植物生态学报 ›› 2023, Vol. 47 ›› Issue (6): 867-881.DOI: 10.17521/cjpe.2022.0216
罗娜娜1,2, 盛茂银1,3,*(), 王霖娇1,2, 石庆龙1,3, 何宇1,3
收稿日期:
2022-05-24
接受日期:
2022-10-18
出版日期:
2023-06-20
发布日期:
2022-10-18
通讯作者:
* ORCID:盛茂银: 0000-0002-4973-2590, (基金资助:
LUO Na-Na1,2, SHENG Mao-Yin1,3,*(), WANG Lin-Jiao1,2, SHI Qing-Long1,3, HE Yu1,3
Received:
2022-05-24
Accepted:
2022-10-18
Online:
2023-06-20
Published:
2022-10-18
Contact:
* (Supported by:
摘要:
为揭示中国西南喀斯特石漠化植被恢复对土壤活性有机碳组分含量和酶活性的影响, 该研究开展了土壤总有机碳含量、活性有机碳组分(微生物生物量碳、可溶性有机碳、易氧化有机碳)含量以及4种土壤酶(脲酶、蔗糖酶、淀粉酶、碱性磷酸酶)活性对7种典型的植被恢复措施(柏木(Cupressus funebris)种植、柚木(Tectona grandis)种植、花椒(Zanthoxylum bungeanum)种植、量天尺(火龙果, Hylocereus undatus)种植、忍冬(金银花, Lonicera japonica)种植、皇竹草(Pennisetum sinese)种植和砂仁(Amomum villosum)种植)的响应研究。结果显示: 1)植被恢复明显改善了喀斯特石漠化土壤总有机碳的分布和积累, 显著改变了土壤活性有机碳各组分的含量及其在土壤总有机碳含量中的占比。不同植被恢复措施对土壤总有机碳和活性有机碳各组分含量的影响明显不同。柏木和金银花种植的土壤总有机碳含量和储量较高, 而草地建设的2种措施(皇竹草和砂仁种植)的土壤总有机碳含量和储量最低。柏木和金银花种植的土壤易氧化有机碳和微生物生物量碳含量较高, 而花椒种植的土壤可溶性有机碳含量较高。2) 7种植被恢复措施均不同程度地明显提升了土壤淀粉酶、碱性磷酸酶、脲酶和蔗糖酶的活性。但不同酶活性对植被恢复措施的响应规律明显不同。除花椒种植外, 其余6种植被恢复措施的土壤脲酶活性均显著大于对照样地。除皇竹草种植外, 其余6种植被恢复措施的土壤蔗糖酶和碱性磷酸酶活性均显著大于对照样地。而7种恢复措施中, 仅有柏木种植的土壤淀粉酶活性显著高于对照样地。3) 4种土壤酶活性与土壤总有机碳和活性有机碳各组分含量的相关性明显不同。淀粉酶和碱性磷酸酶活性与土壤总有机碳和活性有机碳各组分含量的相关性明显高于脲酶和蔗糖酶。土壤碱性磷酸酶和淀粉酶活性与喀斯特石漠化土壤有机碳积累矿化、活性有机碳组分形成与转换密切相关。
罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响. 植物生态学报, 2023, 47(6): 867-881. DOI: 10.17521/cjpe.2022.0216
LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China. Chinese Journal of Plant Ecology, 2023, 47(6): 867-881. DOI: 10.17521/cjpe.2022.0216
图1 花江研究区植被恢复样地位置图。BM, 柏木种植; CK, 对照样地; HJ, 花椒种植; HLG, 火龙果种植; HZC, 皇竹草种植; JYH, 金银花种植; SR, 砂仁种植; YM, 柚木种植。
Fig. 1 Vegetation restoration plots location and basic information of Huajiang study area. BM, Cupressus funebris planting; CK, control plot; HJ, Zanthoxylum bungeanum planting; HLG, Hylocereus undatus planting; HZC, Pennisetum sinese planting; JYH, Lonicera japonica planting; SR, Amomum villosum planting; YM, Tectona grandis planting.
图2 西南喀斯特石漠化不同植被恢复措施的土壤总有机碳含量(A)和储量(B) (平均值±标准差)。CK, 对照样地; HJ, 花椒种植; HLG, 火龙果种植; HZC, 皇竹草种植; JYH, 金银花种植; SR, 砂仁种植; YM, 柚木种植。不同大写字母表示同一土层中不同植被恢复措施的差异显著(p < 0.05), 不同小写字母表示同一植被恢复措施不同土层的差异显著(p < 0.05)。
Fig. 2 Soil total organic carbon contents (A) and storages (B) of the different vegetation restoration measures in the karst rocky desertification ecosystem, southwest China (mean ± SD). BM, Cupressus funebris planting; CK, control plot; HJ, Zanthoxylum bungeanum planting; HLG, Hylocereus undatus planting; HZC, Pennisetum sinese planting; JYH, Lonicera japonica planting; SR, Amomum villosum planting; YM, Tectona grandis planting. Different uppercase letters indicate significant differences (p < 0.05) between different vegetation restoration measures in the same soil layer, and different lowercase letters indicate significant differences (p < 0.05) between different soil layers of the same vegetation restoration measure.
图3 西南喀斯特石漠化不同植被恢复措施的土壤活性有机碳组分含量(A-C)及其在土壤总有机碳含量中的占比(D-F) (平均值±标准差)。DOC, 可溶性有机碳含量; EOC, 易氧化有机碳含量; MBC, 微生物生物量碳含量; TSOC, 土壤总有机碳含量。BM, 柏木种植; CK, 对照样地; HJ, 花椒种植; HLG, 火龙果种植; HZC, 皇竹草种植; JYH, 金银花种植; SR, 砂仁种植; YM, 柚木种植。不同大写字母表示同一土层中不同植被恢复措施的差异显著(p < 0.05), 不同小写字母表示同一植被恢复措施不同土层的差异显著(p < 0.05)。
Fig. 3 Soil active organic carbon fraction contents (A-C) and their proportions (D-F) to total soil organic carbon content (TSOC) of the different vegetation restorations in the karst rocky desertification ecosystem, southwest China (mean ± SD). DOC, dissolved organic carbon content; EOC, easy oxidation carbon content; MBC, microbial biomass carbon content; TSOC, total soil organic carbon content. BM, Cupressus funebris planting; CK, control plot; HJ, Zanthoxylum bungeanum planting; HLG, Hylocereus undatus planting; HZC, Pennisetum sinese planting; JYH, Lonicera japonica planting; SR, Amomum villosum planting; YM, Tectona grandis planting. Different uppercase letters indicate significant differences (p < 0.05) between different vegetation restoration measures in the same soil layer, and different lowercase letters indicate significant differences (p < 0.05) between different soil layers of the same vegetation restoration measure.
图4 西南喀斯特石漠化不同植被恢复措施的土壤酶活性(平均值±标准差)。BM, 柏木种植; CK, 对照样地; HJ, 花椒种植; HLG, 火龙果种植; HZC, 皇竹草种植; JYH, 金银花种植; SR, 砂仁种植; YM, 柚木种植。不同大写字母表示不同植被恢复措施间酶活性的差异显著(p < 0.05)。
Fig. 4 Soil enzyme activities of the different vegetation restorations in the karst rocky desertification ecosystem, southwest China (mean ± SD). BM, Cupressus funebris planting; CK, control plot; HJ, Zanthoxylum bungeanum planting; HLG, Hylocereus undatus planting; HZC, Pennisetum sinese planting; JYH, Lonicera japonica planting; SR, Amomum villosum planting; YM, Tectona grandis planting. Different uppercase letters indicate significant differences (p < 0.05) of enzyme activity between different restorations.
酶活性 Enzyme activity | pH | BD | TN | TP | TSOC | DOC | EOC | MBC | DOC/TSOC | EOC/TSOC | MBC/TSOC |
---|---|---|---|---|---|---|---|---|---|---|---|
URE | 0.489* | 0.365 | -0.070 | -0.240 | 0.051 | -0.264 | 0.074 | 0.300 | 0.111 | -0.070 | 0.327 |
SUC | -0.054 | 0.113 | 0.078 | -0.202 | 0.029 | 0.219 | -0.036 | 0.054 | -0.035 | -0.209 | 0.120 |
AMY | 0.155 | -0.194 | 0.317 | 0.106 | 0.541** | -0.293 | 0.599** | 0.501* | -0.465* | 0.268 | 0.007 |
ALP | 0.260 | -0.255 | 0.504* | 0.151 | 0.696** | -0.235 | 0.680** | 0.749** | -0.648** | 0.026 | 0.119 |
表2 西南喀斯特石漠化土壤酶活性与土壤总有机碳和活性有机碳组分含量等土壤理化性质间的相关性
Table 2 Correlations of the soil enzyme activities with soil physical-chemical properties including contents of soil total organic carbon and its active fractions in the karst rocky desertification ecosystem, southwest China
酶活性 Enzyme activity | pH | BD | TN | TP | TSOC | DOC | EOC | MBC | DOC/TSOC | EOC/TSOC | MBC/TSOC |
---|---|---|---|---|---|---|---|---|---|---|---|
URE | 0.489* | 0.365 | -0.070 | -0.240 | 0.051 | -0.264 | 0.074 | 0.300 | 0.111 | -0.070 | 0.327 |
SUC | -0.054 | 0.113 | 0.078 | -0.202 | 0.029 | 0.219 | -0.036 | 0.054 | -0.035 | -0.209 | 0.120 |
AMY | 0.155 | -0.194 | 0.317 | 0.106 | 0.541** | -0.293 | 0.599** | 0.501* | -0.465* | 0.268 | 0.007 |
ALP | 0.260 | -0.255 | 0.504* | 0.151 | 0.696** | -0.235 | 0.680** | 0.749** | -0.648** | 0.026 | 0.119 |
因子 Factor | 主成分 Principal component | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
URE | 0.000 | 0.725 | -0.332 | -0.061 |
SUC | -0.024 | -0.016 | 0.856 | -0.248 |
AMY | 0.589 | 0.514 | -0.191 | 0.168 |
ALP | 0.706 | 0.557 | 0.262 | -0.053 |
TSOC | 0.985 | 0.019 | 0.047 | -0.045 |
DOC | -0.228 | -0.382 | 0.506 | 0.502 |
MBC | 0.613 | 0.579 | 0.296 | 0.228 |
EOC | 0.970 | 0.056 | -0.026 | 0.131 |
TN | 0.870 | -0.188 | 0.098 | -0.278 |
TP | 0.651 | -0.541 | -0.064 | 0.072 |
pH | -0.215 | 0.754 | -0.021 | -0.148 |
BD | -0.737 | 0.433 | -0.022 | -0.236 |
DOC/TSOC | -0.907 | -0.044 | 0.036 | 0.198 |
MBC/TSOC | -0.386 | 0.675 | 0.370 | 0.308 |
EOC/TSOC | 0.134 | 0.046 | -0.213 | 0.823 |
特征向量值 Eigenvalue | 5.947 | 3.129 | 1.492 | 1.391 |
贡献率率 Contribution percent (%) | 39.647 | 20.859 | 9.948 | 9.276 |
累计贡献率 Cumulative percent (%) | 39.647 | 60.506 | 70.455 | 79.731 |
表3 西南喀斯特石漠化土壤环境因子对长期植被恢复响应的主成分分析
Table 3 Principal component analysis for the response of karst rocky desertification soil environmental factors to long-term vegetation restorations in southwest China
因子 Factor | 主成分 Principal component | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
URE | 0.000 | 0.725 | -0.332 | -0.061 |
SUC | -0.024 | -0.016 | 0.856 | -0.248 |
AMY | 0.589 | 0.514 | -0.191 | 0.168 |
ALP | 0.706 | 0.557 | 0.262 | -0.053 |
TSOC | 0.985 | 0.019 | 0.047 | -0.045 |
DOC | -0.228 | -0.382 | 0.506 | 0.502 |
MBC | 0.613 | 0.579 | 0.296 | 0.228 |
EOC | 0.970 | 0.056 | -0.026 | 0.131 |
TN | 0.870 | -0.188 | 0.098 | -0.278 |
TP | 0.651 | -0.541 | -0.064 | 0.072 |
pH | -0.215 | 0.754 | -0.021 | -0.148 |
BD | -0.737 | 0.433 | -0.022 | -0.236 |
DOC/TSOC | -0.907 | -0.044 | 0.036 | 0.198 |
MBC/TSOC | -0.386 | 0.675 | 0.370 | 0.308 |
EOC/TSOC | 0.134 | 0.046 | -0.213 | 0.823 |
特征向量值 Eigenvalue | 5.947 | 3.129 | 1.492 | 1.391 |
贡献率率 Contribution percent (%) | 39.647 | 20.859 | 9.948 | 9.276 |
累计贡献率 Cumulative percent (%) | 39.647 | 60.506 | 70.455 | 79.731 |
图5 西南喀斯特石漠化土壤环境因子对长期植被恢复响应的主成分(PC)分析图。BD, 土壤密度; DOC, 可溶性有机碳含量; EOC, 易氧化有机碳含量; MBC, 微生物生物量碳含量; TN, 总氮含量; TP, 总磷含量; TSOC, 土壤总有机碳含量。ALP, 碱性磷酸酶活性; AMY, 淀粉酶活性; SUC, 蔗糖酶活性; URE, 脲酶活性。BM, 柏木种植; CK, 对照样地; HJ, 花椒种植; HLG, 火龙果种植; HZC, 皇竹草种植; JYH, 金银花种植; SR, 砂仁种植; YM, 柚木种植。
Fig. 5 Principal component (PC) analysis ordination for the response of karst rocky desertification soil environmental factors to long-term vegetation restorations in southwest China. BD, soil bulk density; DOC, dissolved organic carbon content; EOC, easy oxidation carbon content; MBC, microbial biomass carbon content; TN, total nitrogen content; TP, total phosphorus content; TSOC, total soil organic carbon content. ALP, alkaline phosphatase activity; AMY, amylase activity; SUC, sucrase activity; URE, urease activity. BM, Cupressus funebris planting; CK, control plot; HJ, Zanthoxylum bungeanum planting; HLG, Hylocereus undatus planting; HZC, Pennisetum sinese planting; JYH, Lonicera japonica planting; SR, Amomum villosum planting; YM, Tectona grandis planting.
[1] |
Bai LH, Zhang H, Zhang JG, Li X, Wang B, Miao HZ, Sial TA, Dong Q, Fu GJ, Li LM (2021). Long-term vegetation restoration increases carbon sequestration of different soil particles in a semi-arid desert. Ecosphere, 12, e03848. DOI: 10.1002/ecs2.3848.
DOI |
[2] | Bai YP, Li F, Yang G, Shi SW, Dong FQ, Liu MX, Nie XQ, Hai JB (2018). Meta-analysis of experimental warming on soil invertase and urease activities. Acta Agriculturae Scandinavica, Section B: Soil & Plant Science, 68, 104-109. |
[3] | Bai YX, Sheng MY, Hu QJ, Zhao C, Wu J, Zhang MS (2020). Effects of land use change on soil organic carbon and its components in karst rocky desertification of southwest China. Chinese Journal of Applied Ecology, 31, 1607-1616. |
[白义鑫, 盛茂银, 胡琪娟, 赵楚, 吴静, 张茂莎 (2020). 西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响. 应用生态学报, 31, 1607-1616.]
DOI |
|
[4] | Bao SD (2008). Agrochemical Analysis of Soil. 3rd ed. China Agriculture Press, Beijing. 157-170. |
[鲍士旦 (2008). 土壤农业化学分析方法. 3版. 中国农业科技出版社, 北京. 157-170.] | |
[5] |
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234.
DOI URL |
[6] | Cen LP, Yan YJ, Dai QH, Jiao Q, Hu G, Gao RX, Fu WB (2020). Occurrence characteristics of organic carbon and phosphorus in fissured soil under different land use types in karst area. Acta Ecologica Sinica, 40, 7567-7575. |
[岑龙沛, 严友进, 戴全厚, 焦权, 胡刚, 高儒学, 伏文兵 (2020). 喀斯特不同土地利用类型裂隙土壤有机碳及磷素赋存特征. 生态学报, 40, 7567-7575.] | |
[7] |
Chen XY, Zhang HJ, Yao XD, Zeng WJ, Wang W (2021). Latitudinal and depth patterns of soil microbial biomass carbon, nitrogen, and phosphorus in grasslands of an agro-pastoral ecotone. Land Degradation & Development, 32, 3833-3846.
DOI URL |
[8] |
Cressey EL, Dungait JAJ, Jones DL, Nicholas AP, Quine TA (2018). Soil microbial populations in deep floodplain soils are adapted to infrequent but regular carbon substrate addition. Soil Biology & Biochemistry, 122, 60-70.
DOI URL |
[9] |
de Aquino Moura RT, da Silva Carrido M, da Silva Sousa C, Menezes RSC, de Sá Barretto Sampaio EV (2018). Comparison of methods to quantify soil microbial biomass carbon. Acta Scientiarum Agronomy, 40, 39451. DOI: 10.4025/actasciagron.v40i1.39451.
DOI |
[10] |
Fan ZZ, Lu SY, Liu S, Li ZR, Hong JX, Zhou JX, Peng XW (2019). The effects of vegetation restoration strategies and seasons on soil enzyme activities in the karst landscapes of Yunnan, southwest China. Journal of Forestry Research, 31, 1949-1957.
DOI |
[11] |
Gu X, Fang X, Xiang WH, Zeng YL, Zhang SJ, Lei PF, Peng CH, Kuzyakov Y (2019). Vegetation restoration stimulates soil carbon sequestration and stabilization in a subtropical area of southern China. CATENA, 181, 104098. DOI: 10.1016/j.catena.2019.104098.
DOI |
[12] | Ha WX, Zhou JX, Pang DB, Guan YH, Cui M (2019). Soil organic carbon fraction and enzyme activities under different restoration methods in karst area. Journal of Beijing Forestry University, 41(2), 1-11. |
[哈文秀, 周金星, 庞丹波, 关颖慧, 崔明 (2019). 岩溶区不同恢复方式下土壤有机碳组分及酶活性研究. 北京林业大学学报, 41(2), 1-11.] | |
[13] |
He F, Wang H, Chen QL, Yang BS, Gao YC, Wang LH (2015). Short-term response of soil enzyme activity and soil respiration to repeated carbon nanotubes exposure. Soil and Sediment Contamination, 24, 250-261.
DOI URL |
[14] |
Hu LN, Li Q, Yan JH, Liu C, Zhong JX (2022). Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. Science of the Total Environment, 820, 153137. DOI: 10.1016/j.scitotenv.2022.153137.
DOI |
[15] |
Hu N, Lan JC (2020). Impact of vegetation restoration on soil organic carbon stocks and aggregates in a karst rocky desertification area in southwest China. Journal of Soils and Sediments, 20, 1264-1275.
DOI |
[16] |
Hu PL, Liu SJ, Ye YY, Zhang W, He XY, Su YR, Wang KL (2018). Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical karst region. Applied Soil Ecology, 132, 169-178.
DOI URL |
[17] |
Jiang ZC, Lian YQ, Qin XQ (2014). Rocky desertification in southwest China: impacts, causes, and restoration. Earth-Science Reviews, 132, 1-12.
DOI URL |
[18] |
Lan JC (2021). Responses of soil organic carbon components and their sensitivity to karst rocky desertification control measures in southwest China. Journal of Soils and Sediments, 21, 978-989.
DOI |
[19] |
Lino IAN, dos Santos VM, Escobar IEC, da Silva DKA, Maia LC (2016). Soil enzymatic activity in Eucalyptus grandis plantations of different ages. Land Degradation & Development, 27, 77-82.
DOI URL |
[20] |
Liu X, Guo KL, Huang L, Ji ZY, Jiang HM, Li H, Zhang JF (2017). Responses of absolute and specific enzyme activity to consecutive application of composted sewage sludge in a Fluventic Ustochrept. PLoS ONE, 12, 177796. DOI: 10.1371/journal.pone.e0177796.
DOI |
[21] | Liu XD, Chen L, Yang XG, Zhang YF, Zhao W, Li XB (2016). Characteristics of soil labile organic carbon fractions and their relationship with soil enzyme activities in four typical communities in desert steppe. Acta Botanica Boreali- Occidentalia Sinica, 36, 1882-1890. |
[刘学东, 陈林, 杨新国, 张义凡, 赵伟, 李学斌 (2016). 荒漠草原典型植物群落土壤活性有机碳组分特征及其与酶活性的关系. 西北植物学报, 36, 1882-1890.] | |
[22] | Luo MX, Hu ZD, Liu XL, Li YF, Hu J, Ou DH, Wu DY (2021). Characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan, China. Acta Ecologica Sinica, 41, 5632-5642. |
[罗明霞, 胡宗达, 刘兴良, 李亚非, 胡璟, 欧定华, 吴德勇 (2021). 川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性. 生态学报, 41, 5632-5642.] | |
[23] |
Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012). Soil enzymology: classical and molecular approaches. Biology and Fertility of Soils, 48, 743-762.
DOI URL |
[24] |
Negash M, Kaseva J, Kahiluoto H (2022). Perennial monocropping of khat decreased soil carbon and nitrogen relative to multistrata agroforestry and natural forest in southeastern Ethiopia. Regional Environmental Change, 22, 38. DOI: 10.1007/s10113-022-01905-3.
DOI |
[25] | Nelson DW, Sommers LE (1996). Total carbon, organic carbon, and organic matter//Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME. Methods of Soil Analysis: Part 3, Chapter 34. Soil Science Society of America, Madison, USA. |
[26] | Pang DB, Cui M, Liu YG, Wang GZ, Cao JH, Wang XR, Dan XQ, Zhou JX (2019). Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China. Ecological Engineering, 138, 391-402. |
[27] |
Sheng MY, Liu Y, Xiong KN (2013). Response of soil physical-chemical properties to rocky desertification succession in south China karst. Acta Ecologica Sinica, 33, 6303-6313.
DOI URL |
[盛茂银, 刘洋, 熊康宁 (2013). 中国南方喀斯特石漠化演替过程中土壤理化性质的响应. 生态学报, 33, 6303-6313.] | |
[28] |
Shi P, Ren MX, Li ZB, Sun JM, Min ZQ, Ding SJ (2023). Effects of 15-year vegetation restoration on organic carbon in soil aggregates on the Loess Plateau, China. Archives of Agronomy and Soil Science, 69, 344-357.
DOI URL |
[29] | Sparling GP (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, 30, 195-207. |
[30] | Sun WY, Ma WW, Li G, Wu JQ, Xu YZ (2019). Dynamic characteristics of soil sucrase and amylase activities during vegetation degradation in Gahai wetland. Acta Agrestia Sinica, 27, 88-96. |
[孙文颖, 马维伟, 李广, 吴江琪, 许延昭 (2019). 尕海湿地植被退化过程中土壤蔗糖酶和淀粉酶活性的动态特征. 草地学报, 27, 88-96.]
DOI |
|
[31] |
Wang HY, Wu JQ, Li G, Yan LJ (2020). Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecology and Evolution, 10, 12211-12223.
DOI PMID |
[32] | Wang YN, Xu ZW, Wang SZ (2021). Concentrations of active organic carbon components in soils in Baijianghe natural and drained peat bogs and their influencing factors. Wetland Science, 19, 691-701. |
[王一诺, 徐志伟, 王升忠 (2021). 白江河天然和排水泥炭沼泽土壤活性有机碳组分含量及其影响因素研究. 湿地科学, 19, 691-701.] | |
[33] | Wu CJ, Guo JF, Xu EL, Jia SX, Wu DM (2019). Effects of logging residue on composition of soil carbon and activity of related enzymes in soil of a young Chinese fir plantation as affected by residue handling mode. Acta Pedologica Sinica, 56, 1504-1513. |
[吴传敬, 郭剑芬, 许恩兰, 贾淑娴, 吴东梅 (2019). 采伐残余物不同处理方式对杉木幼林土壤有机碳组分和相关酶活性的影响. 土壤学报, 56, 1504-1513.] | |
[34] | Wu FJ, Liu N, Hu PL, Wang KL, Zhang W, Zou DS (2020). Soil carbon and nitrogen dynamics during vegetation restoration and their responses to extreme water-logging disasters in a typical karst depression. Chinese Journal of Eco-Agriculture, 28, 429-437. |
[伍方骥, 刘娜, 胡培雷, 王克林, 张伟, 邹冬生 (2020). 典型喀斯特洼地植被恢复过程中土壤碳氮储量动态及其对极端内涝灾害的响应. 中国生态农业学报(中英文), 28, 429-437.] | |
[35] | Wu JS (2006). Determination of Soil Microbial Biomass and Its Application. Meteorological Publishing House, Beijing. |
[吴金水 (2006). 土壤微生物生物量测定方法及其应用. 气象出版社, 北京.] | |
[36] |
Xiao SS, Zhang J, Duan J, Liu HG, Wang C, Tang CJ (2020). Soil organic carbon sequestration and active carbon component changes following different vegetation restoration ages on severely eroded red soils in subtropical China. Forests, 11, 1304. DOI: 10.3390/f11121304.
DOI |
[37] | Xie XF, Pu LJ, Wang QQ, Zhu M, Xu Y, Zhang M (2017). Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, eastern China. Science of the Total Environment, 607- 608, 1419-1427. |
[38] |
Xu HW, Qu Q, Lu BB, Zhang Y, Liu GB, Xue S (2020). Variation in soil organic carbon stability and driving factors after vegetation restoration in different vegetation zones on the Loess Plateau, China. Soil and Tillage Research, 204, 104727. DOI: 10.1016/j.still.2020.104727.
DOI |
[39] |
Yang CM, Chen XZ, Zhang YK, Fan BB (2021). Effect of land use and cover change on soil organic carbon fractions and enzymatic activities in lakeshore wetland of north shore of Lake Chaohu. Journal of Lake Sciences, 33, 1766-1776.
DOI URL |
[杨长明, 陈霞智, 张一夔, 范博博 (2021). 土地利用与覆被变化对巢湖湖滨带土壤有机碳组分及酶活性的影响. 湖泊科学, 33, 1766-1776.] | |
[40] | Yuan DX (1993). Karst of China. Geological Publishing House, Beijing. |
[袁道先 (1993). 中国岩溶学. 地质出版社, 北京.] | |
[41] |
Zhang C, Yan RR, Liang QW, Na RS, Li T, Yang XF, Bao YH, Xin XP (2021). Study on soil physical and chemical properties and carbon and nitrogen sequestration of grassland under different utilization modes. Acta Prataculturae Sinica, 30(4), 90-98.
DOI |
[张超, 闫瑞瑞, 梁庆伟, 娜日苏, 李彤, 杨秀芳, 包玉海, 辛晓平 (2021). 不同利用方式下草地土壤理化性质及碳、氮固持研究. 草业学报, 30(4), 90-98.]
DOI |
|
[42] | Zhang YL, Lu YX, Yin BF, Li YG, Zhou XB, Zhang YM (2022). Effects of simulated rainfall on soil nutrient contents and enzyme activities in the Gurbantunggut Desert, China. Acta Ecologica Sinica, 42, 1739-1749. |
[张玉林, 陆永兴, 尹本丰, 李永刚, 周晓兵, 张元明 (2022). 模拟降雨变化对古尔班通古特沙漠土壤养分及酶活性的影响. 生态学报, 42, 1739-1749.] | |
[43] | Zhu XL, Zhu CW, Chen C, Li Y, Niu RZ, Jiang GY, Yang J, Shen FM, Liu F, Liu SL (2022). Effects of rotation tillage on available nutrients and structural characteristics of dissolved organic carbon of fluvo-aquic soil in northern Henan Province. Chinese Journal of Eco-Agriculture, 30, 683-693. |
[朱宣霖, 朱长伟, 陈琛, 李洋, 牛润芝, 姜桂英, 杨锦, 申凤敏, 刘芳, 刘世亮 (2022). 轮耕对豫北潮土速效养分及可溶性有机碳结构特性的影响. 中国生态农业学报(中英文), 30, 683-693.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[4] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[5] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[6] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[7] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[8] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[9] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[10] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[11] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[12] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[13] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[14] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[15] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19