植物生态学报 ›› 2020, Vol. 44 ›› Issue (3): 214-227.DOI: 10.17521/cjpe.2019.0299
陈思路1,2,蔡劲松4,林成芳1,2,3,*(),宋豪威1,2,杨玉盛1,2,3
收稿日期:
2019-11-04
接受日期:
2020-02-06
出版日期:
2020-03-20
发布日期:
2020-04-30
通讯作者:
林成芳
基金资助:
CHEN Si-Lu1,2,CAI Jin-Song4,LIN Cheng-Fang1,2,3,*(),SONG Hao-Wei1,2,YANG Yu-Sheng1,2,3
Received:
2019-11-04
Accepted:
2020-02-06
Online:
2020-03-20
Published:
2020-04-30
Contact:
Cheng-Fang LIN
Supported by:
摘要:
为探究不同质量凋落物对氮(N)沉降的响应, 该研究采用尼龙网袋分解法, 在亚热带福建三明格氏栲(Castanopsis kawakamii)自然保护区的米槠(Castanopsis carlesii)天然林, 选取4种本区常见的具有不同初始化学性质的树种凋落叶进行模拟N沉降(N添加)分解实验(施N水平为对照0和50 kg·hm -2·a -1)。研究结果表明: 在2年的分解期内, 对照处理的各树种凋落叶的分解速率依次为观光木(Michelia odora, 0.557 a -1)、米槠(0.440 a -1)、台湾相思(Acacia confusa, 0.357 a -1)、杉木(Cunninghamia lanceolata, 0.354 a -1); N添加处理凋落叶分解速率依次为观光木(0.447 a -1)、米槠(0.354 a -1)、杉木(0.291 a -1)、台湾相思(0.230 a -1), 除杉木凋落叶外, N添加显著降低了其他3种凋落叶分解速率。N添加不仅使4种树木凋落叶分解过程中的N释放减慢, 同时还抑制凋落叶化学组成中木质素和纤维素的降解; N添加在凋落叶分解过程中总体上提高β-葡萄糖苷酶(βG)和酸性磷酸酶活性, 对纤维素水解酶的活性影响不一致, 而降低β-N-乙酰氨基葡萄糖苷酶活性和酚氧化酶活性。凋落叶分解速率与凋落叶中的碳获取酶(βG)活性以及其化学组分中的可萃取物含量极显著正相关, 与初始碳浓度、纤维素和木质素含量极显著负相关, 与初始N含量没有显著相关性。凋落物类型和N添加的交互作用虽未影响干质量损失速率, 但对木质素和纤维素的降解具有显著效应。综上所述, 化学组分比初始N含量能更好地预测凋落叶分解速率, 而N添加主要通过抑制分解木质素的氧化酶(如PHO)来降低凋落叶分解速率。
陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应. 植物生态学报, 2020, 44(3): 214-227. DOI: 10.17521/cjpe.2019.0299
CHEN Si-Lu, CAI Jin-Song, LIN Cheng-Fang, SONG Hao-Wei, YANG Yu-Sheng. Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest. Chinese Journal of Plant Ecology, 2020, 44(3): 214-227. DOI: 10.17521/cjpe.2019.0299
林分特征 Forest characteristics | 土壤理化性质 Soil physiochemical properties | ||||||
---|---|---|---|---|---|---|---|
林分密度 Stand density (株·hm-2) | 郁闭度 Canopy density | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 容重 Bulk density (g·cm-3) | 全C Total carbon (%) | 全N Total nitrogen (%) | 全P Total phosphorus (%) |
1 955 | 0.89 | 11.9 | 20 | 1.12 | 2.45 | 0.186 | 0.021 7 |
表1 亚热带米槠天然林群落特征与土壤表层(0-10 cm)理化性质
Table 1 Community characteristics and topsoil (0-10 cm) physiochemical properties of a subtropical Castanopsis carlesii natural forest
林分特征 Forest characteristics | 土壤理化性质 Soil physiochemical properties | ||||||
---|---|---|---|---|---|---|---|
林分密度 Stand density (株·hm-2) | 郁闭度 Canopy density | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 容重 Bulk density (g·cm-3) | 全C Total carbon (%) | 全N Total nitrogen (%) | 全P Total phosphorus (%) |
1 955 | 0.89 | 11.9 | 20 | 1.12 | 2.45 | 0.186 | 0.021 7 |
树种 Species | C (g·kg-1) | N ( g·kg-1) | P ( g·kg-1) | 可萃取物 Extractive (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) | C:N | C:P | 木质素:N Lignin:N | 木质素:P Lignin:P |
---|---|---|---|---|---|---|---|---|---|---|
米槠 Castanopsis carlesii | 486.44 ± 2.15 | 14.22 ± 0.19 | 0.34 ± 0.03 | 55.50 ± 1.58 | 24.50 ± 1.07 | 20.00 ± 1.02 | 34.21 ± 2.13 | 1 158.20 ± 0.78 | 1.41 ± 0.05 | 47.62± 1.56 |
杉木 Cunninghamia lanceolata | 525.05 ± 2.39 | 16.03 ± 0.16 | 0.79 ± 0.10 | 51.40 ± 0.95 | 24.30 ± 1.02 | 24.30 ± 0.85 | 32.75 ± 0.95 | 664.62 ± 0.50 | 1.52 ± 0.05 | 30.76 ± 5.46 |
观光木 Michelia odora | 390.24 ± 1.68 | 24 .26 ± 0.12 | 0.92 ± 0.05 | 55.20 ± 0.97 | 25.50 ± 0.95 | 19.30 ± 1.16 | 16.10 ± 0.26 | 424.45 ± 0.36 | 0.80 ± 0.28 | 20.98 ± 2.15 |
台湾相思 Acacia confusa | 501.37 ± 2.81 | 27.61 ± 0.36 | 0.56 ± 0.02 | 51.10 ± 1.87 | 26.60 ± 0.45 | 22.30 ± 0.81 | 18.14 ± 0.09 | 894.69 ± 0.52 | 0.81 ± 0.35 | 39.82 ± 0.97 |
表2 亚热带森林不同凋落叶初始化学性质(平均值±标准偏差, n = 3)
Table 2 Initial chemical properties of leaf litter in a subtropical forest (mean ± SD, n = 3)
树种 Species | C (g·kg-1) | N ( g·kg-1) | P ( g·kg-1) | 可萃取物 Extractive (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) | C:N | C:P | 木质素:N Lignin:N | 木质素:P Lignin:P |
---|---|---|---|---|---|---|---|---|---|---|
米槠 Castanopsis carlesii | 486.44 ± 2.15 | 14.22 ± 0.19 | 0.34 ± 0.03 | 55.50 ± 1.58 | 24.50 ± 1.07 | 20.00 ± 1.02 | 34.21 ± 2.13 | 1 158.20 ± 0.78 | 1.41 ± 0.05 | 47.62± 1.56 |
杉木 Cunninghamia lanceolata | 525.05 ± 2.39 | 16.03 ± 0.16 | 0.79 ± 0.10 | 51.40 ± 0.95 | 24.30 ± 1.02 | 24.30 ± 0.85 | 32.75 ± 0.95 | 664.62 ± 0.50 | 1.52 ± 0.05 | 30.76 ± 5.46 |
观光木 Michelia odora | 390.24 ± 1.68 | 24 .26 ± 0.12 | 0.92 ± 0.05 | 55.20 ± 0.97 | 25.50 ± 0.95 | 19.30 ± 1.16 | 16.10 ± 0.26 | 424.45 ± 0.36 | 0.80 ± 0.28 | 20.98 ± 2.15 |
台湾相思 Acacia confusa | 501.37 ± 2.81 | 27.61 ± 0.36 | 0.56 ± 0.02 | 51.10 ± 1.87 | 26.60 ± 0.45 | 22.30 ± 0.81 | 18.14 ± 0.09 | 894.69 ± 0.52 | 0.81 ± 0.35 | 39.82 ± 0.97 |
图1 亚热带森林不同处理凋落叶分解过程中质量残留率变化(平均值±标准偏差, n = 3)。A, 米槠凋落叶。B, 杉木凋落叶。C, 观光木凋落叶。D, 台湾相思凋落叶。CT, 对照; +N, 氮添加。*, p < 0.05; **, p < 0.01。
Fig. 1 Variations of litter mass remaining of different tree species during decomposition under different treatments in a subtropical forest (mean ± SD, n = 3). A, Castanopsis carlesii litter. B, Cunninghamia lanceolata litter. C, Michelia odora litter. D, Acacia confusa litter. CT, control; +N, nitrogen addition.
树种 Species | 处理 Treatment | Olson负指数方程 Olson negative exponential equation | R2 | 分解常数 Decay constant k (a-1) | 年实际干质量 损失率 Annual observed mass loss rate (%) | 年预期干质量 损失率 Annual predicted mass loss rate (%) | 半分解 时间 T50% (a) | 95%分解 时间 T95% (a) |
---|---|---|---|---|---|---|---|---|
米槠 Castanopsis carlesii | CT | Y = 91.26e-0.440x | 0.949 | 0.440Ba | 47.794 | 42.194 | 1.292 | 5.941 |
+N | Y = 96.35e-0.354x | 0.976 | 0.354Bb | 34.257 | 32.435 | 1.836 | 8.232 | |
杉木 Cunninghamia lanceolata | CT | Y = 95.79e-0.354x | 0.969 | 0.354Ca | 36.242 | 30.661 | 1.862 | 8.366 |
+N | Y = 94.91e-0.291x | 0.968 | 0.291BCa | 29.510 | 28.215 | 2.245 | 10.167 | |
观光木 Michelia odora | CT | Y = 81.65e-0.557x | 0.899 | 0.557Aa | 49.333 | 38.934 | 0.993 | 5.124 |
+N | Y = 88.03e-0.447x | 0.934 | 0.447Ab | 39.768 | 36.776 | 1.334 | 6.481 | |
台湾相思 Acacia confusa | CT | Y = 91.26e-0.357x | 0.964 | 0.357Ca | 35.240 | 31.303 | 1.798 | 8.248 |
+N | Y = 96.35e-0.230x | 0.908 | 0.230Cb | 24.887 | 26.328 | 2.685 | 13.479 |
表3 亚热带森林不同处理凋落物分解质量残留率随时间的指数回归方程
Table 3 Exponential regression equations of mass remaining rate of leaf litter with time under different treatments in a subtropical forest
树种 Species | 处理 Treatment | Olson负指数方程 Olson negative exponential equation | R2 | 分解常数 Decay constant k (a-1) | 年实际干质量 损失率 Annual observed mass loss rate (%) | 年预期干质量 损失率 Annual predicted mass loss rate (%) | 半分解 时间 T50% (a) | 95%分解 时间 T95% (a) |
---|---|---|---|---|---|---|---|---|
米槠 Castanopsis carlesii | CT | Y = 91.26e-0.440x | 0.949 | 0.440Ba | 47.794 | 42.194 | 1.292 | 5.941 |
+N | Y = 96.35e-0.354x | 0.976 | 0.354Bb | 34.257 | 32.435 | 1.836 | 8.232 | |
杉木 Cunninghamia lanceolata | CT | Y = 95.79e-0.354x | 0.969 | 0.354Ca | 36.242 | 30.661 | 1.862 | 8.366 |
+N | Y = 94.91e-0.291x | 0.968 | 0.291BCa | 29.510 | 28.215 | 2.245 | 10.167 | |
观光木 Michelia odora | CT | Y = 81.65e-0.557x | 0.899 | 0.557Aa | 49.333 | 38.934 | 0.993 | 5.124 |
+N | Y = 88.03e-0.447x | 0.934 | 0.447Ab | 39.768 | 36.776 | 1.334 | 6.481 | |
台湾相思 Acacia confusa | CT | Y = 91.26e-0.357x | 0.964 | 0.357Ca | 35.240 | 31.303 | 1.798 | 8.248 |
+N | Y = 96.35e-0.230x | 0.908 | 0.230Cb | 24.887 | 26.328 | 2.685 | 13.479 |
差异来源 Different source | 质量损失率 Mass loss rate | 木质素损失率 Lignin loss rate | 纤维素损失率 Cellulose loss rate | 氮释放率 N release rate |
---|---|---|---|---|
T | 356.428*** | 18 920.622*** | 8 803.023*** | 1 266.179*** |
L | 60.641* | 1 798.360** | 4 305.721*** | 70.640** |
N | 287.734** | 2 916.781*** | 5 176.453*** | 421.188** |
T ′ L | 4.114 | 1 605.655*** | 1 016.727*** | 14.430* |
T ′ N | 2.681 | 124.624** | 72.162* | 15.670* |
L ′ N | 8.713 | 582.266** | 667.323*** | 7.278 |
T ′ L ′ N | 1.038 | 271.636** | 407.487*** | 2.044 |
表4 亚热带森林凋落叶分解质量损失、木质素、纤维素和氮释放的三因素重复测量方差分析
Table 4 Analysis (indicated by F values from ANOVA with three factors repeated measurements) of decomposition time, litter type, nitrogen addition and their interactions on litter mass and lignin, cellulose and N release in a subtropical forest
差异来源 Different source | 质量损失率 Mass loss rate | 木质素损失率 Lignin loss rate | 纤维素损失率 Cellulose loss rate | 氮释放率 N release rate |
---|---|---|---|---|
T | 356.428*** | 18 920.622*** | 8 803.023*** | 1 266.179*** |
L | 60.641* | 1 798.360** | 4 305.721*** | 70.640** |
N | 287.734** | 2 916.781*** | 5 176.453*** | 421.188** |
T ′ L | 4.114 | 1 605.655*** | 1 016.727*** | 14.430* |
T ′ N | 2.681 | 124.624** | 72.162* | 15.670* |
L ′ N | 8.713 | 582.266** | 667.323*** | 7.278 |
T ′ L ′ N | 1.038 | 271.636** | 407.487*** | 2.044 |
图2 亚热带森林不同处理凋落叶分解过程中木质素残留率变化(平均值±标准偏差, n = 3)。A, 米槠凋落叶。B, 杉木凋落叶。C, 观光木凋落叶。D, 台湾相思凋落叶。CT, 对照; +N, 氮添加。
Fig. 2 Dynamics of litter lignin remaining rates under different treatments during decomposition in a subtropical forest (mean ± SD, n = 3). A, Castanopsis carlesii litter. B, Cunninghamia lanceolata litter. C, Michelia odora litter. D, Acacia confusa litter. CT, control; +N, nitrogen addition.
图3 亚热带森林不同处理凋落叶分解过程中纤维素残留率变化(平均值±标准偏差, n = 3)。A, 米槠凋落叶。B, 杉木凋落叶。C, 观光木凋落叶。D, 台湾相思凋落叶。CT, 对照; +N, 氮添加。
Fig. 3 Dynamics of litter cellulose remaining rates under different treatments during decomposition in a subtropical forest (mean ± SD, n = 3). A, Castanopsis carlesii litter. B, Cunninghamia lanceolata litter. C, Michelia odora litter. D, Acacia confusa litter. CT, control; +N, nitrogen addition.
图4 亚热带森林不同处理凋落叶分解过程中氮残留率变化(平均值±标准偏差, n = 3)。A, 米槠凋落叶。B, 杉木凋落叶。C, 观光木凋落叶。D, 台湾相思凋落叶。CT, 对照; +N, 氮添加。
Fig. 4 Dynamics of litter nitrogen remaining rates under different treatments during decomposition in a subtropical forest (mean ± SD, n = 3). A, Castanopsis carlesii litter. B, Cunninghamia lanceolata litter. C, Michelia odora litter. D, Acacia confusa litter. CT, control; +N, nitrogen addition.
图5 亚热带森林不同处理凋落叶分解过程中平均酶活性(平均值±标准偏差, n = 3)。A, 米槠凋落叶; B, 杉木凋落叶; C, 观光木凋落叶; D, 台湾相思凋落叶。CT, 对照; +N, 氮添加。AP, 酸性磷酸酶; βG, β-葡萄糖苷酶; CBH, 纤维素水解酶; NAG, β-N-乙酰氨基葡萄糖苷酶; PEO, 过氧化物酶; PHO, 酚氧化酶。不同小写字母表示同一种酶活性在对照和N添加处理之间差异显著(p < 0.05)。
Fig. 5 Litter enzyme activities under different treatments during decomposition in a subtropical forest (mean ± SD, n = 3). A, Castanopsis carlesii litter; B, Cunninghamia lanceolata litter; C, Michelia odora litter; D, Acacia confusa litter. CT, control; +N, nitrogen addition. AP, acid phosphatase; βG, β-1,4-glucosidase; CBH, cellobiohydrolase; NAG, β-1,4-N-acetylglucosaminidase; PEO, peroxidase; PHO, phenol oxidase. Different lowercase letters indicate significant differences among control and nitrogen addition treatments in the same enzyme (p < 0.05).
差异来源 Different source | βG | CBH | NAG | AP | PHO | PEO |
---|---|---|---|---|---|---|
L | 23.755*** | 35.348*** | 80.072*** | 82.374*** | 32.250*** | 97.990*** |
N | 27.609*** | 0.040 | 60.288*** | 7.380* | 4.684* | 256.223*** |
L × N | 21.797*** | 29.083*** | 149.790*** | 5.044* | 19.714*** | 15.464*** |
表5 亚热带森林凋落物酶活性的双因素方差分析
Table 5 Analysis (indicated by F values from ANOVA with two factors) of litter type, nitrogen addition and their interactions on litter enzyme activity in a subtropical forest
差异来源 Different source | βG | CBH | NAG | AP | PHO | PEO |
---|---|---|---|---|---|---|
L | 23.755*** | 35.348*** | 80.072*** | 82.374*** | 32.250*** | 97.990*** |
N | 27.609*** | 0.040 | 60.288*** | 7.380* | 4.684* | 256.223*** |
L × N | 21.797*** | 29.083*** | 149.790*** | 5.044* | 19.714*** | 15.464*** |
酶活性 Enzyme activity | 初始性质 Initial chemistry | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AP | βG | CBH | NAG | PEO | PHO | C | N | 可萃取物 Extractive (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) |
-1.98 | 0.661* | 0.511 | 0.372 | 0.297 | 0.533 | -0.817** | -0.530 | 0.871** | -0.724** | -0.848** |
表6 亚热带森林对照样地凋落物质量损失速率与累积酶活性和初始化学性质的Pearson相关分析(n = 12, 使用平均值)
Table 6 Pearson correlation coefficients (r) for litter mass loss rate versus cumulative enzyme activity and initial chemistry in the control plots after 2-year decomposition in a subtropical forest (n = 12, mean value used)
酶活性 Enzyme activity | 初始性质 Initial chemistry | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AP | βG | CBH | NAG | PEO | PHO | C | N | 可萃取物 Extractive (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) |
-1.98 | 0.661* | 0.511 | 0.372 | 0.297 | 0.533 | -0.817** | -0.530 | 0.871** | -0.724** | -0.848** |
[1] |
Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449.
DOI URL |
[2] | Allison SD, Vitousek PM (2004). Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica, 36, 285-296. |
[3] |
Aponte C, García LV, Marañón T (2012). Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time. Ecosystems, 15, 1204-1218.
DOI URL |
[4] |
Averill C, Waring B (2018). Nitrogen limitation of decomposition and decay: How can it occur? Global Change Biology, 24, 1417-1427.
DOI URL |
[5] |
Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133, 13-22.
DOI URL |
[6] |
Berg B, Davey MP, de Marco A, Emmett B, Faituri M, Hobbie SE, Johansson MB, Liu C, McClaugherty C, Norell L, Rutigliano FA, Vesterdal L, de Santo AV (2010). Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 100, 57-73.
DOI URL |
[7] |
Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365.
DOI URL |
[8] |
Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF (2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669.
DOI URL |
[9] | Chen ZF, Chen TQ, Huang WY (2016). Researches on soil physical properties of Acacia water conservation forest. Anhui Agricultural Science Bulletin, 22, 122-123. |
[ 陈志锋, 陈统泉, 黄伟毅 (2016). 台湾相思水源涵养林土壤物理性质研究. 安徽农学通报, 22, 122-123.] | |
[10] |
Cornwell WK, Cornelissen JHC, Kathryn A, Ellen D, Eviner VT, Oscar G, Hobbie SE, Bart H, Hiroko K, Natalia PH (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology letters, 11, 1065-1071.
DOI URL |
[11] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI URL |
[12] |
Dong LL, Sun T, Berg B, Zhang LL, Zhang QQ, Wang ZW (2019). Effects of different forms of N deposition on leaf litter decomposition and extracellular enzyme activities in a temperate grassland. Soil Biology & Biochemistry, 134, 78-80.
DOI URL |
[13] |
Fang H, Mo JM, Peng SL, Li ZA, Wang H (2007). Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in Southern China. Plant and Soil, 297, 233-242.
DOI URL |
[14] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI URL |
[15] | Guan SY, Zhang DS, Zhang ZM (1986). Soil Enzyme and Its Research Method. Agricultural Press, Beijing. |
[ 关松荫, 张德生, 张志明 (1986). 土壤酶及其研究法. 农业出版社, 北京.] | |
[16] | Gundersen P, Rasmussen L (1990). Nitrification in forest soils: effects from nitrogen deposition on soil acidification and aluminum release. Reviews of environmental contamination and toxicology, 113, 1-45. |
[17] |
Güsewell S, Gessner MO (2009). N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 23, 211-219.
DOI URL |
[18] |
Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000). Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems, 3, 57-69.
DOI URL |
[19] |
Hirobe M, Sabang J, Bhatta BK, Takeda H (2004). Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: decomposition rates and initial litter chemistry. Journal of Forest Research, 9, 341-346.
DOI URL |
[20] |
Hirobe M, Sabang J, Bhatta BK, Takeda H (2004). Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: decomposition rates and initial litter chemistry. Journal of Forest Research, 9, 341-346.
DOI URL |
[21] |
Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012). Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 82, 389-405.
DOI URL |
[22] | Hong HB, Lin CF, Peng JQ, Chen YM, Wei CC, Yang YS (2017). Effects of phosphorus addition on fine root decomposition and enzyme activity of Castanopsis carlesii and Cunninghamia lanceolata in subtropical forest. Acta Ecologica Sinica, 37, 136-146. |
[ 洪慧滨, 林成芳, 彭建勤, 陈岳民, 魏翠翠, 杨玉盛 (2017). 磷添加对中亚热带米槠和杉木细根分解及其酶活性的影响. 生态学报, 37, 136-146.] | |
[23] | Hu S, Zhang Y, Shi RJ, Han SQ, Li H, Xu H (2013). Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved-Pinuskoraiensis forests in Changbai Mountains of Northeast China. Chinese Journal of Applied Ecology, 24, 366-372. |
[ 胡嵩, 张颖, 史荣久, 韩斯琴, 李慧, 徐慧 (2013). 长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化. 应用生态学报, 24, 366-372.] | |
[24] | Huang JN, Cheng Y, Yang HY, Zheng KZ, Wang JJ (2017). Analysis of the dynamic soil nutrients of a Castanopsis carlesii, Chinese Chestnut & Sightseeing Wood natural forest under simulated nitrogen deposition. Acta Ecologica Sinica, 37, 63-73. |
[ 黄锦铌, 程煜, 杨红玉, 郑凯舟, 王家骏 (2017). 模拟N沉降下三种林分土壤营养动态分析. 生态学报, 37, 63-73.] | |
[25] |
Keiser AD, Keiser DA, Strickland MS, Bradford MA (2014). Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology, 102, 603-609.
DOI URL |
[26] |
Knorr M, Frey SD, Curtis PS (2005). Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 86, 3252-3257.
DOI URL |
[27] |
Lauber CL, Hamady M, Knight R, Fierer N (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111-5120.
DOI URL |
[28] | Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Chang CH (2015). Effects of snow cover on acid-soluble extractive and acid-insoluble residue during foliar litter decomposition in the alpine forest. Acta Ecologica Sinica, 35, 4687-4698. |
[ 李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 常晨晖 (2015). 不同厚度雪被对高山森林6种凋落物分解过程中酸溶性和酸不溶性组分的影响. 生态学报, 35, 4687-4698.] | |
[29] | Li XF, Han SJ, Hu YL, Zhao YT (2008). Decomposition of litter organic matter and its relations to C, N and P release in secondary conifer and broadleaf mixed forest in Changbai Mountains. Chinese Journal of Applied Ecology, 19, 245-251. |
[ 李雪峰, 韩士杰, 胡艳玲, 赵玉涛 (2008). 长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系. 应用生态学报, 19, 245-251.] | |
[30] | Lin CF, Peng JQ, Hong HB, Yang ZJ, Yang YS (2017). Effect of nitrogen and phosphorus availability on forest litter decomposition. Acta Ecologica Sinica, 37, 54-62. |
[ 林成芳, 彭建勤, 洪慧滨, 杨智杰, 杨玉盛 (2017). 氮、磷养分有效性对森林凋落物分解的影响研究进展. 生态学报, 37, 54-62.] | |
[31] | Lin WS, Yang ZJ, Guo JF, Huang YM, Wang JJ, Wu BB, Liu XF, Lyu LX, Chen GS (2013). Changes of soil dissolved organic carbon after converting natural Castanopsis carlesis forest into Cunninghamia lanceolata plantation in subtropical China. Journal of Subtropical Resources and Environment, 8, 41-47. |
[ 林伟盛, 杨智杰, 郭剑芬, 黄咏梅, 王家骏, 吴波波, 刘小飞, 吕理兴, 陈光水 (2013). 米槠天然林转变成杉木人工林后土壤可溶性有机碳的变化. 亚热带资源与环境学报, 8, 41-47.] | |
[32] | Lu Y, Li K, Liang Q, Li CR, Zhang CH (2019). Effects of leaf litter decomposition on bacterial community structure in the leaf litter of four dominant tree species in Mount Tai. Acta Ecologica Sinica, 39, 3175-3186. |
[ 路颖, 李坤, 梁强, 李传荣, 张彩虹 (2019). 泰山4种优势造林树种叶片凋落物分解对凋落物内细菌群落结构的影响. 生态学报, 39, 3175-3186.] | |
[33] |
Makita N, Fujii S (2015). Tree species effects on microbial respiration from decomposing leaf and fine root litter. Soil Biology & Biochemistry, 88, 39-47.
DOI URL |
[34] |
Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.
DOI URL |
[35] |
Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
DOI URL |
[36] |
Palozzi JE, Lindo Z (2018). Are leaf litter and microbes team players? Interpreting home-field advantage decomposition dynamics. Soil Biology & Biochemistry, 124, 189-198.
DOI URL |
[37] |
Ramirez KS, Craine JM, Fierer N (2010). Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied. Soil Biology & Biochemistry, 42, 2336-2338.
DOI URL |
[38] |
Ryan MG, Melillo JM, Ricca A (1990). A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171.
DOI URL |
[39] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[40] |
Sariyildiz T, Anderson JM, Kucuk M (2005). Effects of tree species and topography on soil chemistry, litter quality, and decomposition in Northeast Turkey. Soil Biology & Biochemistry, 37, 1695-1706.
DOI URL |
[41] |
Sinsabaugh RL, Carreiro MM, Repert DA (2002). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1-24.
DOI URL |
[42] |
Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005). Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry, 75, 201-215.
DOI URL |
[43] |
Sinsabaugh RL, Weiland T, Linkins AE (1992). Enzymic and molecular analysis of microbial communities associated with lotic particulate organic matter. Freshwater Biology, 28, 393-404.
DOI URL |
[44] | Song Y, Gu XR, Yan HY, Mao WT, Wu XL, Wan YX (2014). Dynamics of microbes and enzyme activities during litter decomposition of Pinus massoniana forest in mid-subtropical area. Environmental Science, 35, 1151-1158. |
[ 宋影, 辜夕容, 严海元, 毛文韬, 吴雪莲, 万宇轩 (2014). 中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态. 环境科学, 35, 1151-1158.] | |
[45] |
Stursova M, Crenshaw CL, Sinsabaugh RL (2006). Microbial responses to long-term N deposition in a semiarid grassland. Microbial Ecology, 51, 90-98.
DOI URL |
[46] |
Tang SS, Yang WQ, Yin R, Xiong L, Wang HP, Wang B, Zhang Y, Peng YJ, Chen QS, Xu ZF (2014). Spatial characteristics in decomposition rate of foliar litter and controlling factors in Chinese forest ecosystems. Chinese Journal of Plant Ecology, 38, 529-539.
DOI URL |
[ 唐仕姗, 杨万勤, 殷睿, 熊莉, 王海鹏, 王滨, 张艳, 彭艳君, 陈青松, 徐振锋 (2014). 中国森林生态系统凋落叶分解速率的分布特征及其控制因子. 植物生态学报, 38, 529-539.]
DOI URL |
|
[47] |
Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019.
DOI URL |
[48] |
Tu LH, Hu HL, Hu TX, Zhang J, Luo SH, Dai HZ (2012). Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China. Chinese Journal of Plant Ecology, 36, 99-108.
DOI URL |
[ 涂利华, 胡红玲, 胡庭兴, 张健, 雒守华, 戴洪忠 (2012). 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应. 植物生态学报, 36, 99-108.]
DOI URL |
|
[49] |
van Huysen TL, Perakis SS, Harmon ME (2016). Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant and Soil, 406, 1-14.
DOI URL |
[50] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737-750. |
[51] |
Vivanco L, Austin AT (2011). Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina. Global Change Biology, 17, 1963-1974.
DOI URL |
[52] | Wang JJ, Cheng Y, Yang YS, Lin CF, Lin WS, Peng JQ (2014). Responses of leaf litter decomposition and nutrient release to simulated nitrogen deposition of Castanopsis carlesii. Journal of Fujian College of Forestry, 34, 113-119. |
[ 王家骏, 程煜, 杨玉盛, 林成芳, 林伟盛, 彭建勤 (2014). 米槠叶凋落物分解及养分释放对模拟N沉降的响应. 福建林学院学报, 34, 113-119.] | |
[53] |
Waring BG (2013). Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biology & Biochemistry, 64, 89-95.
DOI URL |
[54] |
Wieder WR, Cleveland CC, Townsend AR (2009). Controls over leaf litter decomposition in wet tropical forests. Ecology, 90, 3333-3341.
DOI URL |
[55] |
Yan JF, Wang L, Hu Y, Tsang YF, Zhang YN, Wu JH, Fu XH, Sun Y (2018). Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma, 319, 194-203.
DOI URL |
[56] | Yang L, Deng CC, Chen YM, He RL, Zhang J, Liu Y (2015). Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China. Chinese Journal of Applied Ecology, 26, 3602-3610. |
[ 杨林, 邓长春, 陈亚梅, 和润莲, 张健, 刘洋 (2015). 川西高山林线交错带凋落叶分解速率与初始质量的关系. 应用生态学报, 26, 3602-3610.] | |
[57] |
Yang YS, Guo JF, Chen GS, Yin YF, Gao R, Lin CF (2009). Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 323, 153-162.
DOI URL |
[58] |
Yu Q, Duan L, Yu LF, Chen X, Si GY, Ke PP, Ye ZX, Mulder J (2018). Threshold and multiple indicators for nitrogen saturation in subtropical forests. Environmental Pollution, 241, 664-673.
DOI URL |
[59] | Zhang RQ, Sun ZJ, Wang C, Yuan TY (2008). Ecological process of leaf litter decomposition in tropical rainforest in Xishuangbanna, SW China. Ⅲ. Enzyme dynamics. Journal of Plant Ecology (Chinese Version), 32, 622-631. |
[ 张瑞清, 孙振钧, 王冲, 袁堂玉 (2008). 西双版纳热带雨林凋落叶分解的生态过程. Ⅲ. 酶活性动态. 植物生态学报, 32, 622-631.] | |
[60] |
Zhang XY, Wang W (2015). Control of climate and litter quality on leaf litter decomposition in different climatic zones. Journal of Plant Research, 128, 791-802.
DOI URL |
[61] |
Zheng JQ, Guo RH, Li DS, Zhang JH, Han SJ (2017). Nitrogen addition, drought and mixture effects on litter decomposition and nitrogen immobilization in a temperate forest. Plant and Soil, 416, 165-179.
DOI URL |
[62] | Zheng YX, Cao JL, Yang ZJ, Lin CF, Yang YS (2018). Impacts of nitrogen deposition on soil microbial community structure in subtropical natural evergreen broad-leaved forest relative to season. Acta Pedologica Sinica, 55, 1534-1544. |
[ 郑裕雄, 曹际玲, 杨智杰, 林成芳, 杨玉盛 (2018). 氮沉降对亚热带常绿阔叶天然林不同季节土壤微生物群落结构的影响. 土壤学报, 55, 1534-1544.] | |
[63] | Zhou SX, Huang CD, Xiang YB, Han BH, Xiao YX, Tang JD (2016 a). Effects of simulated nitrogen deposition on lignin and cellulose degradation of foliar litter in natural evergreen broad-leaved forest in Rainy Area of Western China. Chinese Journal of Applied Ecology, 27, 1368-1374. |
[ 周世兴, 黄从德, 向元彬, 韩博涵, 肖永翔, 唐剑东 (2016a). 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落物木质素和纤维素降解的影响. 应用生态学报, 27, 1368-1374.] | |
[64] | Zhou SX, Xiao YX, Xiang YB, Huang CD, Tang JD, Han BH, Luo C (2016b). Effects of simulated nitrogen deposition on the substrate quality of foliar litter in a natural evergreen broad-leaved forest in the Rainy Area of Western China. Acta Ecologica Sinica, 36, 7428-7435. |
[ 周世兴, 肖永翔, 向元彬, 黄从德, 唐剑东, 韩博涵, 罗超 (2016b). 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响. 生态学报, 36, 7428-7435.] | |
[65] |
Zhou XQ, Chen CR, Wang YF, Xu ZH, Han HY, Li LH, Wan SQ (2013). Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Science of The Total Environment, 444, 552-558.
DOI URL |
[66] |
Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology & Biochemistry, 115, 433-441
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[4] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[5] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[6] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[7] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[8] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[9] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[10] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[11] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[12] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[13] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[14] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[15] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19