植物生态学报 ›› 2019, Vol. 43 ›› Issue (8): 685-696.DOI: 10.17521/cjpe.2019.0132
所属专题: 光合作用
收稿日期:
2019-05-30
修回日期:
2019-08-09
出版日期:
2019-08-20
发布日期:
2020-01-03
通讯作者:
赵成章 ORCID:0000-0002-0127-8405
作者简介:
李群: ORCID: 0000-0002-1279-4739
基金资助:
LI Qun,ZHAO Cheng-Zhang(),WANG Ji-Wei,WEN Jun,LI Zi-Qin,MA Jun-Yi
Received:
2019-05-30
Revised:
2019-08-09
Online:
2019-08-20
Published:
2020-01-03
Contact:
ZHAO Cheng-Zhang ORCID:0000-0002-0127-8405
Supported by:
摘要:
盐沼湿地植物叶片功能性状对淹水的响应分析, 有助于探究植物叶片可塑性机制与光合生理特征间的内在关联性, 对深入理解盐沼湿地植物的生境抗逆性策略具有重要意义。根据小苏干湖湖水泛滥区静水持留时间长短分别设置: 轻度淹水区(静水持留30-90天)、中度淹水区(静水持留90-150天)、重度淹水区(静水持留150-210天) 3个试验样地, 以盐地风毛菊(Saussurea salsa)为研究对象, 研究了小苏干湖盐沼湿地盐地风毛菊叶片功能性状对淹水的响应。结果表明: 随着静水持留时间的增加, 轻度淹水区盐地风毛菊形态上采用小比叶面积(SLA)的肉质化小叶模式, 光合生理上具有高实际光合效率(Y(II))和低调节性能量耗散的量子产额(Y(NPQ))的协同变异; 重度淹水区盐地风毛菊形态和光合生理上则采用与轻度淹水区完全相反的协同变异策略; 在3个样地中, SLA与Y(II)、光化学淬灭(QP)和Y(NPQ)间均呈极显著相关关系; 叶绿素a含量和叶绿素b含量与调节性能量耗散的量子产额(Y(NO))均呈显著正相关关系。小苏干湖湖水泛滥区静水时空演变格局影响下, 盐地风毛菊种群通过改变叶面积、叶厚度和SLA等叶片形态特征, 适时调整叶片Y(II)和Y(NPQ)等光合生理特征, 实现植物叶片光合碳同化产物的收支平衡, 表现出对水盐异质性环境较强的耐受性, 反映了盐沼湿地植物在极端生存环境下的叶片可塑性和抗逆性机制。
李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应. 植物生态学报, 2019, 43(8): 685-696. DOI: 10.17521/cjpe.2019.0132
LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China. Chinese Journal of Plant Ecology, 2019, 43(8): 685-696. DOI: 10.17521/cjpe.2019.0132
参数 Parameter | 缩写 Abbreviation | 单位 Unit |
---|---|---|
土壤含水量 Soil moisture content | SMC | % |
土壤电导率 Soil electrical conductivity | EC | ms·cm-1 |
地上生物量 Aboveground biomass | AB | g·m-2 |
平均高度 Average height | AH | cm |
密度 Density | D | 株·m-2 |
叶面积 Leaf area | LA | cm2 |
叶厚度 Leaf thickness | LT | mm |
比叶面积 Specific leaf area | SLA | cm2·g-1 |
叶干质量 Leaf dry mass | LDW | g |
叶绿素a含量 Chlorophyll a content | Ca | mg·g-1 |
叶绿素b含量 Chlorophyll b content | Cb | mg·g-1 |
类胡萝卜素含量 Carotenoid content | Ccar | mg·g-1 |
净光合速率 Net photosynthetic rate | Pn | μmol CO2·m-2·s-1 |
蒸腾速率 Transpiration rate | Tr | mmol H2O·m-2·s-1 |
水分利用效率 Water use efficiency | WUE | μmol CO2·mmol-1 H2O |
实际光合效率 The actual photochemical efficiency of PSII | Y(II) | 无纲量 No dimension |
非调节性能量耗散的量子产量 The quantum yield of non-regulated energy dissipation | Y(NO) | 无纲量 No dimension |
调节性能量耗散的量子产额 The quantum yield of regulated energy dissipation | Y(NPQ) | 无纲量 No dimension |
光化学淬灭系数 Photochemical quenching | QP | 无纲量 No dimension |
非光化学猝灭系数 Non- Photochemical quenching | NPQ | 无纲量 No dimension |
电子传递速率 Electron transport rate | ETR | µmol·m-2·s-1 |
表1 文中常用参数及其缩写
Table 1 The parameters and their abbreviations used in this paper.
参数 Parameter | 缩写 Abbreviation | 单位 Unit |
---|---|---|
土壤含水量 Soil moisture content | SMC | % |
土壤电导率 Soil electrical conductivity | EC | ms·cm-1 |
地上生物量 Aboveground biomass | AB | g·m-2 |
平均高度 Average height | AH | cm |
密度 Density | D | 株·m-2 |
叶面积 Leaf area | LA | cm2 |
叶厚度 Leaf thickness | LT | mm |
比叶面积 Specific leaf area | SLA | cm2·g-1 |
叶干质量 Leaf dry mass | LDW | g |
叶绿素a含量 Chlorophyll a content | Ca | mg·g-1 |
叶绿素b含量 Chlorophyll b content | Cb | mg·g-1 |
类胡萝卜素含量 Carotenoid content | Ccar | mg·g-1 |
净光合速率 Net photosynthetic rate | Pn | μmol CO2·m-2·s-1 |
蒸腾速率 Transpiration rate | Tr | mmol H2O·m-2·s-1 |
水分利用效率 Water use efficiency | WUE | μmol CO2·mmol-1 H2O |
实际光合效率 The actual photochemical efficiency of PSII | Y(II) | 无纲量 No dimension |
非调节性能量耗散的量子产量 The quantum yield of non-regulated energy dissipation | Y(NO) | 无纲量 No dimension |
调节性能量耗散的量子产额 The quantum yield of regulated energy dissipation | Y(NPQ) | 无纲量 No dimension |
光化学淬灭系数 Photochemical quenching | QP | 无纲量 No dimension |
非光化学猝灭系数 Non- Photochemical quenching | NPQ | 无纲量 No dimension |
电子传递速率 Electron transport rate | ETR | µmol·m-2·s-1 |
样地 Plot | 群落特征 Community characteristics | 盐地风毛菊 Saussurea salsa | ||||
---|---|---|---|---|---|---|
SMC (%) | EC (ms·cm-1) | AH (cm) | AB (g·m-2) | AH (cm) | D (株·m-2) | |
I | 31.79 ± 1.59c | 9.94 ± 0.50a | 6.16 ± 0.31c | 165.30 ± 8.27a | 7.48 ± 0.37b | 59 ± 2.95c |
II | 39.12 ± 1.96b | 7.52 ± 0.30b | 9.73 ± 0.49b | 121.66 ± 6.08b | 13.8 ± 0.69b | 74 ± 3.70a |
III | 59.63 ± 2.98a | 3.85 ± 0.19c | 30.88 ± 1.54a | 95.93 ± 4.80c | 22.8 ± 1.14a | 62 ± 3.10b |
表2 小苏干湖盐沼湿地土壤特性、群落生物学特征和盐地风毛菊种群特征(平均值±标准误差)
Table 2 Soil characteristics, biological characteristics of wetland community and population characteristics of Saussurea salsa in salt marshes of Xiao Sugan Lake (mean ± SE)
样地 Plot | 群落特征 Community characteristics | 盐地风毛菊 Saussurea salsa | ||||
---|---|---|---|---|---|---|
SMC (%) | EC (ms·cm-1) | AH (cm) | AB (g·m-2) | AH (cm) | D (株·m-2) | |
I | 31.79 ± 1.59c | 9.94 ± 0.50a | 6.16 ± 0.31c | 165.30 ± 8.27a | 7.48 ± 0.37b | 59 ± 2.95c |
II | 39.12 ± 1.96b | 7.52 ± 0.30b | 9.73 ± 0.49b | 121.66 ± 6.08b | 13.8 ± 0.69b | 74 ± 3.70a |
III | 59.63 ± 2.98a | 3.85 ± 0.19c | 30.88 ± 1.54a | 95.93 ± 4.80c | 22.8 ± 1.14a | 62 ± 3.10b |
参数 Parameter | 样地 Plot | ||
---|---|---|---|
I | II | III | |
LA (cm2) | 7.14 ± 0.36c | 8.34 ± 0.42b | 17.61 ± 0.88a |
LT (mm) | 0.15 ± 0.01a | 0.14 ± 0.01a | 0.10 ± 0.01b |
SLA (cm2·g-1) | 8.28 ± 0.41b | 8.82 ± 0.44b | 14.53 ± 0.73a |
LDW (g) | 0.86 ± 0.04a | 0.95 ± 0.05a | 1.21 ± 0.06b |
Ca (mg·g-1) | 5.39 ± 0.27a | 3.11 ± 0.16b | 1.26 ± 0.06c |
Cb (mg·g-1) | 1.93 ± 0.10a | 1.15 ± 0.06b | 0.67 ± 0.03c |
Ccar (mg·g-1) | 1.39 ± 0.07a | 0.67 ± 0.03b | 0.58 ± 0.03c |
Pn (μmol CO2·m-2·s-1) | 4.67 ± 0.23b | 5.17 ± 0.26a | 3.77 ± 0.19c |
Tr (mmol H2O·m-2·s-1) | 1.08 ± 0.05a | 1.19 ± 0.06a | 0.97 ± 0.05b |
WUE (μmol CO2·mmol-1 H2O) | 4.32 ± 0.22a | 4.34 ± 0.22a | 3.89 ± 0.19b |
Y(II) | 0.33 ± 0.02a | 0.33 ± 0.02a | 0.23 ± 0.01b |
Y(NO) | 0.38 ± 0.02a | 0.26 ± 0.01b | 0.23 ± 0.01c |
Y(NPQ) | 0.29 ± 0.01c | 0.41 ± 0.02b | 0.54 ± 0.03a |
QP | 0.73 ± 0.04a | 0.75 ± 0.04a | 0.52 ± 0.03b |
NPQ | 0.19 ± 0.01c | 0.40 ± 0.02b | 0.59 ± 0.03a |
ETR (µmol·m-2·s-1) | 60.02 ± 3.00a | 51.94 ± 2.60b | 49.02 ± 2.45c |
表3 小苏干湖盐沼湿地盐地风毛菊叶性状与光合生理参数特征(平均值±标准误差)
Table 3 Leaf traits characteristics and photosynthetic physiological parameters of Saussurea salsa in salt marshes of Xiao Sugan Lake (mean ± SE)
参数 Parameter | 样地 Plot | ||
---|---|---|---|
I | II | III | |
LA (cm2) | 7.14 ± 0.36c | 8.34 ± 0.42b | 17.61 ± 0.88a |
LT (mm) | 0.15 ± 0.01a | 0.14 ± 0.01a | 0.10 ± 0.01b |
SLA (cm2·g-1) | 8.28 ± 0.41b | 8.82 ± 0.44b | 14.53 ± 0.73a |
LDW (g) | 0.86 ± 0.04a | 0.95 ± 0.05a | 1.21 ± 0.06b |
Ca (mg·g-1) | 5.39 ± 0.27a | 3.11 ± 0.16b | 1.26 ± 0.06c |
Cb (mg·g-1) | 1.93 ± 0.10a | 1.15 ± 0.06b | 0.67 ± 0.03c |
Ccar (mg·g-1) | 1.39 ± 0.07a | 0.67 ± 0.03b | 0.58 ± 0.03c |
Pn (μmol CO2·m-2·s-1) | 4.67 ± 0.23b | 5.17 ± 0.26a | 3.77 ± 0.19c |
Tr (mmol H2O·m-2·s-1) | 1.08 ± 0.05a | 1.19 ± 0.06a | 0.97 ± 0.05b |
WUE (μmol CO2·mmol-1 H2O) | 4.32 ± 0.22a | 4.34 ± 0.22a | 3.89 ± 0.19b |
Y(II) | 0.33 ± 0.02a | 0.33 ± 0.02a | 0.23 ± 0.01b |
Y(NO) | 0.38 ± 0.02a | 0.26 ± 0.01b | 0.23 ± 0.01c |
Y(NPQ) | 0.29 ± 0.01c | 0.41 ± 0.02b | 0.54 ± 0.03a |
QP | 0.73 ± 0.04a | 0.75 ± 0.04a | 0.52 ± 0.03b |
NPQ | 0.19 ± 0.01c | 0.40 ± 0.02b | 0.59 ± 0.03a |
ETR (µmol·m-2·s-1) | 60.02 ± 3.00a | 51.94 ± 2.60b | 49.02 ± 2.45c |
统计量 Statistic | 轴1 Axis 1 | 轴2 Axis 2 | 总方差 Total variance | |
---|---|---|---|---|
土壤含水量 Soil moisture content | 0.936 6 | 0.038 9 | 1.000 0 | |
土壤电导率 Soil electrical conductivity | -0.963 2 | -0.052 4 | ||
静水持留时间 Water-logging duration | 0.910 3 | 0.198 8 | ||
特征值 Eigenvalues | 0.533 0 | 0.050 0 | ||
功能性状与环境的相关性 Function traits-environment correlations | 0.977 0 | 0.565 0 | ||
累积百分比方差 Explained variation (cumulative) | 功能性状数据 Function traits data | 55.300 0 | 60.200 0 | |
功能性状-环境关系 Relationship between function traits and environment relation | 89.700 0 | 97.800 0 | ||
总特征值 All eigenvalues | 1.000 0 | |||
总典范特征值 Canonical eigenvalues | 0.616 0 |
表4 小苏干湖盐沼湿地盐地风毛菊功能性状与环境因子的冗余分析排序结果
Table 4 Redundancy analysis analysis results of functional traits and environmental factors of Saussurea salsa in salt marshes of Xiao Sugan Lake
统计量 Statistic | 轴1 Axis 1 | 轴2 Axis 2 | 总方差 Total variance | |
---|---|---|---|---|
土壤含水量 Soil moisture content | 0.936 6 | 0.038 9 | 1.000 0 | |
土壤电导率 Soil electrical conductivity | -0.963 2 | -0.052 4 | ||
静水持留时间 Water-logging duration | 0.910 3 | 0.198 8 | ||
特征值 Eigenvalues | 0.533 0 | 0.050 0 | ||
功能性状与环境的相关性 Function traits-environment correlations | 0.977 0 | 0.565 0 | ||
累积百分比方差 Explained variation (cumulative) | 功能性状数据 Function traits data | 55.300 0 | 60.200 0 | |
功能性状-环境关系 Relationship between function traits and environment relation | 89.700 0 | 97.800 0 | ||
总特征值 All eigenvalues | 1.000 0 | |||
总典范特征值 Canonical eigenvalues | 0.616 0 |
图2 小苏干湖盐沼湿地盐地风毛菊功能性状与环境因子的冗余分析。参数同表1。T, 静水持留时间。
Fig. 2 Redundancy analysis ordination of functional traits and environmental factors of Saussurea salsa in salt marshes of Xiao Sugan Lake. Parameters see Table 1. T, water-logging duration.
功能性状 Functional traits | 总离差平方和 SST | 残差均方 MSE | 未考虑协变量的均方 MS1 | F1 (MS1/MSE) | 显著性水平p1 | 判定系数R12 | 考虑协变量的均方 MS2 | F2 (MS2/MSE) | 显著性水平 p2 | 判定系数R22 |
---|---|---|---|---|---|---|---|---|---|---|
SLA | 6.311 1 | 2.129 5 | 3.155 6 | 1.481 9 | 0.266 0 | 0.852 0 | 29.425 5 | 13.818 3 | 0.000 1 | 0.790 0 |
Ca | 4.432 7 | 0.572 2 | 2.216 3 | 3.873 3 | 0.050 4 | 0.889 0 | 10.950 6 | 19.137 5 | 0.000 0 | 0.842 0 |
Cb | 0.349 8 | 0.080 4 | 0.174 9 | 2.175 4 | 0.156 3 | 0.854 0 | 1.132 9 | 14.090 5 | 0.000 1 | 0.879 0 |
Y(II) | 0.004 6 | 0.000 6 | 0.002 3 | 4.174 3 | 0.042 1 | 0.877 0 | 0.009 4 | 17.093 1 | 0.000 0 | 0.826 0 |
Y(NPQ) | 0.008 1 | 0.000 4 | 0.004 1 | 10.662 2 | 0.002 2 | 0.977 0 | 0.039 1 | 102.532 8 | 0.000 0 | 0.968 0 |
Y(NO) | 0.016 0 | 0.000 1 | 0.008 0 | 136.047 6 | 0.000 0 | 0.991 0 | 0.015 2 | 259.079 1 | 0.000 0 | 0.987 0 |
QP | 0.024 7 | 0.003 4 | 0.012 4 | 3.592 8 | 0.059 9 | 0.832 0 | 0.041 0 | 11.919 5 | 0.000 3 | 0.763 0 |
NPQ | 0.023 4 | 0.000 5 | 0.011 7 | 22.825 4 | 0.000 1 | 0.987 0 | 0.093 1 | 181.178 3 | 0.000 0 | 0.981 0 |
表5 小苏干湖盐地风毛菊功能性状与环境因子的协方差分析(平均值±标准误差)
Table 5 Covariance analysis between functional traits and environmental factors of Saussurea salsa in salt marshes of Xiao Sugan Lake (mean ± SE)
功能性状 Functional traits | 总离差平方和 SST | 残差均方 MSE | 未考虑协变量的均方 MS1 | F1 (MS1/MSE) | 显著性水平p1 | 判定系数R12 | 考虑协变量的均方 MS2 | F2 (MS2/MSE) | 显著性水平 p2 | 判定系数R22 |
---|---|---|---|---|---|---|---|---|---|---|
SLA | 6.311 1 | 2.129 5 | 3.155 6 | 1.481 9 | 0.266 0 | 0.852 0 | 29.425 5 | 13.818 3 | 0.000 1 | 0.790 0 |
Ca | 4.432 7 | 0.572 2 | 2.216 3 | 3.873 3 | 0.050 4 | 0.889 0 | 10.950 6 | 19.137 5 | 0.000 0 | 0.842 0 |
Cb | 0.349 8 | 0.080 4 | 0.174 9 | 2.175 4 | 0.156 3 | 0.854 0 | 1.132 9 | 14.090 5 | 0.000 1 | 0.879 0 |
Y(II) | 0.004 6 | 0.000 6 | 0.002 3 | 4.174 3 | 0.042 1 | 0.877 0 | 0.009 4 | 17.093 1 | 0.000 0 | 0.826 0 |
Y(NPQ) | 0.008 1 | 0.000 4 | 0.004 1 | 10.662 2 | 0.002 2 | 0.977 0 | 0.039 1 | 102.532 8 | 0.000 0 | 0.968 0 |
Y(NO) | 0.016 0 | 0.000 1 | 0.008 0 | 136.047 6 | 0.000 0 | 0.991 0 | 0.015 2 | 259.079 1 | 0.000 0 | 0.987 0 |
QP | 0.024 7 | 0.003 4 | 0.012 4 | 3.592 8 | 0.059 9 | 0.832 0 | 0.041 0 | 11.919 5 | 0.000 3 | 0.763 0 |
NPQ | 0.023 4 | 0.000 5 | 0.011 7 | 22.825 4 | 0.000 1 | 0.987 0 | 0.093 1 | 181.178 3 | 0.000 0 | 0.981 0 |
Ca | Cb | SLA | Y(II) | Y(NPQ) | Y(NO) | NPQ | QP | |
---|---|---|---|---|---|---|---|---|
Ca | 1.00 | |||||||
Cb | 1.00** | 1.00 | ||||||
SLA | -0.14 | -0.18 | 1.00 | |||||
Y(II) | 0.06 | 0.10 | -1.00** | 1.00 | ||||
Y(NPQ) | -0.53 | -0.57 | 0.91** | -0.88* | 1.00 | |||
Y(NO) | 0.79* | 0.82* | -0.71 | 0.65 | -0.94** | 1.00 | ||
NPQ | -0.58 | -0.61 | 0.89* | -0.85* | 1.00** | -0.95** | 1.00 | |
QP | -0.02 | 0.02 | -0.99** | 1.00** | -0.84* | 0.59 | -0.81* | 1.00 |
表6 小苏干湖盐沼湿地盐地风毛菊叶性状和叶绿素荧光特征之间的相关性分析
Table 6 Correlation analysis between leaf traits and chlorophyll fluorescence characteristics of Saussurea salsa in salt marshes of Xiao Sugan Lake
Ca | Cb | SLA | Y(II) | Y(NPQ) | Y(NO) | NPQ | QP | |
---|---|---|---|---|---|---|---|---|
Ca | 1.00 | |||||||
Cb | 1.00** | 1.00 | ||||||
SLA | -0.14 | -0.18 | 1.00 | |||||
Y(II) | 0.06 | 0.10 | -1.00** | 1.00 | ||||
Y(NPQ) | -0.53 | -0.57 | 0.91** | -0.88* | 1.00 | |||
Y(NO) | 0.79* | 0.82* | -0.71 | 0.65 | -0.94** | 1.00 | ||
NPQ | -0.58 | -0.61 | 0.89* | -0.85* | 1.00** | -0.95** | 1.00 | |
QP | -0.02 | 0.02 | -0.99** | 1.00** | -0.84* | 0.59 | -0.81* | 1.00 |
图3 不同淹水程度下盐地风毛菊叶片中光系统II (PSII)量子产量的转化(平均值±标准偏差)。Y(II), PSII光化学量子产量; Y(NPQ), 调节性能量耗散的量子产量; Y(NO), 非调节性能量耗散的量子产量。光合有效辐射= 1 200 μmol·m -2·s-1。
Fig. 3 Conversion of quantum yields in photosynthetic system II (PSII) under different flooding gradient leaves of Saussurea salsa (mean ± SD). Y(II), photochemical quantum yields in PSII; Y(NPQ), quantum yield of thermal dissipation used in regulatory energy dissipation; Y(NO), the quantum yield of non-regulated energy dissipation. Photosynthetically active radiation = 1 200 μmol·m-2·s-1.
[1] | Adebowale A, Naidoo Y, Lamb J, Nicholas A (2014). Comparative foliar epidermal micromorphology of Southern African Strychnos L.(Loganiaceae): Taxonomic, ecological and cytological considerations. Plant Systematics and Evolution, 300, 127-138. |
[2] | Bai XF, Bu QM, Tan YQ, Zhu JJ, Liu LD (2012). Effect of NaCl on photosynthesis and water status in arrowleaf saltbush under osmotic stress. Chinese Bulletin of Botany, 47, 500-507. |
[ 柏新富, 卜庆梅, 谭永芹, 朱建军, 刘林德 (2012). NaCl对渗透胁迫下三角叶滨藜光合作用和水分状况的调节. 植物学报, 47, 500-507.] | |
[3] | Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448. |
[4] | Campitelli BE, Stinchcombe JR (2013). Natural selection maintains a single-locus leaf shape cline in ivyleaf morning glory, Ipomoea hederacea. Molecular Ecology, 22, 552-564. |
[5] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[6] | di Bella CE, Striker GG, Escaray FJ, Lattanzi FA, Rodríguez AM, Grimoldi AA (2014). Saline tidal flooding effects on Spartina densiflora plants from different positions of the salt marsh. Diversities and similarities on growth, anatomical and physiological responses. Environmental and Experimental Botany, 102, 27-36. |
[7] | Gao Y, Xia JB, Chen YP, Zhao YY, Kong QX, Lang Y (2017). Effects of extreme soil water stress on photosynthetic efficiency and water consumption characteristics of Tamarix chinensis in China’s Yellow River Delta. Journal of Forestry Research, 28, 491-501. |
[8] | Gimeno V, Syvertsen JP, Simón I, Nieves M, Díaz-López L, Martínez V, García-Sánchez F (2012). Physiological and morphological responses to flooding with fresh or saline water in Jatropha curcas. Environmental and Experimental Botany, 78, 47-55. |
[9] | Gong CM, Bai J, Deng JM, Wang GX, Liu XP (2011). Leaf anatomy and photosynthetic carbon metabolic characteristics in Phragmites communis in different soil water availability. Plant Ecology, 212, 675-687. |
[10] | Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032. |
[ 金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.] | |
[11] | Kalaji HM, Govindjee, Bosa K, Kościelniak J, Żuk-Gołaszewska K (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73, 64-72. |
[12] | Kang SZ, Zhang JH (2004). Controlled alternate partial rootzone irrigation: Its physiological consequences and impact on water use efficiency. Journal of Experimental Botany, 55, 2437-2446. |
[13] | Larcher W (1995). Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. 3rd ed. Springer-Verlag, New York, Berlin. |
[14] | Li Q, Zhao CZ, Yao WX, Wang JL, Zhang WT (2018). The relationship between transpiration rate and leaf traits of Phragmites australis in response to soil moisture in Zhangye wetland. Chinese Journal of Ecology, 37, 1095-1101. |
[ 李群, 赵成章, 姚文秀, 王建良, 张伟涛 (2018). 张掖湿地芦苇蒸腾速率与叶性状关系对土壤水分的响应. 生态学杂志, 37, 1095-1101.] | |
[15] | Li Q, Zhao CZ, Zhao LC, Wang JL, Zhang WT, Yao WX (2017). Empirical relationship between specific leaf area and thermal dissipation of Phragmites australis in salt marshes of Qinwangchuan. Chinese Journal of Plant Ecology, 41, 985-994. |
[ 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀 (2017). 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析. 植物生态学报, 41, 985-994.] | |
[16] | Li R, Jiang ZM, Zhang SX, Cai J (2015). A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 39, 838-848. |
[ 李荣, 姜在民, 张硕新, 蔡靖 (2015). 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 39, 838-848.] | |
[17] | Liao FY, Li HM, He P (2004). Effect of high irradiance and high temperature on chloroplast composition and structure of Dioscorea zingiberensis. Photosynthetica, 42, 487-492. |
[18] | Liu X, Li LM, Li MJ, Su LC, Lian SM, Zhang BH, Li XY, Ge K, Li L (2018). AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Scientific Reports, 8, 2250. DOI: 10.1038/s41598-018-20542-7. |
[19] | Mao W, Li YL, Zhang TH, Zhao XY, Huang YX, Song LL (2012). Research advances of plant leaf traits at different ecology scales. Journal of Desert Research, 32(1), 33-41. |
[ 毛伟, 李玉霖, 张铜会, 赵学勇, 黄迎新, 宋琳琳 (2012). 不同尺度生态学中植物叶性状研究概述. 中国沙漠, 32(1), 33-41.] | |
[20] | Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659-668. |
[21] | Milla R, Reich PB (2007). The scaling of leaf area and mass: The cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2115. |
[22] | Ogburn RM, Edwards EJ (2012). Quantifying succulence: A rapid, physiologically meaningful metric of plant water storage. Plant, Cell & Environment, 35, 1533-1542. |
[23] | Sánchez E, Scordia D, Lino G, Arias C, Cosentino SL, Nogués S (2015). Salinity and water stress effects on biomass production in different Arundo donax L. clones. BioEnergy Research, 8, 1461-1479. |
[24] | Schreiber U (2004). Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. In: Papageorgiou GC, Govindjee eds. Chlorophyll a Fluorescence. Springer, Dordrecht, Netherlands. 279-319. |
[25] | Schreiber U, Bilger W, Neubauer C (1994). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM eds. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin. 49-70. |
[26] | Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843. |
[27] | Sello S, Meneghesso A, Alboresi A, Baldan B, Morosinotto T (2019). Plant biodiversity and regulation of photosynthesis in the natural environment. Planta, 249, 1217-1228. |
[28] | Shi SB, Shang YX, Shi R, Zhang B (2012). Responses of PSII photochemistry efficiency and photosynthetic pigments of Saussurea superba to short-term UV-B-supplementation. Chinese Journal of Plant Ecology, 36, 420-430. |
[ 师生波, 尚艳霞, 师瑞, 张波 (2012). 高山植物美丽风毛菊PSII光化学效率和光合色素对短期增补UV-B辐射的响应. 植物生态学报, 36, 420-430.] | |
[29] | Song LL, Fan JW, Wu SH, Zhong HP, Wang N (2012). Response characteristics of leaf traits of common species along an altitudinal gradient in Hongchiba Grassland, Chongqing. Acta Ecologica Sinica, 32, 2759-2767. |
[ 宋璐璐, 樊江文, 吴绍洪, 钟华平, 王宁 (2012). 红池坝草地常见物种叶片性状沿海拔梯度的响应特征. 生态学报, 32, 2759-2767.] | |
[30] | van den Brink FWB, van der Velde G, Bosman WW, Coops H (1995). Effects of substrate parameters on growth responses of eight helophyte species in relation to flooding. Aquatic Botany, 50, 79-97. |
[31] | Wang T, Hu JT, Wang RQ, Liu CH, Yu D (2018). Tolerance and resistance facilitate the invasion success of Alternanthera philoxeroides in disturbed habitats: A reconsideration of the disturbance hypothesis in the light of phenotypic variation. Environmental and Experimental Botany, 153, 135-142. |
[32] | Wang XK (2006). Principles and Techniques of Plant Physiological and Biochemical Experiments. 2nd edn. Higher Education Press, Beijing. 134-136. |
[ 王学奎 (2006). 植物生理生化实验原理和技术(第2版). 高等教育出版社, 北京. 134-136.] | |
[33] | Wang Y, Wei XL (2010). Advance on the effects of different light environments on growth, physiological biochemistry and morphostructure of plant. Journal of Mountain Agriculture and Biology, 29, 353-359, 370. |
[ 王艺, 韦小丽 (2010). 不同光照对植物生长、生理生化和形态结构影响的研究进展. 山地农业生物学报, 29, 353-359, 370.] | |
[34] | Wang YF, Liu QQ, Pei ZY, Li HY (2012). Correlation between altitude and reproductive allocation in three Saussurea species on China’s Qinghai-Tibetan Plateau. Chinese Journal of Plant Ecology, 36, 39-46. |
[ 王一峰, 刘启茜, 裴泽宇, 李海燕 (2012). 青藏高原3种风毛菊属植物的繁殖分配与海拔高度的相关性. 植物生态学报, 36, 39-46.] | |
[35] | Wei ZG, Wang YC (2015). The Corresponding Mechanisms of Plant Drought Stress. Science Press, Beijing. 8-11. |
[ 魏志刚, 王玉成 (2015). 植物干旱胁迫响应机制. 科学出版社, 北京. 8-11.] | |
[36] | Ye NN, Shen NP, Shang TQ, Gao HD, Guan JR, Yi LT (2017). Vegetation structure and internal relationship between distribution patterns of vegetation and environment in ecological service forest of Rui’an city in Zhejiang Province. Chinese Bulletin of Botany, 52, 496-510. |
[ 叶诺楠, 沈娜娉, 商天其, 高洪娣, 管杰然, 伊力塔 (2017). 浙江瑞安公益林群落结构及其与环境的相关性. 植物学报, 52, 496-510. ] | |
[37] | Zhang HY, Xie BT, Duan WX, Dong SX, Wang BQ, Zhang LM, Shi CY (2018). Effects of drought stress at different growth stages on photosynthetic efficiency and water consumption characteristics in sweet potato. Chinese Journal of Applied Ecology, 29, 1943-1950. |
[ 张海燕, 解备涛, 段文学, 董顺旭, 汪宝卿, 张立明, 史春余 (2018). 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响. 应用生态学报, 29, 1943-1950.] | |
[38] | Zhang YQ, Liang CZ, Wang W, Wang LX, Peng JT, Yan JC, Jia CZ (2010). Soil salinity and Achnatherum splendens distribution. Chinese Journal of Ecology, 29, 2438-2443. |
[ 张雅琼, 梁存柱, 王炜, 王立新, 彭江涛, 闫建成, 贾成朕 (2010). 芨芨草群落土壤盐分特征. 生态学杂志, 29, 2438-2443.] | |
[39] | Zhao KF, Li FZ, Zhang FS (2013). Chinese Halophytes. 2nd edn. Science Press, Beijing. 71-74. |
[ 赵可夫, 李法曾, 张福锁 (2013). 中国盐生植物(第二版). 科学出版社, 北京. 71-74.] |
[1] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[3] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[4] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[5] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[6] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[7] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[8] | 谭一波, 田红灯, 曾春阳, 沈浩, 申文辉, 叶建平, 甘国娟. 猫儿山铁杉相邻植株冠层机械磨损对枝叶性状的影响[J]. 植物生态学报, 2021, 45(12): 1281-1291. |
[9] | 李蕾, 王一峰, 苟文霞, 马文梅, 蒋春玲. 狮牙草状风毛菊果期资源分配对海拔的响应[J]. 植物生态学报, 2020, 44(11): 1164-1171. |
[10] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[11] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
[12] | 李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性[J]. 植物生态学报, 2017, 41(11): 1140-1148. |
[13] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[14] | 王一峰, 靳洁, 侯宏红, 赵博, 曹家豪, 李筱姣. 川西风毛菊花期资源分配随海拔的变化[J]. 植物生态学报, 2015, 39(9): 901-908. |
[15] | 黄海侠,杨晓东,孙宝伟,张志浩,阎恩荣. 浙江天童常绿植物当年生与往年生叶片性状的变异与关联[J]. 植物生态学报, 2013, 37(10): 912-921. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19