植物生态学报 ›› 2023, Vol. 47 ›› Issue (6): 745-755.DOI: 10.17521/cjpe.2022.0373
• 综述 • 下一篇
杨佳绒1,2, 戴冬1,2, 陈俊芳1,2, 吴宪1,2, 刘啸林1,2, 刘宇1,2,*()
收稿日期:
2022-09-14
接受日期:
2022-10-25
出版日期:
2023-06-20
发布日期:
2023-02-28
通讯作者:
* ORCID:刘宇: 0000-0001-9869-2735, (基金资助:
YANG Jia-Rong1,2, DAI Dong1,2, CHEN Jun-Fang1,2, WU Xian1,2, LIU Xiao-Lin1,2, LIU Yu1,2,*()
Received:
2022-09-14
Accepted:
2022-10-25
Online:
2023-06-20
Published:
2023-02-28
Contact:
* (Supported by:
摘要:
丛枝菌根(AM)是植物与微生物联系中最为古老的共生体, 全球范围内约80%的陆生植物与AM真菌共生形成丛枝菌根。这一共生关系在气候稳定和土壤磷贫瘠的热带、亚热带森林中更为普遍。以往的研究表明AM真菌通过提高植物对磷的吸收促进植物生长和定植, 即产生植物-土壤正反馈。植物-土壤正反馈可降低由土壤病原菌引起的植物-土壤负反馈, 进而降低植物-土壤负反馈维持植物多样性的能力, 这与热带、亚热带森林中极高的植物多样性以及占比惊人的稀有种相悖。随着对热带、亚热带森林中AM真菌多样性研究的不断深入, 越来越多的研究发现AM真菌多样性在不同的生境条件下以及不同的宿主植物间存在较大差异, 这些差异可引起植物适合度的不同, 进而影响植物群落构建。该文整合了AM真菌在宿主植物群落构建、宿主植物共存及稀有种维持等方面的研究进展, 以期为验证“稀有种优势”假说提出新的研究思路, 进而更有效地保护稀有植物。
杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展. 植物生态学报, 2023, 47(6): 745-755. DOI: 10.17521/cjpe.2022.0373
YANG Jia-Rong, DAI Dong, CHEN Jun-Fang, WU Xian, LIU Xiao-Lin, LIU Yu. Insight into recent studies on the diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species. Chinese Journal of Plant Ecology, 2023, 47(6): 745-755. DOI: 10.17521/cjpe.2022.0373
图1 基于当代物种共存理论, 由菌根真菌介导的物种共存理论框架。
Fig. 1 Theoretical framework of species coexistence mediated by mycorrhizal fungi based on contemporary species coexistence theory.
[1] | Ahanger MA, Hashem A, Abd-Allah EF, Ahmad P (2014). Arbuscular mycorrhiza in crop improvement under environmental stress//Ahmad P, Rasool S. Emerging Technologies and Management of Crop Stress Tolerance. Academic Press, San Diego, USA. 69-95. |
[2] |
Alexander I, Selosse MA (2009). Mycorrhizas in tropical forests: a neglected research imperative. New Phytologist, 182, 14-16.
DOI PMID |
[3] |
Anacker BL, Klironomos JN, Maherali H, Reinhart KO, Strauss SY (2014). Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecology Letters, 17, 1613-1621.
DOI PMID |
[4] |
Bachelot B, Kobe RK, Vriesendorp C (2015). Negative density- dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species, or no species. Oecologia, 179, 853-861.
DOI URL |
[5] |
Bachelot B, Uriarte M, McGuire KL, Thompson J, Zimmerman J (2017). Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species. Ecology, 98, 712-720.
DOI PMID |
[6] |
Bennett JA, Cahill Jr JF (2016). Fungal effects on plant-plant interactions contribute to grassland plant abundances: evidence from the field. Journal of Ecology, 104, 755-764.
DOI URL |
[7] |
Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, 355, 181-184.
DOI PMID |
[8] |
Bever JD (1994). Feedback between plants and their soil communities in an old field community. Ecology, 75, 1965-1977.
DOI URL |
[9] |
Bever JD (1999). Dynamics within mutualism and the maintenance of diversity: inference from a model of interguild frequency dependence. Ecology Letters, 2, 52-61.
DOI URL |
[10] |
Bever JD (2002a). Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 244, 281-290.
DOI URL |
[11] |
Bever JD (2002b). Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B: Biological Sciences, 269, 2595-2601.
DOI URL |
[12] |
Bever JD (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465-473.
DOI PMID |
[13] |
Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010). Rooting theories of plant community ecology in microbial interactions. Trends in Ecology & Evolution, 25, 468-478.
DOI URL |
[14] |
Bever JD, Mangan SA, Alexander HM (2015). Maintenance of plant species diversity by pathogens. Annual Review of Ecology, Evolution, and Systematics, 46, 305-325.
DOI URL |
[15] |
Bever JD, Platt TG, Morton ER (2012). Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annual Review of Microbiology, 66, 265-283.
DOI PMID |
[16] |
Bever JD, Westover KM, Antonovics J (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85, 561-573.
DOI URL |
[17] |
Cameron DD, Neal AL, van Wees SCM, Ton J (2013). Mycorrhiza-induced resistance: more than the sum of its parts? Trends in Plant Science, 18, 539-545.
DOI PMID |
[18] | Carteron A, Vellend M, Laliberté E (2022). Mycorrhizal dominance reduces local tree species diversity across US forests. Nature Ecology & Evolution, 6, 370-374. |
[19] | Chase JM, Leibold MA (2004). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago. |
[20] |
Chen L, Zheng Y, Gao C, Mi XC, Ma KP, Wubet T, Guo LD (2017). Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest. Molecular Ecology, 26, 2563-2575.
DOI PMID |
[21] |
Chen YJ, Jia P, Cadotte MW, Wang PD, Liu X, Qi YL, Jiang XM, Wang ZH, Shu WS (2019). Rare and phylogenetically distinct plant species exhibit less diverse root-associated pathogen communities. Journal of Ecology, 107, 1226-1237.
DOI URL |
[22] |
Chesson P (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366.
DOI URL |
[23] |
Chisholm RA, Muller-Landau HC (2011). A theoretical model linking interspecific variation in density dependence to species abundances. Theoretical Ecology, 4, 241-253.
DOI URL |
[24] |
Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010). Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330-332.
DOI PMID |
[25] | Connell JH (1971). On the role of the natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees//Boer PJD, Gradwell GR. Dynamics of Populations. Center for Agriculture Publishing and Documentation, Wageningen, The Netherlands. 298-312. |
[26] |
Connell JH, Tracey JG, Webb LJ (1984). Compensatory recruitment, growth, and mortality as factors maintaining rain forest tree diversity. Ecological Monographs, 54, 141-164.
DOI URL |
[27] |
Crawford KM, Bauer JT, Comita LS, Eppinga MB, Johnson DJ, Mangan SA, Queenborough SA, Strand AE, Suding KN, Umbanhowar J, Bever JD (2019). When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecology Letters, 22, 1274-1284.
DOI PMID |
[28] |
Dai D, Xing H, Yang JR, Liu YJ, Cai HM, Liu Y (2021). Advances in mechanisms of rare species maintenance and plant-soil feedback in plant communities. Biodiversity Science, 29, 1687-1699.
DOI |
[戴冬, 邢华, 杨佳绒, 刘雅静, 蔡焕满, 刘宇 (2021). 植物群落稀有种维持机制与土壤反馈的研究进展. 生物多样性, 29, 1687-1699.]
DOI |
|
[29] |
Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, et al. (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 349, 970-973.
DOI PMID |
[30] |
Dybzinski R, Tilman D (2007). Resource use patterns predict long-term outcomes of plant competition for nutrients and light. The American Naturalist, 170, 305-318.
PMID |
[31] |
Edathil TT, Manian S, Udaiyan K (1996). Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum Mill.). Agriculture, Ecosystems & Environment, 59, 63-68.
DOI URL |
[32] |
Enquist BJ, Feng X, Boyle B, Maitner B, Newman EA, Jørgensen PM, Roehrdanz PR, Thiers BM, Burger JR, Corlett RT, Couvreur TLP, Dauby G, Donoghue JC, Foden W, Lovett JC, et al. (2019). The commonness of rarity: global and future distribution of rarity across land plants. Science Advances, 5, eaaz0414. DOI: 10.1126/sciadv.aaz0414.
DOI |
[33] |
Fitter AH (1990). The role of ecological significance of vesicular-arbuscular mycorrhizas in temperate ecosystems. Agriculture, Ecosystems & Environment, 29, 137-151.
DOI URL |
[34] |
Fitter AH, Helgason T, Hodge A (2011). Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biology Reviews, 25, 68-72.
DOI URL |
[35] |
Gange AC, Brown VK, Sinclair GS (1993). Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Functional Ecology, 7, 616-622.
DOI URL |
[36] |
Grainger TN, Levine JM, Gilbert B (2019). The invasion criterion: a common currency for ecological research. Trends in Ecology & Evolution, 34, 925-935.
DOI URL |
[37] |
Grime JP, MacKey JML, Hillier SH, Read DJ (1987). Floristic diversity in a model system using experimental microcosms. Nature, 328, 420-422.
DOI |
[38] |
Grinnell J (1917). The niche-relationships of the California thrasher. The Auk, 34, 427-433.
DOI URL |
[39] |
Guerra CA, Bardgett RD, Caon L, Crowther TW, Delgado- Baquerizo M, Montanarella L, Navarro LM, Orgiazzi A, Singh BK, Tedersoo L, Vargas-Rojas R, Briones MJI, Buscot F, Cameron EK, Cesarz S, et al. (2021). Tracking, targeting, and conserving soil biodiversity. Science, 371, 239-241.
DOI PMID |
[40] | Herre EA, Kyllo D, Mangan S, Husband R, Mejia LC, Eom AH (2005). An overview of arbuscular mycorrhizal fungal composition, distribution and host effects from a tropical moist forest//Burslem D, Pinard M, Hartley S. Biotic Interactions in the Tropics: Their Role in the Maintenance of Species Diversity. Cambridge University Press, Cambridge, UK. 204-225. |
[41] |
Hodge A, Fitter AH (2013). Microbial mediation of plant competition and community structure. Functional Ecology, 27, 865-875.
DOI URL |
[42] |
Hood LA, Swaine MD, Mason PA (2004). The influence of spatial patterns of damping-off disease and arbuscular mycorrhizal colonization on tree seedling establishment in Ghanaian tropical forest soil. Journal of Ecology, 92, 816-823.
DOI URL |
[43] |
Hooper DU, Bignell DE, Brown VK, Brussard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, van der Putten WH, de Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000). Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. BioScience, 50, 1049-1061.
DOI URL |
[44] |
Hooper DU, Vitousek PM (1997). The effects of plant composition and diversity on ecosystem processes. Science, 277, 1302-1305.
DOI URL |
[45] |
Huisman J, Olff H (1998). Competition and facilitation in multispecies plant-herbivore systems of productive environments. Ecology Letters, 1, 25-29.
DOI URL |
[46] |
Jansa J, Smith FA, Smith SE (2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 177, 779-789.
DOI PMID |
[47] |
Janzen DH (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528.
DOI URL |
[48] |
Jia SH, Wang XG, Yuan ZQ, Lin F, Ye J, Lin GG, Hao ZQ, Bagchi R (2020). Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature Communications, 11, 286. DOI: 10.1038/s41467-019-14140-y.
DOI |
[49] |
Jiang F, Zhu K, Cadotte MW, Jin GZ (2020). Tree mycorrhizal type mediates the strength of negative density dependence in temperate forests. Journal of Ecology, 108, 2601-2610.
DOI URL |
[50] |
Jiang SJ, Shi GX, Mao L, Pan JB, An LZ, Liu YJ, Feng HY (2015). Comparison of different PCR primers on detecting arbuscular mycorrhizal communities inside plant roots. Acta Microbiologica Sinica, 55, 916-925.
PMID |
[51] |
Johnson DJ, Clay K, Phillips RP (2018). Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia, 186, 195-204.
DOI PMID |
[52] |
Johnson NC, Graham JH, Smith FA (1997). Functioning of mycorrhizas associations along the mutualism-parasitism continuum. New Phytologist, 135, 575-585.
DOI URL |
[53] |
Kadowaki K, Yamamoto S, Sato H, Tanabe AS, Hidaka A, Toju H (2018). Mycorrhizal fungi mediate the direction and strength of plant-soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Communications Biology, 1, 196. DOI: 10.1038/s42003-018-0201-9.
DOI |
[54] |
Kempel A, Rindisbacher A, Fischer M, Allan E (2018). Plant soil feedback strength in relation to large-scale plant rarity and phylogenetic relatedness. Ecology, 99, 597-606.
DOI PMID |
[55] |
Kiers ET, Lovelock CE, Krueger EL, Herre EA (2000). Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecology Letters, 3, 106-113.
DOI URL |
[56] |
Kivlin SN, Hawkes CV, Treseder KK (2011). Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology & Biochemistry, 43, 2294-2303.
DOI URL |
[57] |
Klironomos JN (2002). Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67-70.
DOI |
[58] |
Klironomos JN (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84, 2292-2301.
DOI URL |
[59] |
Koide RT (2000). Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytologist, 147, 233-235.
DOI URL |
[60] | Law R (1988). Some ecological properties of intimate mutualisms involving plants. Symposium of the British Ecological Society, 28, 315-341. |
[61] |
Liang MX, Liu XB, Etienne RS, Huang FM, Wang YF, Yu SX (2015). Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens. Ecology, 96, 562-574.
PMID |
[62] |
Liang MX, Shi LQ, Burslem DFRP, Johnson D, Fang M, Zhang XY, Yu SX (2021). Soil fungal networks moderate density-dependent survival and growth of seedlings. New Phytologist, 230, 2061-2071.
DOI PMID |
[63] |
Liang ZB, Lee DJ, Dweikat IM, Wedin DA, Yuen GY, Drijber RA (2017). Molecular diversity of arbuscular mycorrhizae in roots of Juniperus virginiana invasive to grasslands. Soil Science Society of America Journal, 81, 526-536.
DOI URL |
[64] | Liu M, Zheng R, Bai SL, Wang JG, Li L, Duan GZ (2016). Advances of species diversity of arbuscular mycorrhizal fungi. Microbiology China, 43, 1836-1843. |
[刘敏, 峥嵘, 白淑兰, 王琚钢, 李龙, 段国珍 (2016). 丛枝菌根真菌物种多样性研究进展. 微生物学通报, 43, 1836-1843.] | |
[65] |
Liu XB, Liang MX, Etienne RS, Gilbert GS, Yu SX (2016). Phylogenetic congruence between subtropical trees and their associated fungi. Ecology and Evolution, 6, 8412-8422.
DOI PMID |
[66] |
Liu Y, Fang SQ, Chesson P, He FL (2015). The effect of soil-borne pathogens depends on the abundance of host tree species. Nature Communications, 6, 10017. DOI: 10.1038/ncomms10017.
DOI |
[67] |
Liu Y, He FL (2019). Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. Functional Ecology, 33, 1211-1222.
DOI |
[68] |
Liu Y, Yu SX, Xie ZP, Staehelin C (2012). Analysis of a negative plant-soil feedback in a subtropical monsoon forest. Journal of Ecology, 100, 1019-1028.
DOI URL |
[69] |
Mack KML, Bever JD (2014). Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local. Journal of Ecology, 102, 1195-1201.
PMID |
[70] |
Mangan SA, Herre EA, Bever JD (2010a). Specificity between Neotropical tree seedlings and their fungal mutualists leads to plant-soil feedback. Ecology, 91, 2594-2603.
DOI URL |
[71] |
Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010b). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752-755.
DOI |
[72] |
Mi XC, Feng G, Hu YB, Zhang J, Chen L, Corlett RT, Hughes AC, Pimm S, Schmid B, Shi SH, Svenning JC, Ma KP (2021). The global significance of biodiversity science in China: an overview. National Science Review, 8, nwab032. DOI: 10.1093/nsr/nwab032.
DOI |
[73] |
Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M (2012). Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytologist, 196, 835-844.
DOI PMID |
[74] | Moora M, Zobel M (2010). Arbuscular mycorrhizae and plant-plant interactions impact of invisible world on visible patterns//Pugnaire F. Positive Plant Interactions and Community Dynamics. CRC Press, Boca Raton, USA. 79-98. |
[75] |
Newman EI, Reddell P (1987). The distribution of mycorrhizas among families of vascular plants. New Phytologist, 106, 745-751.
DOI PMID |
[76] |
Newsham KK, Fitter AH, Watkinson AR (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology, 83, 991-1000.
DOI URL |
[77] |
Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, et al. (2013). Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 23, 411-430.
DOI PMID |
[78] |
Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R, Magarey R, Suiter K, Gilbert GS (2015). Phylogenetic structure and host abundance drive disease pressure in communities. Nature, 520, 542-544.
DOI |
[79] |
Peay KG (2016). The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annual Review of Ecology, Evolution, and Systematics, 47, 143-164.
DOI URL |
[80] | Pi L, Liu YX, Shu CW, Zhou EX (2018). Research progress on the interaction between plant pathogen effectors and their host plants. Molecular Plant Breeding, 16, 2035-2040. |
[皮磊, 刘艳潇, 舒灿伟, 周而勋 (2018). 植物病原物效应子与寄主植物互作的研究进展. 分子植物育种, 16, 2035-2040.] | |
[81] |
Powell JR, Rillig MC (2018). Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 220, 1059-1075.
DOI PMID |
[82] |
Read DJ (1991). Mycorrhizas in ecosystems. Experientia, 47, 376-391.
DOI URL |
[83] |
Rowe HI, Brown CS, Claassen VP (2007). Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restoration Ecology, 15, 44-52.
DOI URL |
[84] |
Rúa MA, Antoninka A, Antunes PM, Chaudhary VB, Gehring C, Lamit LJ, Piculell BJ, Bever JD, Zabinski C, Meadow JF, Lajeunesse MJ, Milligan BG, Karst J, Hoeksema JD (2016). Home-field advantage? Evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evolutionary Biology, 16, 122. DOI: 10.1186/s12862-016-0698-9.
DOI |
[85] | Saia S, Tamayo E, Schillaci C, de Vita P (2020). Arbuscular mycorrhizal fungi and nutrient cycling in cropping systems//Datta R, Meena RS, Pathan SI, Ceccherini MT. Carbon and Nitrogen Cycling in Soil. Springer, Singapore. 87-115. |
[86] |
Schroeder JW, Martin JT, Angulo DF, Barbosa JM, Perea R, Arias-Del Razo I, Sebastián-González E, Dirzo R (2018). Community composition and diversity of Neotropical root-associated fungi in common and rare trees. Biotropica, 50, 694-703.
DOI URL |
[87] |
Schroeder JW, Dobson A, Mangan SA, Petticord DF, Herre EA (2020). Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model. Nature Communications, 11, 2204. DOI: 10.1038/s41467-020-16047-5.
DOI |
[88] |
Schroeder JW, Martin JT, Angulo DF, Arias-Del Razo I, Barbosa JM, Perea R, Sebastián-González E, Dirzo R (2019). Host plant phylogeny and abundance predict root- associated fungal community composition and diversity of mutualists and pathogens. Journal of Ecology, 107, 1557-1566.
DOI |
[89] |
Sheng M, Rosche C, Al-Gharaibeh M, Bullington LS, Callaway RM, Clark T, Cleveland CC, Duan WY, Flory SL, Khasa DP, Klironomos JN, McLeod M, Okada M, Pal RW, Shah MA, Lekberg Y (2022). Acquisition and evolution of enhanced mutualism—An underappreciated mechanism for invasive success? The ISME Journal, 16, 2467-2478.
DOI |
[90] |
Shi ZY, Yin KJ, Wang FY, Mickan BS, Wang XG, Zhou WL, Li YJ (2019). Alterations of arbuscular mycorrhizal fungal diversity in soil with elevation in tropical forests of China. Diversity, 11, 181. DOI: 10.3390/d11100181.
DOI |
[91] |
Singh P, Baruah G (2021). Higher order interactions and species coexistence. Theoretical Ecology, 14, 71-83.
DOI |
[92] |
Smith FA, Jakobsen I, Smith SE (2000). Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist, 147, 357-366.
DOI URL |
[93] | Smith SE, Read D (2008). The symbionts forming arbuscular mycorrhizas//Smith SE, Read D. Mycorrhizal Symbiosis. 3rd ed. Academic Press, London. 13-41. |
[94] |
Song XY, Lim JY, Yang J, Luskin MS (2021). When do Janzen-Connell effects matter? A phylogenetic meta- analysis of conspecific negative distance and density dependence experiments. Ecology Letters, 24, 608-620.
DOI URL |
[95] |
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, et al. (2014). Global diversity and geography of soil fungi. Science, 346, 1256688. DOI: 10.1126/science.1256688.
DOI |
[96] |
Tedersoo L, Bahram M, Zobel M (2020). How mycorrhizal associations drive plant population and community biology. Science, 367, eaba1223. DOI: 10.1126/science.aba1223.
DOI |
[97] |
Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017). Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 355, 173-176.
DOI PMID |
[98] |
Toussaint A, Bueno G, Davison J, Moora M, Tedersoo L, Zobel M, Öpik M, Pärtel M (2020). Asymmetric patterns of global diversity among plants and mycorrhizal fungi. Journal of Vegetation Science, 31, 355-366.
DOI |
[99] |
Trivedi P, Leach JE, Tringe SG, Sa TM, Singh BK (2020). Plant-microbiome interactions: from community assembly to plant health. Nature Reviews: Microbiology, 18, 607-621.
DOI |
[100] |
Turner TR, James EK, Poole PS (2013). The plant microbiome. Genome Biology, 14, 209. DOI: 10.1186/gb-2013-14-6-209.
DOI |
[101] |
van der Heijden MGA, Bardgett RD, van Straalen NM (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
DOI PMID |
[102] |
van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a). Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 79, 2082-2091.
DOI URL |
[103] |
van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72.
DOI |
[104] |
van der Putten WH, Van Dijk C, Peters BAM (1993). Plant- specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 362, 53-56.
DOI |
[105] |
Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206, 1196-1206.
DOI PMID |
[106] |
Vieira LC, da Silva DKA, da Silva IR, Gonçalves CM, de Assis DMA, Oehl F, da Silva GA (2019). Ecological aspects of arbuscular mycorrhizal fungal communities in different habitat types of a Brazilian mountainous area. Ecological Research, 34, 182-192.
DOI URL |
[107] |
Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006). Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters, 9, 1127-1135.
DOI PMID |
[108] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI PMID |
[109] | Xiong T, Liang JL, Li JT, Shu WS, Wang YT (2021). Genomic and transcriptomic studies of several species of arbuscular mycorrhizal fungi. Acta Microbiologica Sinica, 61, 3413-3430. |
[熊天, 梁洁良, 李金天, 束文圣, 王宇涛 (2021). 丛枝菌根真菌数个种的基因组和转录组研究概况. 微生物学报, 61, 3413-3430.] | |
[110] | Yang HY, Zhao LL, He XL (2005). Function of arbuscular mycorrhiza in the restoration and reconstruction of degraded ecosystems. Arid Land Geography, 28, 836-842. |
[杨宏宇, 赵丽莉, 贺学礼 (2005). 丛枝菌根在退化生态系统恢复和重建中的作用. 干旱区地理, 28, 836-842.] | |
[111] | Yang WY, Sun LY, Song FB, Yang XQ, Zhang MJ, Li SX, Zhu XC (2019). Research advances in species diversity of arbuscular mycorrhizal fungi in terrestrial agro-ecosystem. Chinese Journal of Applied Ecology, 30, 3971-3979. |
[杨文莹, 孙露莹, 宋凤斌, 杨小琴, 张梦杰, 李书鑫, 朱先灿 (2019). 陆地农业生态系统丛枝菌根真菌物种多样性研究进展. 应用生态学报, 30, 3971-3979.]
DOI |
|
[112] |
Yenni G, Adler PB, Ernest SKM (2012). Strong self-limitation promotes the persistence of rare species. Ecology, 93, 456-461.
PMID |
[113] | Zhong SY, Zhang J, Chu GW, Xia YJ, Tang XL (2017). Soil aggregate composition and its relationship with arbuscular mycorrhizal fungi in different restoration stages on severely eroded lands. Ecology and Environmental Sciences, 26, 219-226. |
[钟思远, 张静, 褚国伟, 夏艳菊, 唐旭利 (2017). 沿海侵蚀台地不同恢复阶段土壤团聚体组成及其与丛枝菌根真菌的关系. 生态环境学报, 26, 219-226.]
DOI |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[4] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[5] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[6] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[7] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[8] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[9] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[10] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[11] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[12] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[13] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[14] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[15] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19