植物生态学报 ›› 2020, Vol. 44 ›› Issue (10): 1040-1049.DOI: 10.17521/cjpe.2020.0119
陈国鹏1,*(), 杨克彤1, 王立1, 王飞2, 曹秀文2, 陈林生3
收稿日期:
2020-04-24
接受日期:
2020-08-22
出版日期:
2020-10-20
发布日期:
2020-11-02
通讯作者:
陈国鹏
作者简介:
*陈国鹏:ORCID:0000-0002-3854-8755,chgp1986@gmail.com 基金资助:
CHEN Guo-Peng1,*(), YANG Ke-Tong1, WANG Li1, WANG Fei2, CAO Xiu-Wen2, CHEN Lin-Sheng3
Received:
2020-04-24
Accepted:
2020-08-22
Online:
2020-10-20
Published:
2020-11-02
Contact:
CHEN Guo-Peng
Supported by:
摘要:
生物量分配模式影响着植物个体生长和繁殖到整个群落的质量和能量流动等所有层次的功能, 揭示高寒灌丛的生物量分配模式不仅可以掌握植物的生活史策略, 而且对理解灌丛碳汇不确定性具有重要意义。该研究以甘肃南部高山-亚高山区的常绿灌丛——杜鹃(Rhododendron spp.)灌丛的7个典型种为对象, 采用全株收获法研究了不同物种个体水平上各器官生物量的分配比例和异速生长关系。结果表明: 7种高寒杜鹃根、茎、叶生物量的分配平均比例为35.57%、45.61%和18.83%, 各器官生物量分配比例的物种差异显著; 7种高寒杜鹃的叶与茎、叶与根、茎与根以及地上生物量与地下生物量之间既有异速生长关系, 也有等速生长关系, 异速生长指数不完全支持生态代谢理论和小个体等速生长理论的参考值; 各器官异速生长关系的物种差异显著。结合最优分配理论和异速生长理论能更好地解释陇南山地7种高寒杜鹃生物量的变异及适应机制。
陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系. 植物生态学报, 2020, 44(10): 1040-1049. DOI: 10.17521/cjpe.2020.0119
CHEN Guo-Peng, YANG Ke-Tong, WANG Li, WANG Fei, CAO Xiu-Wen, CHEN Lin-Sheng. Allometric relations for biomass partitioning of seven alpine Rhododendron species in south of Gansu. Chinese Journal of Plant Ecology, 2020, 44(10): 1040-1049. DOI: 10.17521/cjpe.2020.0119
编号No. | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 坡向 Aspect | 坡度 Slope (°) | 地点 Site | 优势种 Dominant species | 盖度 Coverage (%) | 密度 Density (individual·m-2) | 平均基径 Mean BD (mm) | 平均株高 Mean PH (cm) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 33.72° | 104.09° | 3 488 | 东北 Northeast | 43 | 洋布梁 Yangbuliang | 黄毛杜鹃 R. rufum | 100 | 2.36 | 55.32 | 256.95 |
2 | 33.75° | 104.15° | 2 810 | 东 East | 28 | 烧哈沟脑 Shaohagounao | 美容杜鹃、山光杜鹃、岷江冷杉、太白杜鹃、橿子栎、峨眉蔷薇 R. calophytum, R. oreodoxa, Abies faxoniana, R. taibaiense, Quercus baronii, Rosa omeiensis | 65 | 0.45 | 71.34 | 259.13 |
3 | 33.00° | 104.14° | 2 766 | 西北 Northwest | 33 | 人命池沟 Renmingchigou | 美容杜鹃、山光杜鹃、岷江冷杉、糙皮桦 Rhododendron. calophytum, R. oreodoxa, Abies faxoniana, Betula utilis | 55 | 4.05 | 19.67 | 208.15 |
4 | 33.71° | 104.05° | 3 488 | 东南 Southeast | 12 | 八小号 Baxiaohao | 黄毛杜鹃、头花杜鹃、高山柳 R. rufum, R. capitatum, Salix cupularis | 95 | 4.84 | 15.51 | 52.26 |
5 | 33.71° | 104.05° | 3 494 | 东南 Southeast | 9 | 八小号 Baxiaohao | 陇蜀杜鹃、头花杜鹃、金露梅、高山柳 R. przewalskii, R. capitatum, Potentilla fruticosa, Salix cupularis | 95 | 9.04 | 10.68 | 107.79 |
6 | 33.69° | 104.05° | 3 517 | 东 East | 44 | 青砂梁 Qingshaliang | 陇蜀杜鹃、头花杜鹃 R. przewalskii, R. capitatum | 100 | 12.34 | 13.32 | 56.32 |
7 | 33.34° | 104.50° | 3 693 | 东 East | 36 | 扎尕梁 Zhagaliang | 陇蜀杜鹃、头花杜鹃 R. przewalskii, R. capitatum | 66 | 8.58 | 8.72 | 38.42 |
8 | 33.35° | 104.50° | 3 605 | 东 East | 38 | 扎尕梁 Zhagaliang | 陇蜀杜鹃、头花杜鹃、高山柳 R. przewalskii, R. capitatum, Salix cupularis | 88 | 7.66 | 22.35 | 106.58 |
9 | 33.36° | 104.52° | 3 151 | 北 North | 15 | 扎尕梁 Zhagaliang | 岷江冷杉、山光杜鹃、麻花杜鹃 Abies faxoniana, R. oreodoxa, R. mcauliferum | 60 | 3.65 | 35.57 | 183.36 |
表1 甘肃南部7种高寒杜鹃的样方信息
Table 1 Information for samples of seven alpine Rhododendron species in south of Gansu
编号No. | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 坡向 Aspect | 坡度 Slope (°) | 地点 Site | 优势种 Dominant species | 盖度 Coverage (%) | 密度 Density (individual·m-2) | 平均基径 Mean BD (mm) | 平均株高 Mean PH (cm) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 33.72° | 104.09° | 3 488 | 东北 Northeast | 43 | 洋布梁 Yangbuliang | 黄毛杜鹃 R. rufum | 100 | 2.36 | 55.32 | 256.95 |
2 | 33.75° | 104.15° | 2 810 | 东 East | 28 | 烧哈沟脑 Shaohagounao | 美容杜鹃、山光杜鹃、岷江冷杉、太白杜鹃、橿子栎、峨眉蔷薇 R. calophytum, R. oreodoxa, Abies faxoniana, R. taibaiense, Quercus baronii, Rosa omeiensis | 65 | 0.45 | 71.34 | 259.13 |
3 | 33.00° | 104.14° | 2 766 | 西北 Northwest | 33 | 人命池沟 Renmingchigou | 美容杜鹃、山光杜鹃、岷江冷杉、糙皮桦 Rhododendron. calophytum, R. oreodoxa, Abies faxoniana, Betula utilis | 55 | 4.05 | 19.67 | 208.15 |
4 | 33.71° | 104.05° | 3 488 | 东南 Southeast | 12 | 八小号 Baxiaohao | 黄毛杜鹃、头花杜鹃、高山柳 R. rufum, R. capitatum, Salix cupularis | 95 | 4.84 | 15.51 | 52.26 |
5 | 33.71° | 104.05° | 3 494 | 东南 Southeast | 9 | 八小号 Baxiaohao | 陇蜀杜鹃、头花杜鹃、金露梅、高山柳 R. przewalskii, R. capitatum, Potentilla fruticosa, Salix cupularis | 95 | 9.04 | 10.68 | 107.79 |
6 | 33.69° | 104.05° | 3 517 | 东 East | 44 | 青砂梁 Qingshaliang | 陇蜀杜鹃、头花杜鹃 R. przewalskii, R. capitatum | 100 | 12.34 | 13.32 | 56.32 |
7 | 33.34° | 104.50° | 3 693 | 东 East | 36 | 扎尕梁 Zhagaliang | 陇蜀杜鹃、头花杜鹃 R. przewalskii, R. capitatum | 66 | 8.58 | 8.72 | 38.42 |
8 | 33.35° | 104.50° | 3 605 | 东 East | 38 | 扎尕梁 Zhagaliang | 陇蜀杜鹃、头花杜鹃、高山柳 R. przewalskii, R. capitatum, Salix cupularis | 88 | 7.66 | 22.35 | 106.58 |
9 | 33.36° | 104.52° | 3 151 | 北 North | 15 | 扎尕梁 Zhagaliang | 岷江冷杉、山光杜鹃、麻花杜鹃 Abies faxoniana, R. oreodoxa, R. mcauliferum | 60 | 3.65 | 35.57 | 183.36 |
图1 甘肃南部7种高寒杜鹃生物量分配特征。A, 黄毛杜鹃。B, 陇蜀杜鹃。C, 美容杜鹃。D, 山光杜鹃。E, 太白杜鹃。F, 头花杜鹃。G, 麻花杜鹃。H, 所有物种。PLB, 叶生物量所占比例。PSB, 茎生物量所占比例。PRB, 根生物量所占比例。
Fig. 1 Biomass allocation for seven alpine Rhododendron species in south of Gansu. A, R. rufum. B, R. przewalskii. C, R. calophytum. D, R. oreodoxa. E, R. taibaiense. F, R. capitatum. G, R. maculiferum. H, Rhododendron spp. PLB, percent of leaf biomass. PSB, percent of stem biomass. PRB, percent of root biomass.
种 Species | 根生物量 Root biomass | 茎生物量 Stem biomass | 叶生物量 Leaf biomass | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
B | * | * | ns | |||||||||||||||
C | ns | ns | * | * | * | * | ||||||||||||
D | ns | * | ns | * | * | * | * | ns | * | |||||||||
E | ns | ns | ns | ns | ns | * | * | * | ns | ns | * | ns | ||||||
F | ns | ns | ns | ns | ns | ns | ns | * | * | ns | ns | ns | * | * | ns | |||
G | ns | * | ns | ns | ns | ns | ns | * | * | ns | ns | ns | ns | ns | * | * | * | ns |
表2 甘肃南部7种高寒杜鹃不同器官生物量分配的多重比较
Table 2 Multiple comparison of the biomass allocation of different organs for seven alpine Rhododendron species in south of Gansu
种 Species | 根生物量 Root biomass | 茎生物量 Stem biomass | 叶生物量 Leaf biomass | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
B | * | * | ns | |||||||||||||||
C | ns | ns | * | * | * | * | ||||||||||||
D | ns | * | ns | * | * | * | * | ns | * | |||||||||
E | ns | ns | ns | ns | ns | * | * | * | ns | ns | * | ns | ||||||
F | ns | ns | ns | ns | ns | ns | ns | * | * | ns | ns | ns | * | * | ns | |||
G | ns | * | ns | ns | ns | ns | ns | * | * | ns | ns | ns | ns | ns | * | * | * | ns |
图2 甘肃南部7种高寒杜鹃叶生物量(BL)与茎生物量(BS)的回归关系。A, 黄毛杜鹃。B, 陇蜀杜鹃。C, 美容杜鹃。D, 山光杜鹃。E, 太白杜鹃。F, 头花杜鹃。G, 麻花杜鹃。H, 所有物种。CI, 置信区间。
Fig. 2 Regression relationships between the leaf biomass (BL) and stem biomass (BS) for seven alpine Rhododendron species in south of Gansu. A, R. rufum. B, R. przewalskii. C, R. calophytum. D, R. oreodoxa. E, R. taibaiense. F, R. capitatum. G, R. maculiferum. H, Rhododendron spp. CI, confidence interval.
树种 Speices | logBL vs. logBS | logBL vs. logBR | logBS vs. logBR | logBA vs. logBR | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
B | ns | ** | ** | ** | ||||||||||||||||||||
C | ns | ns | ** | ** | ** | ** | ** | ** | ||||||||||||||||
D | * | * | ns | ** | ** | ns | * | ** | ** | ** | ** | ** | ||||||||||||
E | ** | * | ** | ** | ns | ** | ** | ** | ** | ** | ns | * | ** | ** | ** | ns | ||||||||
F | ** | ** | ** | ** | * | ** | ns | ** | ** | ** | ns | ** | ** | ns | ** | ns | ** | ** | ** | ** | ||||
G | ** | * | ** | ** | ns | ns | ** | ns | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** |
表3 甘肃南部7种高寒杜鹃地上地下生物量异速生长指数的多重比较
Table 3 Multiple comparison of allometric slopes between above- and below-ground biomass for seven alpine Rhododendron species in south of Gansu
树种 Speices | logBL vs. logBS | logBL vs. logBR | logBS vs. logBR | logBA vs. logBR | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
B | ns | ** | ** | ** | ||||||||||||||||||||
C | ns | ns | ** | ** | ** | ** | ** | ** | ||||||||||||||||
D | * | * | ns | ** | ** | ns | * | ** | ** | ** | ** | ** | ||||||||||||
E | ** | * | ** | ** | ns | ** | ** | ** | ** | ** | ns | * | ** | ** | ** | ns | ||||||||
F | ** | ** | ** | ** | * | ** | ns | ** | ** | ** | ns | ** | ** | ns | ** | ns | ** | ** | ** | ** | ||||
G | ** | * | ** | ** | ns | ns | ** | ns | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** |
图3 甘肃南部7种高寒杜鹃叶生物量(BL)与根生物量(BR)的回归关系。A, 黄毛杜鹃。B, 陇蜀杜鹃。C, 美容杜鹃。D, 山光杜鹃。E, 太白杜鹃。F, 头花杜鹃。G, 麻花杜鹃。H, 所有物种。CI, 置信区间。
Fig. 3 Regression relationships between the leaf biomass (BL) and root biomass (BR) for seven alpine Rhododendron species in south of Gansu. A, R. rufum. B, R. przewalskii. C, R. calophytum. D, R. oreodoxa. E, R. taibaiense. F, R. capitatum. G, R. maculiferum. H, Rhododendron spp. CI, confidence interval.
图4 甘肃南部7种高寒杜鹃茎生物量(BS)与根生物量(BR)的回归关系。A, 黄毛杜鹃。B, 陇蜀杜鹃。C, 美容杜鹃。D, 山光杜鹃。E, 太白杜鹃。F, 头花杜鹃。G, 麻花杜鹃。H, 所有物种。CI, 置信区间。
Fig. 4 Regression relationships between the stem biomass (BS) and root biomass (BR) for seven alpine Rhododendron species in south of Gansu. A, R. rufum. B, R. przewalskii. C, R. calophytum. D, R. oreodoxa. E, R. taibaiense. F, R. capitatum. G, R. maculiferum. H, Rhododendron spp. CI, confidence interval.
图5 甘肃南部7种高寒杜鹃地上生物量(BA)与根生物量(BR)的回归关系。A, 黄毛杜鹃。B, 陇蜀杜鹃。C, 美容杜鹃。D, 山光杜鹃。E, 太白杜鹃。F, 头花杜鹃。G, 麻花杜鹃。H, 所有物种。CI, 置信区间。
Fig. 5 Regression relationships of aboveground biomass (BA) and root biomass (BR) for seven alpine Rhododendron species in south of Gansu. A, R. rufum. B, R. przewalskii. C, R. calophytum. D, R. oreodoxa. E, R. taibaiense. F, R. capitatum. G, R. maculiferum. H, Rhododendron spp. CI, confidence interval.
[1] | Bloom AJ, Chapin III FS, Mooney HA (1985). Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics, 16, 363-392. |
[2] | Chen GP, Zhao WZ (2016). Effects of age classes on metabolic exponents of Salix psammophila branches. Chinese Journal of Applied Ecology, 27, 1870-1876. |
[ 陈国鹏, 赵文智 (2016). 沙柳丛生枝代谢指数的龄级效应. 应用生态学报, 27, 1870-1876.] | |
[3] | Chen GP, Zhao WZ, He SX, Fu X (2016). Biomass allocation and allometric relationship in aboveground components of Salix psammophila branches. Journal of Desert Research, 36, 357-363. |
[ 陈国鹏, 赵文智, 何世雄, 付晓 (2016). 沙柳(Salix psammophila)丛生枝生物量最优分配与异速生长. 中国沙漠, 36, 357-363.] | |
[4] | Cheng DL, Ma YZ, Zhong QL, Xu WF (2014). Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings. Ecology and Evolution, 4, 3968-3977. |
[5] | Cheng DL, Niklas KJ (2007). Above- and below-ground biomass relationships across 1534 forested communities. Annals of Botany, 99, 95-102. |
[6] | Dybzinski R, Farrior C, Wolf A, Reich PB, Pacala SW (2011). Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. The American Naturalist, 177, 153-166. |
[7] | Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520. |
[8] | Gao Q, Yang XC, Yin CY, Liu Q (2014). Estimation of biomass allocation and carbon density in alpine dwarf shrubs in Garzê Zangzu Autonomous Prefecture of Sichuan Province, China. Chinese Journal of Plant Ecology, 38, 355-365. |
[ 高巧, 阳小成, 尹春英, 刘庆 (2014). 四川省甘孜藏族自治州高寒矮灌丛生物量分配及其碳密度的估算. 植物生态学报, 38, 355-365.] | |
[9] | Gargaglione V, Peri PL, Rubio G (2010). Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. Forest Ecology and Management, 259, 1118-1126. |
[10] | Gleeson SK, Tilman D (1990). Allocation and the transient dynamics of succession on poor soils. Ecology, 71, 1144-1155. |
[11] | Liu ZC, Liu HF, Zhao D, Luo N, Sun YY, Hao XR, Liu T (2015). Influence of altitude and difference of different- sized individuals on reproductive allocation in Salsola affinis C. A. Mey. and Salsola nitraria Pall. Acta Ecologica Sinica, 35, 5957-5965. |
[ 刘尊驰, 刘华峰, 赵丹, 罗宁, 孙园园, 郝晓冉, 刘彤 (2015). 紫翅猪毛菜、钠猪毛菜不同个体大小繁殖分配差异及随海拔的变化. 生态学报, 35, 5957-5965.] | |
[12] | Luo YJ, Wang XK, Zhang XQ, Booth TH, Lu F (2012). Root: shoot ratios across China’s forests: forest type and climatic effects. Forest Ecology and Management, 269, 19-25. |
[13] | McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21, 713-720. |
[14] | Müller I, Schmid B, Weiner J (2000). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 115-127. |
[15] | Niklas KJ (2005). Modelling below- and above-ground biomass for non-woody and woody plants. Annals of Botany, 95, 315-321. |
[16] | Niklas KJ (2006). A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytologist, 171, 27-40. |
[17] | Niklas KJ, Enquist BJ (2002a). Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany, 89, 812-819. |
[18] | Niklas KJ, Enquist BJ (2002b). On the vegetative biomass partitioning of seed plant leaves, stems, and roots. The American Naturalist, 159, 482-497. |
[19] | Poorter H, Jagodzinski AM, Ruiz-Peinado R, Kuyah S, Luo YJ, Oleksyn J, Usoltsev VA, Buckley TN, Reich PB, Sack L (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 208, 736-749. |
[20] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. |
[21] | Poorter H, Sack L (2012). Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Frontiers in Plant Science, 3, 259-269. |
[22] | Reich PB, Luo YJ, Bradford JB, Poorter H, Perry CH, Oleksyn J (2014). Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences of the United States of America, 111, 13721-13726. |
[23] | Tao Y, Zhang YM (2014). Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China. Acta Prataculturae Sinica, 23, 38-48. |
[ 陶冶, 张元明 (2014). 准噶尔荒漠6种类短命植物生物量分配与异速生长关系. 草业学报, 23, 38-48.] | |
[24] | Veresoglou SD, Peñuelas J (2019). Variance in biomass- allocation fractions is explained by distribution in European trees. New Phytologist, 222, 1352-1363. |
[25] | Wang Y, Xu WT, Xiong GM, Li JX, Zhao CM, Lu ZJ, Li YL, Xie ZQ (2017). Biomass allocation patterns of Loropetalum chinense. Chinese Journal of Plant Ecology, 41, 105-114. |
[ 王杨, 徐文婷, 熊高明, 李家湘, 赵常明, 卢志军, 李跃林, 谢宗强 (2017). 檵木生物量分配特征. 植物生态学报, 41, 105-114.] | |
[26] | Wei J, Wu G, Deng HB (2004). Vegetation biomass distribution characteristics of alpine tundra ecosystem in Changbai Mountains. Chinese Journal of Applied Ecology, 15, 1999-2004. |
[ 魏晶, 吴钢, 邓红兵 (2004). 长白山高山冻原植被生物量的分布规律. 应用生态学报, 15, 1999-2004.] | |
[27] | Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[28] | West GB, Brown JH, Enquist BJ (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122-126. |
[29] |
West GB, Brown JH, Enquist BJ (1999). A general model for the structure and allometry of plant vascular systems. Nature, 400, 664-667.
DOI URL |
[30] | Xu B, Wang JN, Shi FS, Gao J, Wu N (2013). Adaptation of biomass allocation patterns of wild Fritillaria unibracteata to alpine environment in the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 37, 187-196. |
[ 徐波, 王金牛, 石福孙, 高景, 吴宁 (2013). 青藏高原东缘野生暗紫贝母生物量分配格局对高山生态环境的适应. 植物生态学报, 37, 187-196.] | |
[31] | Yan BG, Fan B, He GX, Shi LT, Pan ZX, Li JC, Yue XW, Liu GC (2016). Biomass allocations and their response to environmental factors for grass species in an arid-hot valley. Chinese Journal of Applied Ecology, 27, 3173-3181. |
[ 闫帮国, 樊博, 何光熊, 史亮涛, 潘志贤, 李建查, 岳学文, 刘刚才 (2016). 干热河谷草本植物生物量分配及其对环境因子的响应. 应用生态学报, 27, 3173-3181.] | |
[32] | Yang HT, Li XR, Liu LC, Jia RL, Wang ZR, Li XJ, Li G (2013). Biomass allocation patterns of four shrubs in desert grassland. Journal of Desert Research, 33, 1340-1348. |
[ 杨昊天, 李新荣, 刘立超, 贾荣亮, 王增如, 李小军, 李刚 (2013). 荒漠草地4种灌木生物量分配特征. 中国沙漠, 33, 1340-1348.] | |
[33] | Yang LC, Zhao YH, Xu WH, Zhou GY (2018). Species diversity, biomass, and their relationship in the alpine shrubberies of Qinghai Province. Acta Ecologica Sinica, 38, 309-315. |
[ 杨路存, 赵玉红, 徐文华, 周国英 (2018). 青海省高寒灌丛物种多样性、生物量及其关系. 生态学报, 38, 309-315.] | |
[34] | Zhang Q, Li JX, Xu WT, Xiong GM, Xie ZQ (2017). Estimation of biomass allocation and carbon density of Rhododendron simsii shrubland in the subtropical mountainous areas of China. Chinese Journal of Plant Ecology, 41, 43-52. |
[ 张蔷, 李家湘, 徐文婷, 熊高明, 谢宗强 (2017). 中国亚热带山地杜鹃灌丛生物量分配及其碳密度估算. 植物生态学报, 41, 43-52.] | |
[35] | Zhong ZB, Yang LC, Liu HC, Song WZ, Li F, Zhou GY (2014). The main shrubs aboveground biomass and effect factors in Yushu, Qinghai, China. Mountain Research, 32, 678-684. |
[ 钟泽兵, 杨路存, 刘何春, 宋文珠, 李璠, 周国英 (2014). 青海玉树地区主要灌丛类型地上生物量及其影响因素. 山地学报, 32, 678-684.] | |
[36] | Zuo YL, Wang ZM, Xi XQ, Xiang S, Sun SC (2018). Plant biomass allocation strategies of the dominant species in an alpine meadow of northwestern Sichuan, China. Chinese Journal of Applied Environmental Biology, 24, 1195-1203. |
[ 左有璐, 王振孟, 习新强, 向双, 孙书存 (2018). 川西北高寒草甸优势植物生物量分配对策. 应用与环境生物学报, 24, 1195-1203.] |
[1] | 李变变 张凤华 赵亚光 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢以及生物量的影响[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[3] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[4] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[5] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[6] | 于水今, 王娟, 张春雨, 赵秀海. 温带针阔混交林生物量稳定性影响机制[J]. 植物生态学报, 2022, 46(6): 632-641. |
[7] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[8] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[9] | 张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响[J]. 植物生态学报, 2022, 46(4): 428-439. |
[10] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[11] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[12] | 李红琴 张亚茹 张法伟 马文婧 罗方林 王春雨 杨永胜 张雷明 李英年. 增强回归树模型在青藏高原高寒灌丛通量数据插补中的应用[J]. 植物生态学报, 2022, 46(12): 1437-1447. |
[13] | 黄侩侩 胡刚 庞庆玲 张贝 何业涌 胡聪 徐超昊 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[14] | 刘秋蓉 李丽 罗垚 陈冬东 黄鑫 胡君 刘庆. 四川巴塘海子山高寒灌丛群落的基本特征[J]. 植物生态学报, 2022, 46(11): 1334-1341. |
[15] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19