc | 0.36 (0.03)Aab | 0.06 (0.01)Bc | |
可塑性 Plasticity (%) | 当年生 Current year | 22.6 | 16.4 | 19.4 | 51.5 |
所有龄级 Overall age | 19.4 | 9.5 | 8.9 | 64.5 |
表2 不同区域红松叶形态性状的当年生值和所有龄级平均值(标准差)的差异
Table 2 Differences in leaf morphological traits of Pinus koraiensis across different regions between the mean values of the current year and those of overall age classes (SD)
样点 Site | 龄级 Age classes | 比叶面积 SLA (cm2·g-1) | 叶干物质含量 LDMC (g·g-1) | 针叶密度 ND (g·cm-3) | 针叶体积 NV (cm3) |
---|---|---|---|---|---|
长白山 Changbai Mountain | 当年生 Current year | 105.6 (8.06)Ab | 0.29 (0.01)Bc | 0.32 (0.03)Ba | 0.05 (0.01)Ac |
所有龄级 Overall age | 89.7 (4.29)Ba | 0.36 (0.00)Ac | 0.37 (0.02)Aa | 0.04 (0.00)Bd | |
穆棱 Muling | 当年生 Current year | 88.0 (7.37)Ac | 0.34 (0.02)Ba | 0.29 (0.01)Bb | 0.10 (0.02)Aa |
所有龄级 Overall age | 72.3 (5.24)Bc | 0.40 (0.00)Aa | 0.36 (0.03)Aab | 0.11 (0.02)Aa | |
丰林 Fenglin | 当年生 Current year | 113.7 (9.06)Aa | 0.34 (0.02)Bc | 0.26 (0.01)Bc | 0.07 (0.01)Bb |
所有龄级 Overall age | 85.3 (8.17)Ba | 0.38 (0.01)Ab | 0.34 (0.02)Ab | 0.08 (0.01)Ab | |
胜山 Shengshan | 当年生 Current year | 104.2 (7.26)Ab | 0.31 (0.01)Bb | 0.32 (0.03)Ba | 0.07 (0.01)Ab |
所有龄级 Overall age | 78.1 (5.27)Bb | 0.37 (0.02)Abc | 0.36 (0.03)Aab | 0.06 (0.01)Bc | |
可塑性 Plasticity (%) | 当年生 Current year | 22.6 | 16.4 | 19.4 | 51.5 |
所有龄级 Overall age | 19.4 | 9.5 | 8.9 | 64.5 |
图4 纬度对红松叶形态性状相关关系的影响。不同小写字母代表不同样点斜率之间有显著差异, 且实线代表回归显著, 显著性水平均为0.05。CBS, 长白山; FL, 丰林; ML, 穆棱; SS, 胜山。LDMC, 叶干物质含量; ND, 针叶密度; NV, 针叶体积; SLA, 比叶面积。
Fig. 4 Effects of latitude on correlations between leaf morphological traits of Pinus koraiensis. Different lowercase letters indicate that there were significant differences between the slopes of different sites, and the solid lines indicate that the regressions were significant (p < 0.05). CBS, Changbai Mountain; FL, Fenglin; ML, Muling; SS, Shengshan. LDMC, leaf dry matter content; ND, needle density; NV, needle volume; SLA, specific leaf area.
图5 针叶年龄对红松叶形态性状相关关系的影响。不同小写字母表示不同针叶年龄斜率之间有显著差异, 且实线代表回归显著, 显著性水平均为0.05。LDMC, 叶干物质含量; ND, 针叶密度; NV, 针叶体积; SLA, 比叶面积。
Fig. 5 Effects of needle age on correlations between leaf morphological traits of Pinus koraiensis. Different lowercase letters indicate that there were significant differences between the slopes of different needle ages. The solid lines indicate that the regressions were significant (p < 0.05). LDMC, leaf dry matter content; ND, needle density; NV, needle volume; SLA, specific leaf area.
叶性状 Leaf trait | lg SLA | lg LDMC | lg ND |
---|---|---|---|
lgLDMC | -0.84** | ||
lg ND | -0.76** | 0.69** | |
lg NV | -0.45** | 0.43** | -0.14** |
表3 红松叶性状间的相关关系
Table 3 Correlation among leaf traits of Pinus koraiensis (**, p < 0.01)
叶性状 Leaf trait | lg SLA | lg LDMC | lg ND |
---|---|---|---|
lgLDMC | -0.84** | ||
lg ND | -0.76** | 0.69** | |
lg NV | -0.45** | 0.43** | -0.14** |
[1] | Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014). Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences of the United States of America, 111, 740-745. |
[2] |
Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J (2018). Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters, 21, 734-744.
DOI PMID |
[3] | Buzzard V, Michaletz ST, Deng Y, He ZL, Ning DL, Shen LN, Tu QC, van Nostrand JD, Voordeckers JW, Wang JJ, Weiser MD, Kaspari M, Waide RB, Zhou JZ, Enquist BJ (2019). Continental scale structuring of forest and soil diversity via functional traits. Nature Ecology & Evolution, 3, 1298-1308. |
[4] |
Carlson JE, Holsinger KE (2012). Developmental plasticity in Protea as an evolutionary response to environmental clines in the Cape Floristic Region. PLOS ONE, 7, e52035. DOI: 10.1371/journal.pone.0052035.
DOI URL |
[5] |
Chen FS, Niklas KJ, Chen GS, Guo DL (2012). Leaf traits and relationships differ with season as well as among species groupings in a managed Southeastern China forest landscape. Plant Ecology, 213, 1489-1502.
DOI URL |
[6] |
Climent J, Silva FCE, Chambel MR, Pardos M, Almeida MH (2009). Freezing injury in primary and secondary needles of mediterranean pine species of contrasting ecological niches. Annals of Forest Science, 66, 407-407.
DOI URL |
[7] |
De Frenne P, Graae BJ, Rodríguez-Sánchez F, Kolb A, Chabrerie O, Decocq G, De Kort H, De Schrijver A, Diekmann M, Eriksson O, Gruwez R, Hermy M, Lenoir J, Plue J, Coomes DA, Verheyen K (2013). Latitudinal gradients as natural laboratories to infer species’ responses to temperature. Journal of Ecology, 101, 784-795.
DOI URL |
[8] |
De Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005). A modular concept of phenotypic plasticity in plants. New Phytologist, 166, 73-82.
PMID |
[9] |
de la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R (2016). Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLOS ONE, 11, e0148788.
DOI URL |
[10] |
Dong YC, Liu YH (2017). Response of Korean pine’s functional traits to geography and climate. PLOS ONE, 12, e0184051. DOI: 10.1371/journal.pone.0184051.
DOI |
[11] |
Eimil-Fraga C, Sánchez-Rodríguez F, Álvarez-Rodríguez E, Rodríguez-Soalleiro R (2015). Relationships between needle traits, needle age and site and stand parameters in Pinus pinaster. Trees, 29, 1103-1113.
DOI URL |
[12] | Evans JR, Poorter H (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24, 755-767. |
[13] |
Fajardo A, Piper FI (2011). Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytologist, 189, 259-271.
DOI URL |
[14] |
Genet H, Breda N, Dufrene E (2010). Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiology, 30, 177-192.
DOI URL |
[15] |
Gilmore DW, Seymour RS, Halteman WA, Greenwood MS (1995). Canopy dynamics and the morphological development of Abies balsamea: effects of foliage age on specific leaf area and secondary vascular development. Tree Physiology, 15, 47-55.
PMID |
[16] |
Gratani L, Bombelli A (2000). Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus. Environmental and Experimental Botany, 43, 141-153.
DOI URL |
[17] |
Grotkopp E, Rejmánek M, Rost TL (2002). Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. The American Naturalist, 159, 396-419.
DOI PMID |
[18] |
Han QM, Kawasaki T, Nakano T, Chiba Y (2008). Leaf-age effects on seasonal variability in photosynthetic parameters and its relationships with leaf mass per area and leaf nitrogen concentration within a Pinus densiflora crown. Tree Physiology, 28, 551-558.
DOI URL |
[19] |
He D, Yan ER (2018). Size-dependent variations in individual traits and trait scaling relationships within a shade-tolerant evergreen tree species. American Journal of Botany, 105, 1165-1174.
DOI URL |
[20] |
Huang HX, Yang XD, Sun BW, Zhang ZH, Yan ER (2013). Variability and association of leaf traits between current- year and former-year leaves in evergreen trees in Tiantong, Zhejiang, China. Chinese Journal of Plant Ecology, 37, 912-921.
DOI URL |
[黄海侠, 杨晓东, 孙宝伟, 张志浩, 阎恩荣 (2013). 浙江天童常绿植物当年生与往年生叶片性状的变异与关联. 植物生态学报, 37, 912-921.]
DOI |
|
[21] |
Hughes SW (2005). Archimedes revisited: a faster, better, cheaper method of accurately measuring the volume of small objects. Physics Education, 40, 468-474.
DOI URL |
[22] |
Hulshof CM, Swenson NG (2010). Variation in leaf functional trait values within and across individuals and species: an example from a Costa Rican dry forest. Functional Ecology, 24, 217-223.
DOI URL |
[23] |
Kayama M, Sasa K, Koike T (2002). Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology, 22, 707-716.
DOI URL |
[24] | Kikuzawa K, Lechowicz MJ (2011). Theories of Leaf Longevity. Ecological Research Monographs. Springer, Tokyo.41-56. |
[25] |
Kuusk V, Niinemets Ü, Valladares F (2018a). A major trade-off between structural and photosynthetic investments operative across plant and needle ages in three Mediterranean pines. Tree Physiology, 38, 543-557.
DOI URL |
[26] |
Kuusk V, Niinemets Ü, Valladares F (2018b). Structural controls on photosynthetic capacity through juvenile-to-adult transition and needle ageing in Mediterranean pines. Functional Ecology, 32, 1479-1491.
DOI URL |
[27] |
Li MH, Kräuchi N, Dobbertin M (2006). Biomass distribution of different-aged needles in young and old Pinus cembra trees at highland and lowland sites. Trees, 20, 611-618.
DOI URL |
[28] |
Liu ZL, Hikosaka K, Li FR, Jin GZ (2020). Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors. Functional Ecology, 34, 458-467.
DOI URL |
[29] |
Liu ZL, Jin GZ, Zhou M (2014). Measuring seasonal dynamics of leaf area index in a mixed conifer-broadleaved forest with direct and indirect methods. Chinese Journal of Plant Ecology, 38, 843-856.
DOI URL |
[刘志理, 金光泽, 周明 (2014). 利用直接法和间接法测定针阔混交林叶面积指数的季节动态. 植物生态学报, 38, 843-856.]
DOI |
|
[30] |
Marshall JD, Monserud RA (2003). Foliage height influences specific leaf area of three conifer species. Canadian Journal of Forest Research, 33, 164-170.
DOI URL |
[31] |
Martin AR, Rapidel B, Roupsard O, van den Meersche K, de Melo Virginio Filho E, Barrios M, Isaac ME (2017). Intraspecific trait variation across multiple scales: the leaf economics spectrum in coffee. Functional Ecology, 31, 604-612.
DOI URL |
[32] |
Mediavilla S, Escudero A (2003). Photosynthetic capacity, integrated over the lifetime of a leaf, is predicted to be independent of leaf longevity in some tree species. New Phytologist, 159, 203-211.
DOI URL |
[33] |
Mediavilla S, Herranz M, González-Zurdo P, Escudero A (2014). Ontogenetic transition in leaf traits: a new cost associated with the increase in leaf longevity. Journal of Plant Ecology, 7, 567-575.
DOI URL |
[34] |
Messier J, McGill BJ, Enquist BJ, Lechowicz MJ (2017). Trait variation and integration across scales: Is the leaf economic spectrum present at local scales? Ecography, 40, 685-697.
DOI URL |
[35] |
Niinemets Ü (2015). Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist, 205, 79-96.
DOI URL |
[36] | Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T (2005). Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant, Cell & Environment, 28, 1552-1566. |
[37] |
Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M (2017). Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 214, 1447-1463.
DOI URL |
[38] |
Osada N, Nabeshima E, Hiura T (2015). Geographic variation in shoot traits and branching intensity in relation to leaf size in Fagus crenata: a common garden experiment. American Journal of Botany, 102, 878-887.
DOI URL |
[39] |
Paradis E, Claude J, Strimmer K (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290.
DOI URL |
[40] |
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
DOI URL |
[41] | R Core Team (2017). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. |
[42] |
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955-1969.
DOI URL |
[43] |
Reich PB, Oleksyn J, Modrzynski J, Tjoelker MG (1996). Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. Tree Physiology, 16, 643-647.
PMID |
[44] |
Robakowski P, Bielinis E (2017). Needle age dependence of photosynthesis along a light gradient within an Abies alba crown. Acta Physiologiae Plantarum, 39, 1-12.
DOI URL |
[45] |
Sakschewski B, von Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Peñuelas J, Thonicke K (2015). Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Global Change Biology, 21, 2711-2725.
DOI PMID |
[46] |
Suzuki R, Takahashi K (2020). Effects of leaf age, elevation and light conditions on photosynthesis and leaf traits in saplings of two evergreen conifers, Abies veitchii and A. mariesii. Journal of Plant Ecology, 13, 460-469.
DOI URL |
[47] |
Thomas HJD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Kattge J, Diaz S, Vellend M, Blok D, Cornelissen JHC, Forbes BC, Henry GHR, Hollister RD, Normand S, Prevéy JS, Rixen C, et al. (2020). Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 11, 1351. DOI: 10.1038/s41467-020-15014-4.
DOI |
[48] |
Villar R, Merino J (2001). Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytologist, 151, 213-226.
DOI URL |
[49] | Wang HL, Zhang Y, Xia XL, Yin WL, Guo HW, Li ZH (2020). Research advances in leaf senescence of woody plants. Scientia Sinica (Vitae), 50, 196-206. |
[王厚领, 张易, 夏新莉, 尹伟伦, 郭红卫, 李中海 (2020). 木本植物叶片衰老研究进展. 中国科学: 生命科学, 50, 196-206.] | |
[50] | Wang N, Palmroth S, Maier CA, Domec JC, Oren R (2019). Anatomical changes with needle length are correlated with leaf structural and physiological traits across five Pinus species. Plant, Cell & Environment, 42, 1690-1704. |
[51] | Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2015). Latitudinal patterns and influencing factors of leaf functional traits in Chinese forest ecosystems. Acta Geographica Sinica, 70, 1735-1746. |
[王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2015). 中国森林叶片功能属性的纬度格局及其影响因素. 地理学报, 70, 1735-1746.]
DOI |
|
[52] | Wang XJ, Zhang K, Xiao D, Hou JH (2015). Leaf traits and their interrelationships of main plant species in Liangshui natural broadleaved Korean pine mixed forest. Journal of Central South University of Forestry & Technology, 35(9), 52-58. |
[王晓洁, 张凯, 肖迪, 侯继华 (2015). 凉水天然红松阔叶混交林主要植物叶片性状相互关系研究. 中南林业科技大学学报, 35(9), 52-58.] | |
[53] |
Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261-268.
DOI URL |
[54] |
Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397.
DOI URL |
[55] |
Wright IJ, Cannon K (2001). Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 15, 351-359.
DOI URL |
[56] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
PMID |
[57] |
Wyka T, Robakowski P, Żytkowiak R (2007). Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments. Photosynthesis Research, 95, 87-99.
DOI URL |
[58] |
Wyka TP, Oleksyn J (2014). Photosynthetic ecophysiology of evergreen leaves in the woody angiosperms: a review. Dendrobiology, 72, 3-27.
DOI URL |
[59] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[60] | Zeng RQ, Zhao JG, Liu YZ, Chen GP, Xian JR (2018). Long-term warming effects on leaf traits of different-aged needles of Abies faxoniana seedlings in a treeline ecotone in western Sichuan. Acta Ecologica Sinica, 38, 4008-4017. |
[曾瑞琪, 赵家国, 刘银占, 陈国鹏, 鲜骏仁 (2018). 川西林线交错带岷江冷杉幼苗异龄叶形态对长期模拟增温的响应. 生态学报, 38, 4008-4017.] | |
[61] | Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica, 28, 844-852. |
[张林, 罗天祥 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.]
DOI |
|
[62] |
Zotz G, Wilhelm K, Becker A (2011). Heteroblasty—A review. The Botanical Review, 77, 109-151.
DOI URL |
[1] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[2] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[3] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[4] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[5] | 张敏, 朱教君. 光温条件对不同种源红松种子萌发的影响[J]. 植物生态学报, 2022, 46(6): 613-623. |
[6] | 张金峰, 葛树森, 梁金花, 李俊清. 长白山阔叶红松林红松种群年龄结构与数量动态特征[J]. 植物生态学报, 2022, 46(6): 667-677. |
[7] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[8] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[9] | 宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9): 952-960. |
[10] | 杜军, 王文, 何志斌, 陈龙飞, 蔺鹏飞, 朱喜, 田全彦. 祁连山青海云杉物候表型的空间分异及其内在机制[J]. 植物生态学报, 2021, 45(8): 834-843. |
[11] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[12] | 哈努拉•塔斯肯, 蔡慧颖, 金光泽. 树冠结构对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2021, 45(1): 38-50. |
[13] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[14] | 刘媛媛, 马进泽, 卜兆君, 王升忠, 张雪冰, 张婷玉, 刘莎莎, 付彪, 康媛. 地理来源与生物化学属性对泥炭地植物残体分解的影响[J]. 植物生态学报, 2018, 42(7): 713-722. |
[15] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19