植物生态学报 ›› 2022, Vol. 46 ›› Issue (6): 712-721.DOI: 10.17521/cjpe.2021.0421
所属专题: 植物功能性状
王广亚1, 陈柄华1(), 黄雨晨1, 金光泽2, 刘志理2,*(
)
收稿日期:
2021-11-18
接受日期:
2022-01-17
出版日期:
2022-06-20
发布日期:
2022-06-09
通讯作者:
刘志理
作者简介:
*(liuzl2093@126.com)基金资助:
WANG Guang-Ya1, CHEN Bing-Hua1(), HUANG Yu-Chen1, JIN Guang-Ze2, LIU Zhi-Li2,*(
)
Received:
2021-11-18
Accepted:
2022-01-17
Online:
2022-06-20
Published:
2022-06-09
Contact:
LIU Zhi-Li
Supported by:
摘要:
复叶植物相比单叶植物更具生长优势, 但复叶内部小叶性状及其相关关系是否受到着生位置影响尚未可知。该研究以东北典型复叶植物水曲柳(Fraxinus mandshurica)为研究对象, 测定复叶内部不同着生位置小叶的叶厚(LT)、叶面积(LA)、叶干物质含量(LDMC)、比叶面积(SLA)、叶氮含量(LNC)和叶磷含量(LPC), 分析上述6种小叶性状及其生长关系在复叶内部的变异, 并分别通过最小显著性差异(LSD)法以及标准化主轴(SMA)法检验着生位置对小叶性状及性状间生长关系是否存在显著影响。结果表明: (1) LT、LA、LDMC和LNC随小叶着生位置级别增加(从复叶顶端至复叶基部)呈减小趋势, 但SLA和LPC呈增大趋势。(2)复叶内部, LNC与SLA间以及LT与LDMC间表现为同速生长关系, LT、SLA、LPC 3个性状与LA间, SLA、LNC、LPC 3个性状与LDMC间以及LPC与LT间均表现为异速生长关系。(3)小叶着生位置对LA与LT、SLA、LPC之间的相关关系存在显著影响, LT、SLA与LA的斜率在三级小叶(复叶中部)附近达到最大值, LT、LPC与LA的斜率绝对值在六级小叶(复叶基部)处达到最小值。整体而言, 复叶内部小叶性状随着生位置存在一定变异规律, 小叶性状间多表现为异速生长关系, 且小叶性状间的生长关系一定程度上受着生位置的调控。
王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响. 植物生态学报, 2022, 46(6): 712-721. DOI: 10.17521/cjpe.2021.0421
WANG Guang-Ya, CHEN Bing-Hua, HUANG Yu-Chen, JIN Guang-Ze, LIU Zhi-Li. Effects of growing position on leaflet trait variations and its correlations in Fraxinus mandshurica. Chinese Journal of Plant Ecology, 2022, 46(6): 712-721. DOI: 10.17521/cjpe.2021.0421
图1 水曲柳复叶小叶着生位置示意图。1-6, 第一到第六级小叶。
Fig. 1 Diagram for leaflet growing position in a compound leaf of Fraxinus mandshurica. 1-6, the first class leaflet to sixth class leaflet, respectively.
小叶性状 Leaflet trait | 最大值 Maximum | 最小值 Minimum | 均值 Mean | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|
叶厚 LT (mm) | 0.2 | 0.1 | 0.2 | 14 |
叶面积 LA (cm2) | 46.7 | 7.4 | 28.2 | 34 |
比叶面积 SLA (cm2·g-1) | 327.7 | 113.3 | 211.4 | 30 |
叶干物质含量 LDMC (g·g-1) | 0.4 | 0.2 | 0.3 | 12 |
叶氮含量 LNC (mg·g-1) | 45.4 | 13.8 | 26.1 | 32 |
叶磷含量 LPC (mg·g-1) | 5.5 | 1.0 | 2.8 | 38 |
表1 水曲柳复叶内部小叶性状信息概况
Table 1 Trait information about the leaflets in a compound leaf of Fraxinus mandshurica
小叶性状 Leaflet trait | 最大值 Maximum | 最小值 Minimum | 均值 Mean | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|
叶厚 LT (mm) | 0.2 | 0.1 | 0.2 | 14 |
叶面积 LA (cm2) | 46.7 | 7.4 | 28.2 | 34 |
比叶面积 SLA (cm2·g-1) | 327.7 | 113.3 | 211.4 | 30 |
叶干物质含量 LDMC (g·g-1) | 0.4 | 0.2 | 0.3 | 12 |
叶氮含量 LNC (mg·g-1) | 45.4 | 13.8 | 26.1 | 32 |
叶磷含量 LPC (mg·g-1) | 5.5 | 1.0 | 2.8 | 38 |
图2 水曲柳小叶性状随着生位置的变化(平均值±标准误)。不同小写字母表示小叶性状在不同着生位置有显著差异(p < 0.05)。1-6为第一到第六级小叶, 小叶着生位置见图1。
Fig. 2 Changes in leaflet traits of Fraxinus mandshurica across growing position (mean ± SE). Different lowercase letters indicate a significant difference among different leaflet growing position (p < 0.05). 1-6, the first class leaflet to sixth class leaflet, leaflet growing position see Fig. 1. N, nitrogen; P, phosphorus.
图3 水曲柳复叶内部不同着生位置小叶性状Pearson相关分析。*, p < 0.05; **, p < 0.01; ***, p < 0.001。LA, 叶面积; LDMC, 叶干物质含量; LT, 叶厚; LNC, 叶氮含量; LPC, 叶磷含量; SLA, 比叶面积。
Fig. 3 Pearson's correlation coefficients for leaflet traits in the compound leaves of Fraxinus mandshurica. *, p < 0.05; **, p < 0.01; ***, p < 0.001. LA, leaflet area; LDMC, leaflet dry matter content; LT, leaflet thickness; LNC, leaflet nitrogen content; LPC, leaflet phosphorus content; SLA, specific leaflet area.
y | x | 共同斜率 Common slope | p |
---|---|---|---|
LT | LA | - | 0.003 |
LT | LDMC | 1.22 | 0.55 |
SLA | LA | - | <0.001 |
SLA | LDMC | 2.74*** | <0.001 |
LNC | SLA | 1.00 | 0.85 |
LNC | LDMC | 2.71*** | <0.001 |
LPC | LA | - | <0.001 |
LPC | LDMC | 3.64*** | <0.001 |
LPC | SLA | - | - |
LPC | LT | -2.96*** | <0.001 |
表2 小叶性状在水曲柳复叶内部的生长关系
Table 2 Growth relationships between leaflet traits in compound leaves of Fraxinus mandshurica
y | x | 共同斜率 Common slope | p |
---|---|---|---|
LT | LA | - | 0.003 |
LT | LDMC | 1.22 | 0.55 |
SLA | LA | - | <0.001 |
SLA | LDMC | 2.74*** | <0.001 |
LNC | SLA | 1.00 | 0.85 |
LNC | LDMC | 2.71*** | <0.001 |
LPC | LA | - | <0.001 |
LPC | LDMC | 3.64*** | <0.001 |
LPC | SLA | - | - |
LPC | LT | -2.96*** | <0.001 |
图4 着生位置对水曲柳小叶性状间相关关系的影响。*, p < 0.05; **, p < 0.01; ***, p < 0.001。实线表示回归显著。p值斜率间的差异显著性, p < 0.05时差异显著。LA, 叶面积; LDMC, 叶干物质含量; LT, 叶厚; LNC, 叶氮含量; LPC, 叶磷含量; SLA, 比叶面积。小叶着生位置见图1。
Fig. 4 Effects of leaflet growing position on the correlation between leaflet traits of Fraxinus mandshurica. *, p < 0.05; **, p < 0.01; ***, p < 0.001. The solid lines indicate significant regressions. p value indicates the significance of differences among the slopes; p < 0.05, the difference is significant. LA, leaflet area; LDMC, leaflet dry matter content; LT, leaflet thickness; LNC, leaflet nitrogen content; LPC, leaflet phosphorus content; SLA, specific leaflet area. Leaflet growing position see Fig. 1.
y | x | 小叶着生位置 Leaflet growing position | p | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||
LT | LDMC | - | -1.94 | -2.37 | - | -2.02 | -1.30 | 0.43 |
SLA | LDMC | 0.87 | 0.88 | 0.86 | 0.84 | 0.84 | 0.82 | 0.44 |
LNC | SLA | - | - | -0.91 | -0.90 | -0.91 | -0.92 | 0.80 |
LNC | LDMC | - | - | -0.01 | -0.03 | -0.07 | -0.07 | 0.54 |
LPC | LDMC | - | - | - | -1.52 | - | -1.54 | 0.81 |
LPC | LT | - | -2.03 | -1.95 | -1.96 | -2.02 | - | 0.31 |
表3 水曲柳不同着生位置小叶性状间相关关系斜率同质时截距的差异
Table 3 Different intercepts when the slope of regressions was equal among different leaflet growing position of Fraxinus mandshurica
y | x | 小叶着生位置 Leaflet growing position | p | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||
LT | LDMC | - | -1.94 | -2.37 | - | -2.02 | -1.30 | 0.43 |
SLA | LDMC | 0.87 | 0.88 | 0.86 | 0.84 | 0.84 | 0.82 | 0.44 |
LNC | SLA | - | - | -0.91 | -0.90 | -0.91 | -0.92 | 0.80 |
LNC | LDMC | - | - | -0.01 | -0.03 | -0.07 | -0.07 | 0.54 |
LPC | LDMC | - | - | - | -1.52 | - | -1.54 | 0.81 |
LPC | LT | - | -2.03 | -1.95 | -1.96 | -2.02 | - | 0.31 |
[1] |
Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J (2018). Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters, 21, 734-744.
DOI PMID |
[2] |
Anderegg LDL, Loy X, Markham IP, Elmer CM, Hovenden MJ, HilleRisLambers J, Mayfield MM (2021). Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees. New Phytologist, 229, 1375-1387.
DOI URL |
[3] |
Burton JI, Perakis SS, McKenzie SC, Lawrence CE, Puettmann KJ (2017). Intraspecific variability and reaction norms of forest understorey plant species traits. Functional Ecology, 31, 1881-1893.
DOI URL |
[4] |
Coble AP, Cavaleri MA (2017). Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness. Tree Physiology, 37, 1337-1351.
DOI PMID |
[5] |
Cui EQ, Weng ES, Yan ER, Xia JY (2020). Robust leaf trait relationships across species under global environmental changes. Nature Communications, 11, 2999. DOI: 10.1038/s41467-020-16839-9.
DOI URL |
[6] |
Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2015). Relationship between leaf traits of Melica przewalskyi and slope aspects in alpine grassland of Qilian Mountains, China. Chinese Journal of Plant Ecology, 39, 23-31.
DOI URL |
[党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2015). 祁连山高寒草地甘肃臭草叶性状与坡向间的关系. 植物生态学报, 39, 23-31.]
DOI |
|
[7] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL |
[8] |
Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F (2018). Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytologist, 219, 1338-1352.
DOI URL |
[9] |
Funk JL, Larson JE, Vose G (2021). Leaf traits and performance vary with plant age and water availability in Artemisia californica. Annals of Botany, 127, 495-503.
DOI URL |
[10] | Gao J, Xu B, Wang JN, Zhou HY, Wang YX, Wu Y (2015). Correlations among leaf traits of typical shrubs and their responses to different light environments in shrub- grassland of southern China. Chinese Journal of Ecology, 34, 2424-2431. |
[高景, 徐波, 王金牛, 周海燕, 王彦星, 吴彦 (2015). 南方灌草丛典型灌木不同叶片性状的相关性及其对不同光环境的响应. 生态学杂志, 34, 2424-2431.] | |
[11] |
Givnish TJ, Montgomery RA, Goldstein G (2004). Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole- plant compensation points. American Journal of Botany, 91, 228-246.
DOI PMID |
[12] |
Givnish TJ, Vermeij GJ (1976). Sizes and shapes of liane leaves. The American Naturalist, 110, 743-778.
DOI URL |
[13] |
Griffith DM, Quigley KM, Anderson TM (2016). Leaf thickness controls variation in leaf mass per area (LMA) among grazing-adapted grasses in Serengeti. Oecologia, 181, 1035-1040.
DOI PMID |
[14] |
Guo YP, Yan ZB, Gheyret G, Zhou GY, Xie ZQ, Tang ZY (2020). The community-level scaling relationship between leaf nitrogen and phosphorus changes with plant growth, climate and nutrient limitation. Journal of Ecology, 108, 1276-1286.
DOI URL |
[15] |
Hallik L, Niinemets Ü, Kull O (2012). Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Plant Biology, 14, 88-99.
DOI PMID |
[16] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Sack L, Yu GR (2020a). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
DOI URL |
[17] |
He LL, Liu Y, He H, Liu Y, Qi JF, Zhang XJ, Li YH, Mao YW, Zhou SL, Zheng XL, Bai QZ, Zhao BL, Wang DF, Wen JQ, Mysore KS, Tadege M, Xia YM, Chen JH (2020b). A molecular framework underlying the compound leaf pattern of Medicago truncatula. Nature Plants, 6, 511-521.
DOI URL |
[18] |
Hu YK, Liu XY, He NP, Pan X, Long SY, Li W, Zhang MY, Cui LJ (2021). Global patterns in leaf stoichiometry across coastal wetlands. Global Ecology and Biogeography, 30, 852-869.
DOI URL |
[19] |
Ji M, Jin GZ, Liu ZL (2021). Effects of ontogenetic stage and leaf age on leaf functional traits and the relationships between traits in Pinus koraiensis. Journal of Forestry Research, 32, 2459-2471.
DOI URL |
[20] |
Keenan TF, Niinemets Ü (2017). Global leaf trait estimates biased due to plasticity in the shade. Nature Plants, 3, 16201. DOI: 10.1038/nplants.2016.201.
DOI URL |
[21] |
Koch G, Rolland G, Dauzat M, Bédiée A, Baldazzi V, Bertin N, Guédon Y, Granier C (2018). Are compound leaves more complex than simple ones? A multi-scale analysis. Annals of Botany, 122, 1173-1185.
DOI URL |
[22] |
Li L, McCormack ML, Ma CG, Kong DL, Zhang Q, Chen XY, Zeng H, Niinemets Ü, Guo DL (2015). Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters, 18, 899-906.
DOI PMID |
[23] |
Li SJ, Wang H, Gou W, White JF, Kingsley KL, Wu GQ, Su PX (2021). Leaf functional traits of dominant desert plants in the Hexi Corridor, Northwestern China: trade-off relationships and adversity strategies. Global Ecology and Conservation, 28, e01666. DOI: 10.1016/j.gecco.2021.e01666.
DOI URL |
[24] |
Lusk CH, Grierson ERP, Laughlin DC (2019). Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency. New Phytologist, 223, 1319-1327.
DOI URL |
[25] |
Nardini A, Pedá G, Salleo S (2012). Alternative methods for scaling leaf hydraulic conductance offer new insights into the structure-function relationships of sun and shade leaves. Functional Plant Biology, 39, 394-401.
DOI PMID |
[26] |
Niinemets Ü (1998). Are compound-leaved woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs. Plant Ecology, 134, 1-11.
DOI URL |
[27] |
Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science, 340, 741-744.
DOI URL |
[28] |
Pan YJ, Cieraad E, Armstrong J, Armstrong W, Clarkson BR, Colmer TD, Pedersen O, Visser EJW, Voesenek LACJ, van Bodegom PM, (2020). Global patterns of the leaf economics spectrum in wetlands. Nature Communications, 11, 4519. DOI: 10.1038/s41467-020-18354-3.
DOI URL |
[29] |
Poorter H, Niinemets Ü, Ntagkas N, Siebenkäs A, Mäenpää M, Matsubara S, Pons T (2019). A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, 223, 1073-1105.
DOI URL |
[30] |
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
DOI URL |
[31] |
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[32] |
Reich PB, Flores-Moreno H (2017). Peeking beneath the hood of the leaf economics spectrum. New Phytologist, 214, 1395-1397.
DOI URL |
[33] |
Roderick ML, Berry SL, Noble IR (2000). A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Functional Ecology, 14, 423-437.
DOI URL |
[34] |
Runions A, Tsiantis M, Prusinkiewicz P (2017). A common developmental program can produce diverse leaf shapes. New Phytologist, 216, 401-418.
DOI PMID |
[35] |
Schulze ED, Kelliher FM, Körner C, Lloyd J, Leuning R (1994). Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annual Review of Ecology and Systematics, 25, 629-662.
DOI URL |
[36] |
Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006). Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Journal of Experimental Botany, 57, 343-354.
PMID |
[37] |
Walker AP, McCormack ML, Messier J, Myers-Smith IH, Wullschleger SD (2017). Trait covariance: the functional warp of plant diversity? New Phytologist, 216, 976-980.
DOI URL |
[38] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
PMID |
[39] |
Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
DOI URL |
[40] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[41] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee TL, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[42] |
Wu BD, Liu J, Jiang K, Zhou JW, Wang CY (2019). Differences in leaf functional traits between simple and compound leaves of Canavalia maritime. Polish Journal of Environmental Studies, 28, 1425-1432.
DOI URL |
[43] |
Yang D, Zhang YJ, Song J, Niu CY, Hao GY (2019). Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China. Tree Physiology, 39, 729-739.
DOI PMID |
[44] | You WJ, Zhang QF, Xia L (2008). Responses of leaf structure of urban greening plants to different light conditions. Journal of Northwest Forestry University, 23, 22-25. |
[游文娟, 张庆费, 夏檑 (2008). 城市绿化植物叶片结构对光强的响应. 西北林学院学报, 23, 22-25.] | |
[45] | Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica, 28, 844-852. |
[张林, 罗天祥 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.]
DOI |
|
[46] |
Zhao YT, Ali A, Yan ER (2017). The plant economics spectrum is structured by leaf habits and growth forms across subtropical species. Tree Physiology, 37, 173-185.
DOI PMID |
[1] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[2] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[3] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[4] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[5] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[6] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[7] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[8] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[9] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[10] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[11] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[12] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[13] | 秦天姿, 任安芝, 樊晓雯, 高玉葆. 内生真菌种类和母本基因型对内生真菌-禾草共生体叶形状和叶面积的影响[J]. 植物生态学报, 2020, 44(6): 654-660. |
[14] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[15] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19