植物生态学报 ›› 2022, Vol. 46 ›› Issue (2): 220-231.DOI: 10.17521/cjpe.2021.0098
所属专题: 菌根真菌
谢欢1, 张秋芳2, 曾泉鑫1, 周嘉聪1, 马亚培1, 吴玥1, 刘苑苑1, 林惠瑛1, 尹云锋1, 陈岳民1,*()
收稿日期:
2021-03-18
接受日期:
2021-05-27
出版日期:
2022-02-20
发布日期:
2021-07-22
通讯作者:
陈岳民
作者简介:
(ymchen@fjnu.edu.cn)基金资助:
XIE Huan1, ZHANG Qiu-Fang2, ZENG Quan-Xin1, ZHOU Jia-Cong1, MA Ya-Pei1, WU Yue1, LIU Yuan-Yuan1, LIN Hui-Ying1, YIN Yun-Feng1, CHEN Yue-Min1,*()
Received:
2021-03-18
Accepted:
2021-05-27
Online:
2022-02-20
Published:
2021-07-22
Contact:
CHEN Yue-Min
Supported by:
摘要:
持续增加的氮沉降加剧了森林土壤氮磷养分失衡, 并且已成为当前生态学领域关注的热点。真菌作为土壤中主要的微生物, 在维持养分平衡, 促进植物生长过程中发挥着不可忽视的作用。该研究以杉木(Cunninghamia lanceolata)土壤为研究对象, 通过施加硝酸铵模拟大气氮沉降, 设置对照(CK, 0 kg N·hm-2·a-1)、低氮(LN, 40 kg N·hm-2·a-1)和高氮(HN, 80 kg N·hm-2·a-1) 3个处理, 利用高通量测序并结合FUNGuild真菌功能预测, 研究亚热带地区杉木土壤真菌群落结构和功能对氮沉降的响应。结果表明: 氮添加降低了杉木幼苗的生物量和叶片磷含量。在杉木土壤中, 子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和被孢霉门(Mortierellomycota)是真菌群落在门水平上的优势类群, 三者的相对丰度约占整个真菌群落的76.71%-86.72%。短期氮添加对真菌门水平物种组成的影响不显著, 但LN处理较对照处理显著提高了球囊菌门(Glomeromycota)的相对丰度。在目水平上, 与对照相比, LN处理也显著提高被孢霉目(Mortierellales)的相对丰度, HN处理显著增加银耳目(Tremellales)的相对丰度, 但显著降低粪壳菌纲(Sordariales)的相对丰度。并且LN处理显著提高了土壤有效磷含量, 且与被孢霉目和球囊菌门的相对丰度呈显著正相关关系, 表明氮添加可能通过改变与磷转化相关的真菌类群来维持杉木生长的磷有效性。此外, LN处理显著降低了腐生营养型真菌的相对丰度, 但是显著增加了丛枝菌根真菌的相对丰度。总之, 土壤真菌功能类群可以通过改变不同功能类群相对丰度来参与土壤养分循环。
谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响. 植物生态学报, 2022, 46(2): 220-231. DOI: 10.17521/cjpe.2021.0098
XIE Huan, ZHANG Qiu-Fang, ZENG Quan-Xin, ZHOU Jia-Cong, MA Ya-Pei, WU Yue, LIU Yuan-Yuan, LIN Hui-Ying, YIN Yun-Feng, CHEN Yue-Min. Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata. Chinese Journal of Plant Ecology, 2022, 46(2): 220-231. DOI: 10.17521/cjpe.2021.0098
指标 Index | CK | LN | HN | p |
---|---|---|---|---|
SH (mm) | 50.67 ± 2.36a | 46.17 ± 1.93b | 33.67 ± 2.87c | <0.01 |
GD (mm) | 4.61 ± 0.20 | 4.48 ± 0.30 | 4.41 ± 0.52 | 0.75 |
TB (g) | 14.73 ± 0.36a | 13.69 ± 2.77ab | 13.57 ± 0.39b | 0.56 |
Leaf P (mg·kg-1) | 3.30 ± 0.47a | 2.35 ± 0.36b | 2.16 ± 0.08b | <0.01 |
Leaf N:P | 6.02 ± 1.06b | 8.33 ± 0.45a | 9.31 ± 1.35a | <0.01 |
表1 氮(N)添加对杉木幼苗生长和叶片磷(P)含量的影响(平均值±标准差, n = 4)
Table 1 Effects of nitrogen (N) addition on Cunninghamia lanceolata seedling growth and leaf phosphorus (P) content (mean ± SD, n = 4)
指标 Index | CK | LN | HN | p |
---|---|---|---|---|
SH (mm) | 50.67 ± 2.36a | 46.17 ± 1.93b | 33.67 ± 2.87c | <0.01 |
GD (mm) | 4.61 ± 0.20 | 4.48 ± 0.30 | 4.41 ± 0.52 | 0.75 |
TB (g) | 14.73 ± 0.36a | 13.69 ± 2.77ab | 13.57 ± 0.39b | 0.56 |
Leaf P (mg·kg-1) | 3.30 ± 0.47a | 2.35 ± 0.36b | 2.16 ± 0.08b | <0.01 |
Leaf N:P | 6.02 ± 1.06b | 8.33 ± 0.45a | 9.31 ± 1.35a | <0.01 |
指标 Index | CK | LN | HN | p |
---|---|---|---|---|
pH | 4.55 ± 0.06a | 4.51 ± 0.06ab | 4.40 ± 0.09c | 0.03 |
TC (g·kg-1) | 16.30 ± 0.23 | 16.20 ± 0.04 | 16.61 ± 0.24 | 0.06 |
TN (g·kg-1) | 1.47 ± 0.03 | 1.48 ± 0.05 | 1.50 ± 0.02 | 0.57 |
TP (mg·kg-1) | 586.19 ± 8.49b | 611.19 ± 15.49a | 595.88 ± 9.35ab | 0.02 |
AN (mg·kg-1) | 7.97 ± 0.22b | 8.58 ± 0.49a | 8.83 ± 0.25a | 0.01 |
AP (mg·kg-1) | 23.92 ± 1.13b | 26.25 ± 1.23a | 24.40 ± 1.24b | 0.02 |
DOC (mg·kg-1) | 7.67 ± 0.60a | 6.78 ± 0.44b | 3.99 ± 0.71c | <0.01 |
DON (mg·kg-1) | 4.61 ± 0.40b | 6.68 ± 0.36a | 7.24 ± 0.71a | <0.01 |
表2 氮添加对土壤理化性质的影响(平均值±标准差, n = 4)
Table 2 Effects of nitrogen addition on soil physical and chemical properties (mean ± SD, n = 4)
指标 Index | CK | LN | HN | p |
---|---|---|---|---|
pH | 4.55 ± 0.06a | 4.51 ± 0.06ab | 4.40 ± 0.09c | 0.03 |
TC (g·kg-1) | 16.30 ± 0.23 | 16.20 ± 0.04 | 16.61 ± 0.24 | 0.06 |
TN (g·kg-1) | 1.47 ± 0.03 | 1.48 ± 0.05 | 1.50 ± 0.02 | 0.57 |
TP (mg·kg-1) | 586.19 ± 8.49b | 611.19 ± 15.49a | 595.88 ± 9.35ab | 0.02 |
AN (mg·kg-1) | 7.97 ± 0.22b | 8.58 ± 0.49a | 8.83 ± 0.25a | 0.01 |
AP (mg·kg-1) | 23.92 ± 1.13b | 26.25 ± 1.23a | 24.40 ± 1.24b | 0.02 |
DOC (mg·kg-1) | 7.67 ± 0.60a | 6.78 ± 0.44b | 3.99 ± 0.71c | <0.01 |
DON (mg·kg-1) | 4.61 ± 0.40b | 6.68 ± 0.36a | 7.24 ± 0.71a | <0.01 |
处理 Treatment | OTU观测数 Observed OTU | 多样性指数 Diversity index | |||
---|---|---|---|---|---|
Shannon | Simpson | Ace | Chao 1 | ||
CK | 832 ± 128 | 4.21 ± 0.10 | 0.07 ± 0.02 | 852.98 ± 152.33 | 857.72 ± 150.93 |
LN | 643 ± 175 | 4.09 ± 0.35 | 0.07 ± 0.02 | 654.06 ± 179.93 | 661.40 ± 182.85 |
HN | 672 ± 59 | 3.66 ± 0.37 | 0.11 ± 0.04 | 689.93 ± 65.43 | 690.11 ± 62.48 |
p | 0.14 | 0.07 | 0.07 | 0.16 | 0.16 |
表3 氮添加对土壤真菌群落α多样性的影响(平均值±标准差, n = 4)
Table 3 Effects of nitrogen addition on alpha diversity of soil fungi community (mean ± SD, n = 4)
处理 Treatment | OTU观测数 Observed OTU | 多样性指数 Diversity index | |||
---|---|---|---|---|---|
Shannon | Simpson | Ace | Chao 1 | ||
CK | 832 ± 128 | 4.21 ± 0.10 | 0.07 ± 0.02 | 852.98 ± 152.33 | 857.72 ± 150.93 |
LN | 643 ± 175 | 4.09 ± 0.35 | 0.07 ± 0.02 | 654.06 ± 179.93 | 661.40 ± 182.85 |
HN | 672 ± 59 | 3.66 ± 0.37 | 0.11 ± 0.04 | 689.93 ± 65.43 | 690.11 ± 62.48 |
p | 0.14 | 0.07 | 0.07 | 0.16 | 0.16 |
图1 土壤真菌群落组成主坐标分析(n = 4)。CK, 对照处理; HN, 高氮处理; LN, 低氮处理。
Fig. 1 Principal coordinate analysis (PCoA) of soil fungal communities (n = 4). CK, control treatment; HN, high nitrogen treatment; LN, low nitrogen treatment.
门 Phylum | 目 Order | CK | LN | HN | p |
---|---|---|---|---|---|
子囊菌门 Ascomycota | 散囊菌目 Eurotiales | 8.51 ± 3.32 | 7.13 ± 1.92 | 11.40 ± 7.60 | 0.48 |
肉座菌目 Hypocreales | 6.56 ± 0.77 | 7.98 ± 2.64 | 4.90 ± 0.36 | 0.07 | |
粪壳目 Sordariales | 4.18 ± 0.11a | 3.34 ± 0.09b | 2.40 ± 0.50c | <0.01 | |
担子菌门 Basidiomycota | 银耳目 Tremellales | 19.30 ± 3.47b | 22.04 ± 4.20b | 29.33 ± 3.94a | 0.01 |
丝孢酵母目 Trichosporonales | 1.46 ± 1.14 | 0.69 ± 0.06 | 1.10 ± 0.22 | 0.32 | |
被孢霉门 Mortierellomycota | 被孢霉目 Mortierellales | 13.26 ± 1.20b | 18.06 ± 2.49a | 15.40 ± 1.17b | 0.01 |
表4 氮添加对土壤主要目水平真菌相对丰度的影响(平均值±标准差, n = 4)
Table 4 Effects of nitrogen addition on the relative abundance of main fungi at the order in soil (mean ± SD, n = 4)
门 Phylum | 目 Order | CK | LN | HN | p |
---|---|---|---|---|---|
子囊菌门 Ascomycota | 散囊菌目 Eurotiales | 8.51 ± 3.32 | 7.13 ± 1.92 | 11.40 ± 7.60 | 0.48 |
肉座菌目 Hypocreales | 6.56 ± 0.77 | 7.98 ± 2.64 | 4.90 ± 0.36 | 0.07 | |
粪壳目 Sordariales | 4.18 ± 0.11a | 3.34 ± 0.09b | 2.40 ± 0.50c | <0.01 | |
担子菌门 Basidiomycota | 银耳目 Tremellales | 19.30 ± 3.47b | 22.04 ± 4.20b | 29.33 ± 3.94a | 0.01 |
丝孢酵母目 Trichosporonales | 1.46 ± 1.14 | 0.69 ± 0.06 | 1.10 ± 0.22 | 0.32 | |
被孢霉门 Mortierellomycota | 被孢霉目 Mortierellales | 13.26 ± 1.20b | 18.06 ± 2.49a | 15.40 ± 1.17b | 0.01 |
图2 氮添加对土壤门水平真菌相对丰度的影响(n = 4)。CK, 对照处理; HN, 高氮处理; LN, 低氮处理。
Fig. 2 Effects of nitrogen addition on the relative abundance of fungi at the phylum level in soil (n = 4). CK, control treatment; HN, high nitrogen treatment; LN, low nitrogen treatment.
图3 氮添加对土壤真菌营养类型的影响(平均值±标准差, n = 4)。CK, 对照处理; HN, 高氮处理; LN, 低氮处理。不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 3 Effects of nitrogen addition on soil fungi trophic mode (mean ± SD, n = 4). CK, control treatment; HN, high nitrogen treatment; LN, low nitrogen treatment. Different lowercase letters represent significant difference among different treatments (p < 0.05).
图4 氮添加对土壤真菌功能类群的影响(平均值±标准差, n = 4)。CK, 对照处理; HN, 高氮处理; LN, 低氮处理。不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 4 Effects of nitrogen addition on soil fungi functional groups (mean ± SD, n = 4). CK, control treatment; HN, high nitrogen treatment; LN, low nitrogen treatment. Different lowercase letters represent significant difference among different treatments (p < 0.05).
图5 土壤真菌差异物种与环境因子的相关关系。AN, 有效氮含量; AP, 有效磷含量; DOC, 溶解有机碳含量; DON, 溶解有机氮含量; TC, 总碳含量; TN, 总氮含量; TP, 总磷含量。Glo, 球囊菌门; Mor, 被孢霉目; Sor, 粪壳目; Tre, 银耳目。*, p < 0.05; **, p < 0.01。
Fig. 5 Correlation between different soil fungi species and environmental factors. AN, available nitrogen content; AP, available phosphorus content; DOC, dissolved organic carbon content; DON, dissolved organic nitrogen content; TC, total carbon content; TN, total nitrogen content; TP, total phosphorus content. Glo, Glomeromycota; Mor, Mortierellales; Sor, Sordariales; Tre, Tremellales. *, p < 0.05; **, p < 0.01.
图7 氮添加对土壤真菌群落结构和杉木生长影响的概念图。+, 显著增加; -, 显著降低; ns, 无显著变化。
Fig. 7 Conceptual diagram of the effects of nitrogen addition on soil fungi structure and Cunninghamia lanceolata growth. +, significant increase; -, significant decrease; ns, no significant change.
[1] | Ackerman D, Millet DB, Chen X (2019). Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33, 100-107. |
[2] |
Acosta-Martínez V, Cotton J, Gardner T, Moore-Kucera J, Zak J, Wester D, Cox S (2014). Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Applied Soil Ecology, 84, 69-82.
DOI URL |
[3] |
Allison SD, LeBauer DS, Ofrecio MR, Reyes R, Ta AM, Tran TM (2009). Low levels of nitrogen addition stimulate decomposition by boreal forest fungi. Soil Biology & Biochemistry, 41, 293-302.
DOI URL |
[4] |
Azad K, Kaminskyj S (2016). A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis, 68, 73-78.
DOI URL |
[5] |
Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson DJ, Reitner J, Seyfullah LJ, Schmidt AR (2014). Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Molecular Phylogenetics and Evolution, 78, 386-398.
DOI URL |
[6] |
Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 74, 738-744.
DOI PMID |
[7] |
Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014). Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology, 20, 3646-3659.
DOI PMID |
[8] |
Cao JL, Lin TC, Yang ZJ, Zheng Y, Xie L, Xiong DC, Yang YS (2020). Warming exerts a stronger effect than nitrogen addition on the soil arbuscular mycorrhizal fungal community in a young subtropical Cunninghamia lanceolata plantation. Geoderma, 367, 114273. DOI: 10.1016/j.geoderma.2020.114273.
DOI URL |
[9] |
Carrara JE, Walter CA, Hawkins JS, Peterjohn WT, Averill C, Brzostek ER (2018). Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Global Change Biology, 24, 2721-2734.
DOI PMID |
[10] | Carter MR, Gregorich EG (1993). Soil Sampling and Methods of Analysis. The Chemical Rubber Company Press, Florida. 637-644. |
[11] |
Che RX, Wang SP, Wang YF, Xu ZH, Wang WJ, Rui YC, Wang F, Hu JM, Tao J, Cui XY (2019). Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing. Soil Biology & Biochemistry, 139, 107611.
DOI URL |
[12] |
Chen YL, Xu ZW, Xu TL, Veresoglou SD, Yang GW, Chen BD (2017). Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities. Soil Biology & Biochemistry, 115, 233-242.
DOI URL |
[13] | Chen ZJ, Gao SK, Chen Y, He PH, He Q, Qiu Q, Li JY (2020). Effects of short-term fertilization on soil fungal community structure and functional group in Eucalyptus artificial forest. Acta Ecologica Sinica, 40, 3813-3821. |
[ 陈祖静, 高尚坤, 陈园, 何平会, 何茜, 邱权, 李吉跃 (2020). 短期施肥对桉树人工林土壤真菌群落结构及功能类群的影响. 生态学报, 40, 3813-3821.] | |
[14] |
Drenovsky RE, Richards JH (2004). Critical N:P values: predicting nutrient deficiencies in desert shrublands. Plant and Soil, 259, 59-69.
DOI URL |
[15] |
Fan YX, Zhong XJ, Lin F, Liu CC, Yang LM, Wang MH, Chen GS, Chen YM, Yang YS (2019). Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 337, 246-255.
DOI URL |
[16] |
Field KJ, Pressel S (2018). Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytologist, 220, 996-1011.
DOI URL |
[17] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[18] |
Guo QX, Yan LJ, Korpelainen H, Niinemets Ü, Li CY (2019). Plant-plant interactions and N fertilization shape soil bacterial and fungal communities. Soil Biology & Biochemistry, 128, 127-138.
DOI URL |
[19] |
James TY, Stajich JE, Hittinger CT, Rokas A (2020). Toward a fully resolved fungal tree of life. Annual Review of Microbiology, 74, 291-313.
DOI URL |
[20] |
Johnson NC (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185, 631-647.
DOI URL |
[21] | Lee JS, Nam B, Lee HB, Choi YJ (2018). Molecular phylogeny and morphology reveal the underestimated diversity of Mortierella (Mortierellales) in Korea. The Korean Journal of Mycology, 46, 375-382. |
[22] | Li M, Yan W (2019). Effects of altitude on rhizosphere fungal community structure of Pinus tabulaeformis in Wula Mountain, China. Mycosystema, 38, 1992-2006. |
[ 李敏, 闫伟 (2019). 海拔对乌拉山油松根围真菌群落结构的影响. 菌物学报, 38, 1992-2006.] | |
[23] | Li RX, Huo YL, Li HJ, Wang WS, Zhang AP, Yang ZL (2018). Effect of nitrogen fertilizer reduction on endophytic fungal community composition of summer maize in north China. Transactions of the Chinese Society for Agricultural Machinery, 49, 312-318. |
[ 李瑞霞, 霍艳丽, 李洪杰, 王惟帅, 张爱平, 杨正礼 (2018). 氮肥减量对华北夏玉米节根内生真菌群落组成的影响. 农业机械学报, 49, 312-318.] | |
[24] | Li X, Li YY, An SS, Zeng QC (2016). Effects of stem and leaf decomposition in typical herbs on soil enzyme activity and microbial diversity in the south Ningxia loess hilly region of Northwest China. Chinese Journal of Applied Ecology, 27, 3182-3188. |
[ 李鑫, 李娅芸, 安韶山, 曾全超 (2016). 宁南山区典型草本植物茎叶分解对土壤酶活性及微生物多样性的影响. 应用生态学报, 27, 3182-3188.] | |
[25] |
Lundell TK, Mäkelä MR, Hildén K (2010). Lignin-modifying enzymes in filamentous basidiomycetes-Ecological, functional and phylogenetic review. Journal of Basic Microbiology, 50, 5-20.
DOI PMID |
[26] |
Maitra P, Zheng Y, Chen L, Wang YL, Ji NN, Lü PP, Gan HY, Li XC, Sun X, Zhou XH, Guo LD (2019). Effect of drought and season on arbuscular mycorrhizal fungi in a subtropical secondary forest. Fungal Ecology, 41, 107- 115.
DOI |
[27] |
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016). FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241-248.
DOI URL |
[28] |
Ning Q, Chen L, Jia ZJ, Zhang CZ, Ma DH, Li F, Zhang JB, Li DM, Han XR, Cai ZJ, Huang SM, Liu WZ, Zhu B, Li Y (2020). Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture, Ecosystems and Environment, 293, 106837. DOI: 10.1016/j.agee.2020.106837.
DOI URL |
[29] | Qiao ZW, Hong JP, Li LX (2017). Effect of soluble phosphorus fungi and their combinations on adsorption-desorption of phosphorus and its transformation in a reclaimed soil. Journal of Irrigation and Drainage, 36(7), 75-79. |
[ 乔志伟, 洪坚平, 李林轩 (2017). 溶磷真菌及其组合对复垦土壤磷解析和转化的影响. 灌溉排水学报, 36(7), 75- 79.] | |
[30] | Qin XZ, Yang XP, Chen J, Feng L (2014). Optimization of incubated mycelium of Mortierella alpine based on response surface methodlogy. Xinjiang Agricultural Sciences, 51(1), 89-97. |
[ 秦新政, 杨新平, 陈竞, 冯蕾 (2014). 高山被孢霉菌丝生长条件的响应面法优化. 新疆农业科学, 51(1), 89-97.] | |
[31] |
Rosling A, Midgley MG, Cheeke T, Urbina H, Fransson P, Phillips RP (2016). Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist, 209, 1184- 1195.
DOI PMID |
[32] |
Sakamoto K, Oba Y (1994). Effect of fungal to bacterial biomass ratio on the relationship between CO2 evolution and total soil microbial biomass. Biology and Fertility of Soils, 17, 39-44.
DOI URL |
[33] |
Schappe T, Albornoz FE, Turner BL, Neat A, Condit R, Jones FA (2017). The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. Journal of Ecology, 105, 569-579.
DOI URL |
[34] |
Schimel J, Balser TC, Wallenstein M (2007). Microbial stress- response physiology and its implications for ecosystem function. Ecology, 88, 1386-1394.
DOI PMID |
[35] |
Smith JE (2009). Mycorrhizal symbiosis (third edition). Soil Science Society of America Journal, 73, 694.
DOI URL |
[36] |
Strickland MS, Rousk J (2010). Considering fungal:bacterial dominance in soils methods, controls, and ecosystem implications. Soil Biology & Biochemistry, 42, 1385-1395.
DOI URL |
[37] |
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, et al. (2014). Fungal biogeography. Global diversity and geography of soil fungi. Science, 346, 1256688. DOI: 10.1126/science.1256688.
DOI URL |
[38] |
Turner MM, Henry HAL (2009). Interactive effects of warming and increased nitrogen deposition on 15N tracer retention in a temperate old field: seasonal trends. Global Change Biology, 15, 2885-2893.
DOI URL |
[39] |
Uroz S, Buée M, Deveau A, Mieszkin S, Martin F (2016). Ecology of the forest microbiome: highlights of temperate and boreal ecosystems. Soil Biology & Biochemistry, 103, 471-488.
DOI URL |
[40] |
Wang JQ, Shi XZ, Zheng CY, Suter H, Huang ZQ (2021). Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Science of the Total Environment, 755, 142449. DOI: 142449.10.1016/j.scitotenv.2020.142449.
DOI URL |
[41] | Xiong D, Ou J, Li LP, Yang ST, He YJ, Li CC (2019). Diversity of soil fungi in the rhizosphere of Rhododendron simsii within Pinus massoniana - R. simsii communities in central Guizhou. Journal of Southwest University (Natural Science Edition), 41(7), 21-29. |
[ 熊丹, 欧静, 李林盼, 杨舒婷, 何跃军, 李朝婵 (2019). 黔中地区马尾松-杜鹃群落杜鹃根围真菌多样性. 西南大学学报(自然科学版), 41(7), 21-29.] | |
[42] |
Yang Y, Cheng H, Gao H, An SS (2020). Response and driving factors of soil microbial diversity related to global nitrogen addition. Land Degradation and Development, 31, 190- 204.
DOI |
[43] |
Yang Y, Dou YX, Huang YM, An SS (2017). Links between soil fungal diversity and plant and soil properties on the Loess Plateau. Frontiers in Microbiology, 8, 2198.
DOI PMID |
[44] |
Yu Z, Huang Z, Wang M, Liu R, Zheng LJ, Wan XH, Hu ZH, Davis MR, Lin TC (2015). Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Biology & Biochemistry, 90, 188-196.
DOI URL |
[45] | Zhang HF, Liu HM, Zhao JN, Li G, Lai X, Li J, Wang H, Yang DL (2018). Response of soil fungal community structure to nitrogen and water addition in Stipa baicalensis steppe. Acta Ecologica Sinica, 38, 195-205. |
[ 张海芳, 刘红梅, 赵建宁, 李刚, 赖欣, 李洁, 王慧, 杨殿林 (2018). 贝加尔针茅草原土壤真菌群落结构对氮素和水分添加的响应. 生态学报, 38, 195-205.] | |
[46] |
Zhang QF, Zhou JC, Li XJ, Liu CC, Lin WS, Zheng W, Chen YM, Yang YS (2019). Nitrogen addition accelerates the nitrogen cycle in a young subtropical Cunninghamia lanceolata (Lamb.) plantation. Annals of Forest Science, 76, 31. DOI: 10.1007/s13595-019-0817-z.
DOI URL |
[47] | Zhang W (2013). Observation of N/S Deposition Fluxes and Investigation of Simulated S Deposition Effect on Soil N2O Production of Castanopsis carlesii Forests. Master degree dissertation, Fujian Normal University, Fuzhou. 15-19. |
[ 章伟 (2013). N/S沉降通量观测及模拟氮沉降对米槠林土壤N2O产生影响研究. 硕士学位论文, 福建师范大学, 福州. 15-19.] | |
[48] |
Zhou J, Jiang X, Zhou B, Zhao BS, Ma MC, Guan DW, Li J, Chen SF, Cao FM, Shen DL, Qin J (2016). Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biology & Biochemistry, 95, 135- 143.
DOI URL |
[49] |
Zhou JC, Liu XF, Xie JS, Lyu MK, Zheng Y, You ZT, Fan YX, Lin CF, Chen GS, Chen YM, Yang YS (2019). Nitrogen addition affects soil respiration primarily through changes in microbial community structure and biomass in a subtropical natural forest. Forests, 10, 435-451.
DOI URL |
[50] |
Zhou ZH, Wang CK, Luo YQ (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072. DOI: 10.1038/s41467-020-16881-7.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[5] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[6] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[7] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[8] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[9] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[10] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[11] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[12] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[13] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[14] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[15] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19