植物生态学报 ›› 2022, Vol. 46 ›› Issue (5): 493-515.DOI: 10.17521/cjpe.2021.0143
• 综述 • 下一篇
收稿日期:
2021-04-17
接受日期:
2021-10-05
出版日期:
2022-05-20
发布日期:
2021-12-16
通讯作者:
陈保冬
作者简介:
* (bdchen@rcees.ac.cn) ORCID: 陈保冬: 0000-0002-1790-7800基金资助:
XIE Wei1, HAO Zhi-Peng1, ZHANG Xin1, CHEN Bao-Dong1,2,*()
Received:
2021-04-17
Accepted:
2021-10-05
Online:
2022-05-20
Published:
2021-12-16
Contact:
CHEN Bao-Dong
Supported by:
摘要:
丛枝菌根(arbuscular mycorrhizal, AM)真菌是一类能够与绝大多数陆地植物形成共生关系的土壤真菌, 其根外菌丝可以侵染不同植物根系且可以进行菌丝融合, 从而形成丛枝菌根网络(arbuscular mycorrhizal networks, AMNs)。AMNs可以在植物之间转运水分及营养元素如碳(C)、氮(N)、磷(P)等, 最近研究表明AMNs还可以在植物遭受环境胁迫时向邻近植物传递防御信号, 对周围植物起到“预警”作用。目前, 关于环境胁迫条件下AMNs介导的信号物质传递研究仍处于起步阶段, 许多问题亟待回答。该文首先回顾了目前有关AMNs介导的信号物质传递研究进展, 继而梳理了这一研究领域值得进一步探究的科学问题, 包括AMNs在植物间传递防御信号的可能途径及相关机制, AMNs介导的信号传递对菌根共生体系的可能影响, 以及AMNs研究中常用的技术及其发展, 最后讨论了AMNs介导的信号物质传递在作物保护等方面的可能应用。
谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望. 植物生态学报, 2022, 46(5): 493-515. DOI: 10.17521/cjpe.2021.0143
XIE Wei, HAO Zhi-Peng, ZHANG Xin, CHEN Bao-Dong. Research progress and prospect of signal transfer among plants mediated by arbuscular mycorrhizal networks. Chinese Journal of Plant Ecology, 2022, 46(5): 493-515. DOI: 10.17521/cjpe.2021.0143
图1 菌根网络功能研究的相关文献数量。于2020年11月19日通过ISI Web of Science (http://apps.webofknowledge.com)及中国知网(http://www.cnki.net)文献检索平台, 以关键词“mycorrhiz* networks”或“hypha* networks”或“myceli* networks”或“mycorrhiz* bridge”或“mycel* bridge”或“hypha* bridge”以及“菌丝网络”或“菌丝桥”或“菌根网络”进行检索; 文献类型为“article”或“期刊论文”; 发表年限为1990-2020年。检索完成后对检索到的文献进行人工逐一核查, 排除不相关文献。
Fig. 1 Number of studies on the function of mycorrhizal networks. Literature searches were conducted on November 19, 2020 in ISI Web of Science (http://apps.webofknowledge.com) using the following key words: “mycorrhiz* networks” OR “hypha* networks” OR “myceli* networks” OR “mycorrhiz* bridge” OR “mycel* bridge” OR “hypha* bridge”. Papers published in Chinese were searched in China Knowledge Resource Integrated (CNKI) Database (http://www.cnki.net). Literature type was article. Papers were published during 1990-2020. The retrieved literatures were checked manually one by one to exclude irrelevant literatures into statistics.
供体植株 Donor plant | 受体植株 Receiver plant | 菌根真菌种类 Mycorrhizal fungal species | 环境胁迫种类 Environmental stress | 受体植株防御响应参数 Defense-related parameters of receiver plant | 参考文献 Reference |
---|---|---|---|---|---|
番茄 Lycopersicon esculentum | 番茄 Lycopersicon esculentum | 摩西斗管囊霉 Funneliformis mosseae | 茄链格孢菌接种 Alternaria solani inoculation | 防御相关基因: PR1、PR2、PR3、PAL、LOX、AOC; 防御相关酶: POD、PPO、PAL、LOX、几丁质酶、β-1,3-葡聚糖酶 Defense-related genes: PR1, PR2, PR3, PAL, LOX, AOC; Defense-related enzymes: POD, PPO, PAL, LOX, Chitinase, β-1,3-glucanase | Song et al., Xie et al., |
蚕豆 Vicia faba | 蚕豆 Vicia faba | 根内根孢囊霉 Rhizophagus intraradices | 豌豆蚜取食 Acyrthosiphon pisum feeding | 对蚜虫的排斥及对蚜虫天敌寄生蜂的吸引; 挥发性有机物 Repellent to aphids but attractive to aphid enemies such as parasitoids; VOCs | Babikova et al., |
番茄 Lycopersicon esculentum | 番茄 Lycopersicon esculentum | 摩西斗管囊霉 Funneliformis mosseae | 斜纹夜蛾幼虫取食 Spodoptera litura larva feeding | 防御相关基因: LOX、AOC、PI-I、PI-II; 防御相关酶: LOX、PPO、SOD、POD Defense-related genes: LOX, AOC, PI-I, PI-II; Defense-related enzymes: LOX, PPO, SOD, POD | Song et al., Lin et al., |
烟草 Nicotiana tabacum | 烟草 Nicotiana tabacum | 摩西斗管囊霉 Funneliformis mosseae | 青枯菌接种 Ralstonia solanacearum inoculation | 防御相关酶: PAL、PPO、POD Defense-related enzymes: PAL, PPO, POD | Guo et al., |
蚕豆 Vicia faba | 蚕豆 Vicia faba | 异形根孢囊霉 Rhizophagus irregularis | 黑豆蚜取食 Aphis fabae feeding | 防御相关基因: PR1; 根外菌丝际初生代谢物 Defense-related genes: PR1; Primary metabolites in the hyphosphere | Cabral et al., |
蚕豆 Vicia faba | 蚕豆 Vicia faba | 异形根孢囊霉 Rhizophagus irregularis | 蚕豆葡萄孢菌接种 Botrytis fabae inoculation | 防御相关基因: PR1、PR2、PR5; 根外菌丝际初生代谢物 Defense-related genes: PR1, PR2, PR5; Primary metabolites in the hyphosphere | Cabral et al., |
枳 Poncirus trifoliata | 枳 Poncirus trifoliata | 隐类球囊霉 Paraglomus occultum | 地毯草黄单胞菌接种 Xanthomonas axonopodis inoculation | 防御相关基因: PAL、EPS1、PBS3、PR1、PR4、PR5、NPR1; 防御相关酶: PAL; 代谢物: SA; 总可溶性酚; 木质素 Defense-related genes: PAL, EPS1, PBS3, PR1, PR4, PR5, NPR1; Defense-related enzymes: PAL; metabolites: SA; total soluble phenol; lignin | Zhang et al., |
番茄 Lycopersicon esculentum | 番茄 Lycopersicon esculentum | 摩西斗管囊霉 Funneliformis mosseae | 人工落叶 Manual defoliation | 防御相关基因: PAL、PR2; 防御相关酶: PAL、SOD、POD、PPO Defense-related genes: PAL, PR2; Defense-related enzymes: PAL, SOD, POD, PPO | Lian et al., |
Nicotiana attenuate | Nicotiana attenuate | 异形根孢囊霉 Rhizophagus irregularis | 烟草天蛾幼虫口腔分泌物接种 Oral secretions of Manduca sexta larvae inoculation | 叶片初生及次生代谢产物 Leaf primary and secondary metabolites | Song et al., |
马铃薯 Solanum tuberosum | 马铃薯 Solanum tuberosum | 异形根孢囊霉 Rhizophagus irregularis | 致病疫霉接种 Phytophthora infestans inoculation | 防御相关基因: PAL、PR-1b、ERF3、LOX Defense-related genes: PAL, PR-1b, ERF3, LOX | Alaux et al., |
黑麦草 Lolium perenne | 白车轴草 Trifolium repens | 根内根孢囊霉 Rhizophagus intraradices | 针刺模拟蚜虫取食 Acupuncture treatment simulating aphids feeding | 防御相关酶: POD; 叶片次生代谢产物: SA、JA Defense-related enzymes: POD; Leaf secondary metabolites: SA, JA | Wei et al., |
紫花苜蓿 Medicago sativa | 紫花苜蓿 Medicago sativa | 单孢球囊霉 Glomus monosporum | 机械损伤 Mechanical damage | 防御相关酶: SOD、APX、LOX、CPK11、MKK; 挥发性有机物 Defense-related enzymes: SOD, APX, LOX, CPK11, MKK; VOCs | Li et al., |
表1 丛枝菌根网络在植物间传递防御信号研究汇总
Table 1 Summary of the studies on the transfer of defensive signals among plants by arbuscular mycorrhizal networks
供体植株 Donor plant | 受体植株 Receiver plant | 菌根真菌种类 Mycorrhizal fungal species | 环境胁迫种类 Environmental stress | 受体植株防御响应参数 Defense-related parameters of receiver plant | 参考文献 Reference |
---|---|---|---|---|---|
番茄 Lycopersicon esculentum | 番茄 Lycopersicon esculentum | 摩西斗管囊霉 Funneliformis mosseae | 茄链格孢菌接种 Alternaria solani inoculation | 防御相关基因: PR1、PR2、PR3、PAL、LOX、AOC; 防御相关酶: POD、PPO、PAL、LOX、几丁质酶、β-1,3-葡聚糖酶 Defense-related genes: PR1, PR2, PR3, PAL, LOX, AOC; Defense-related enzymes: POD, PPO, PAL, LOX, Chitinase, β-1,3-glucanase | Song et al., Xie et al., |
蚕豆 Vicia faba | 蚕豆 Vicia faba | 根内根孢囊霉 Rhizophagus intraradices | 豌豆蚜取食 Acyrthosiphon pisum feeding | 对蚜虫的排斥及对蚜虫天敌寄生蜂的吸引; 挥发性有机物 Repellent to aphids but attractive to aphid enemies such as parasitoids; VOCs | Babikova et al., |
番茄 Lycopersicon esculentum | 番茄 Lycopersicon esculentum | 摩西斗管囊霉 Funneliformis mosseae | 斜纹夜蛾幼虫取食 Spodoptera litura larva feeding | 防御相关基因: LOX、AOC、PI-I、PI-II; 防御相关酶: LOX、PPO、SOD、POD Defense-related genes: LOX, AOC, PI-I, PI-II; Defense-related enzymes: LOX, PPO, SOD, POD | Song et al., Lin et al., |
烟草 Nicotiana tabacum | 烟草 Nicotiana tabacum | 摩西斗管囊霉 Funneliformis mosseae | 青枯菌接种 Ralstonia solanacearum inoculation | 防御相关酶: PAL、PPO、POD Defense-related enzymes: PAL, PPO, POD | Guo et al., |
蚕豆 Vicia faba | 蚕豆 Vicia faba | 异形根孢囊霉 Rhizophagus irregularis | 黑豆蚜取食 Aphis fabae feeding | 防御相关基因: PR1; 根外菌丝际初生代谢物 Defense-related genes: PR1; Primary metabolites in the hyphosphere | Cabral et al., |
蚕豆 Vicia faba | 蚕豆 Vicia faba | 异形根孢囊霉 Rhizophagus irregularis | 蚕豆葡萄孢菌接种 Botrytis fabae inoculation | 防御相关基因: PR1、PR2、PR5; 根外菌丝际初生代谢物 Defense-related genes: PR1, PR2, PR5; Primary metabolites in the hyphosphere | Cabral et al., |
枳 Poncirus trifoliata | 枳 Poncirus trifoliata | 隐类球囊霉 Paraglomus occultum | 地毯草黄单胞菌接种 Xanthomonas axonopodis inoculation | 防御相关基因: PAL、EPS1、PBS3、PR1、PR4、PR5、NPR1; 防御相关酶: PAL; 代谢物: SA; 总可溶性酚; 木质素 Defense-related genes: PAL, EPS1, PBS3, PR1, PR4, PR5, NPR1; Defense-related enzymes: PAL; metabolites: SA; total soluble phenol; lignin | Zhang et al., |
番茄 Lycopersicon esculentum | 番茄 Lycopersicon esculentum | 摩西斗管囊霉 Funneliformis mosseae | 人工落叶 Manual defoliation | 防御相关基因: PAL、PR2; 防御相关酶: PAL、SOD、POD、PPO Defense-related genes: PAL, PR2; Defense-related enzymes: PAL, SOD, POD, PPO | Lian et al., |
Nicotiana attenuate | Nicotiana attenuate | 异形根孢囊霉 Rhizophagus irregularis | 烟草天蛾幼虫口腔分泌物接种 Oral secretions of Manduca sexta larvae inoculation | 叶片初生及次生代谢产物 Leaf primary and secondary metabolites | Song et al., |
马铃薯 Solanum tuberosum | 马铃薯 Solanum tuberosum | 异形根孢囊霉 Rhizophagus irregularis | 致病疫霉接种 Phytophthora infestans inoculation | 防御相关基因: PAL、PR-1b、ERF3、LOX Defense-related genes: PAL, PR-1b, ERF3, LOX | Alaux et al., |
黑麦草 Lolium perenne | 白车轴草 Trifolium repens | 根内根孢囊霉 Rhizophagus intraradices | 针刺模拟蚜虫取食 Acupuncture treatment simulating aphids feeding | 防御相关酶: POD; 叶片次生代谢产物: SA、JA Defense-related enzymes: POD; Leaf secondary metabolites: SA, JA | Wei et al., |
紫花苜蓿 Medicago sativa | 紫花苜蓿 Medicago sativa | 单孢球囊霉 Glomus monosporum | 机械损伤 Mechanical damage | 防御相关酶: SOD、APX、LOX、CPK11、MKK; 挥发性有机物 Defense-related enzymes: SOD, APX, LOX, CPK11, MKK; VOCs | Li et al., |
图2 丛枝菌根(AM)网络(AMNs)介导的植物间防御信号传递示意图(根据Babikova等(2013a)和Charters等(2020)内容绘制)。A, 未遭受环境胁迫条件下, AM真菌与植物间主要基于“碳-矿质养分”交换建立共生关系。B, 当植物遭受环境胁迫时, AM真菌为获取稳定的光合碳(C)可能会建立以“碳-矿质养分-防御信号”交换为基础的共生关系。图中箭头粗细表示AMNs介导的植物与AM真菌间矿质养分氮(N)、磷(P)、光合C及防御信号交换强弱。
Fig. 2 Proposed framework of arbuscular mycorrhizal (AM) networks (AMNs)-mediated interplant trade based on “carbon-mineral nutrient-defense signal transfer” exchange under non-environmental stress (A) and environmental stress conditions (B)(according to Babikova et al. (2013a) and Charters et al. (2020)). Widths of the arrows indicate the flux intensities of nitrogen (N), phosphorus (P)(red up arrow), signal transfer (blue up arrow) and photoassimilates carbon (C)(green down arrow), respectively.
图3 丛枝菌根(AM)网络(AMNs)介导的供体植株遭受环境胁迫后受体植株总响应程度变化(A)(改自Gilbert & Johnson (2017))、酶活性响应程度变化(B)、防御基因表达响应程度变化(C)及响应时间变化(D)。
Fig. 3 Arbuscular mycorrhizal (AM) networks (AMNs) mediated changes in total response (A)(adapted from Gilbert & Johnson (2017), with permission from Elsevier), enzyme activity response (B), defense gene expression response (C), and total response time (D) of receiver plants after environmental stress imposed on donor plants.
环境胁迫种类 Environmental stress | 植物防御响 应指标 Parameters of plant defensive response | 供体与受体植 株AMNs连接距离1) Distance of AMNs between donor and receiver plants (cm)1) | 供体植株防御响应强度 发生显著变化时间2) Hours of significant changes of donor plant defense response (h)2) | 受体植株防御响应 强度发生显著变化时间3) Hours of significant changes of receiver plant defense response (h)3) | AMNs传递信号 物质时间4) Hours of signals transfer through AMNs (h)4) | 参考文献 Reference |
---|---|---|---|---|---|---|
茄链格孢 菌接种 Alternaria solani inoculation | PAL | 16 | 18-65 | 18 | 18 | Xie et al., |
LOX | 16 | 65-100 | 65-100 | 35 | ||
PR3 | 16 | 18-65 | 18-65 | 47 | ||
地毯草黄单 胞菌接种 Xanthomonas axonopodis inoculation | PAL | 6 | 48 | 48 | 48 | Zhang et al., |
EPS1 | 6 | 48-96 | 48 | 48 | ||
PBS3 | 6 | 48 | 48 | 48 | ||
PR1 | 6 | 48-96 | 48 | 48 | ||
PR4 | 6 | 48 | 48 | 48 | ||
PR5 | 6 | 48-96 | 48 | 48 | ||
NPR1 | 6 | 48 | 48 | 48 | ||
蚕豆葡萄 孢菌接种 Botrytis fabae inoculation | PR1 | 12.5 | 24 | 24-48 | 24 | Cabral et al., |
PR2 | 12.5 | 24-48 | 24 | 24 | ||
PR5 | 12.5 | 24-48 | 24 | 24 | ||
斜纹夜蛾幼 虫取食 Spodoptera litura larva feeding | AOC | 16 | 3 | 3 | 3 | Lin et al., |
LOX | 16 | 3 | 3-6 | 3 | ||
PI-I | 16 | 3 | 3 | 3 | ||
PI-II | 16 | 3 | 3 | 3 | ||
黑豆蚜取食 Aphis fabae feeding | PR1 | 12.5 | 48 | 60 | 12 | Cabral et al., |
豌豆蚜取食 Acyrthosiphon pisum feeding | VOCs | 20 | 72-96 | 72-96 | 24 | Babikova et al., |
卷叶蛾取食 Choristoneura occidentalis feeding | POD | 16 | 24-48 | 24-48 | 24 | Song et al., |
PPO | 16 | 24 | 24-48 | 24 | ||
SOD | 16 | 24 | 24 | 24 |
表2 丛枝菌根(AM)网络(AMNs)在植物间传递防御信号所需时间
Table 2 Time required for arbuscular mycorrhizal (AM) networks (AMNs) to transfer defensive signals among plants
环境胁迫种类 Environmental stress | 植物防御响 应指标 Parameters of plant defensive response | 供体与受体植 株AMNs连接距离1) Distance of AMNs between donor and receiver plants (cm)1) | 供体植株防御响应强度 发生显著变化时间2) Hours of significant changes of donor plant defense response (h)2) | 受体植株防御响应 强度发生显著变化时间3) Hours of significant changes of receiver plant defense response (h)3) | AMNs传递信号 物质时间4) Hours of signals transfer through AMNs (h)4) | 参考文献 Reference |
---|---|---|---|---|---|---|
茄链格孢 菌接种 Alternaria solani inoculation | PAL | 16 | 18-65 | 18 | 18 | Xie et al., |
LOX | 16 | 65-100 | 65-100 | 35 | ||
PR3 | 16 | 18-65 | 18-65 | 47 | ||
地毯草黄单 胞菌接种 Xanthomonas axonopodis inoculation | PAL | 6 | 48 | 48 | 48 | Zhang et al., |
EPS1 | 6 | 48-96 | 48 | 48 | ||
PBS3 | 6 | 48 | 48 | 48 | ||
PR1 | 6 | 48-96 | 48 | 48 | ||
PR4 | 6 | 48 | 48 | 48 | ||
PR5 | 6 | 48-96 | 48 | 48 | ||
NPR1 | 6 | 48 | 48 | 48 | ||
蚕豆葡萄 孢菌接种 Botrytis fabae inoculation | PR1 | 12.5 | 24 | 24-48 | 24 | Cabral et al., |
PR2 | 12.5 | 24-48 | 24 | 24 | ||
PR5 | 12.5 | 24-48 | 24 | 24 | ||
斜纹夜蛾幼 虫取食 Spodoptera litura larva feeding | AOC | 16 | 3 | 3 | 3 | Lin et al., |
LOX | 16 | 3 | 3-6 | 3 | ||
PI-I | 16 | 3 | 3 | 3 | ||
PI-II | 16 | 3 | 3 | 3 | ||
黑豆蚜取食 Aphis fabae feeding | PR1 | 12.5 | 48 | 60 | 12 | Cabral et al., |
豌豆蚜取食 Acyrthosiphon pisum feeding | VOCs | 20 | 72-96 | 72-96 | 24 | Babikova et al., |
卷叶蛾取食 Choristoneura occidentalis feeding | POD | 16 | 24-48 | 24-48 | 24 | Song et al., |
PPO | 16 | 24 | 24-48 | 24 | ||
SOD | 16 | 24 | 24 | 24 |
[1] |
Achatz M, Rillig MC (2014). Arbuscular mycorrhizal fungal hyphae enhance transport of the allelochemical juglone in the field. Soil Biology & Biochemistry, 78, 76-82.
DOI URL |
[2] |
Alaux PL, Naveau F, Declerck S, Cranenbrouck S (2020). Common mycorrhizal network induced JA/ET genes expression in healthy potato plants connected to potato plants infected by Phytophthora infestans. Frontiers in Plant Science, 11, 602. DOI: 10.3389/fpls.2020.00602.
DOI URL |
[3] |
Alaux PL, Zhang YQ, Gilbert L, Johnson D (2021). Can common mycorrhizal fungal networks be managed to enhance ecosystem functionality? Plants, People, Planet, 3, 433-444.
DOI URL |
[4] |
Albornoz FE, Dixon KW, Lambers H (2021). Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do? Soil Ecology Letters, 3, 73-82.
DOI |
[5] |
Awaydul A, Zhu WY, Yuan YG, Xiao J, Hu H, Chen X, Koide RT, Cheng L (2019). Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza, 29, 29-38.
DOI PMID |
[6] |
Babikova Z, Gilbert L, Bruce T, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013a). Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters, 16, 835-843.
DOI URL |
[7] |
Babikova Z, Johnson D, Bruce T, Pickett J, Gilbert L (2013b). How rapid is aphid-induced signal transfer between plants via common mycelial networks? Communicative & Integrative Biology, 6, e25904. DOI: 10.4161/cib.25904.
DOI |
[8] |
Babikova Z, Johnson D, Bruce TJA, Pickett J, Gilbert L (2014). Underground allies: How and why do mycelial networks help plants defend themselves?: What are the fitness, regulatory, and practical implications of defence-related signaling between plants via common mycelial networks? BioEssays, 36, 21-26.
DOI PMID |
[9] |
Barto EK, Hilker M, Müller F, Mohney BK, Weidenhamer JD, Rillig MC (2011). The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLOS ONE, 6, e27195. DOI: 10.1371/journal.pone.0027195.
DOI URL |
[10] |
Barto EK, Weidenhamer JD, Cipollini D, Rillig MC (2012). Fungal superhighways: Do common mycorrhizal networks enhance below ground communication? Trends in Plant Science, 17, 633-637.
DOI URL |
[11] |
Berger S, Sinha AK, Roitsch T (2007). Plant physiology meets phytopathology: plant primary metabolism and plant- pathogen interactions. Journal of Experimental Botany, 58, 4019-4026.
DOI URL |
[12] |
Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009). Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). Journal of Chemical Ecology, 35, 28-38.
DOI URL |
[13] |
Bodenhausen N, Deslandes-Hérold G, Waelchli J, Held A, van der Heijden MGA, Schlaeppi K (2021). Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi. Mycorrhiza, 31, 137-148.
DOI PMID |
[14] | Bonneau L, Recorbet G, van Tuinen D, Wipf D, Courty PE (2019). Analysis of common mycorrhizal networks in microcosms//Reinhardt D, Sharma A. Methods in Rhizosphere Biology Research. Springer, Singapore. 271-279. |
[15] |
Brundrett MC, Tedersoo L (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220, 1108-1115.
DOI PMID |
[16] |
Bücking H, Shachar-Hill Y (2005). Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytologist, 165, 899-912.
PMID |
[17] |
Cabral C, Wollenweber B, António C, Ravnskov S (2019). Activity in the arbuscular mycorrhizal hyphosphere warning neighbouring plants. Frontiers in Plant Science, 10, 511. DOI: 10.3389/fpls.2019.00511.
DOI URL |
[18] |
Cabral C, Wollenweber B, António C, Rodrigues AM, Ravnskov S (2018). Aphid infestation in the phyllosphere affects primary metabolic profiles in the arbuscular mycorrhizal hyphosphere. Scientific Reports, 8, 14442. DOI: 10.1038/s41598-018-32670-1.
DOI URL |
[19] |
Cahanovitc R, Livne-Luzon S, Angel R, Klein T (2022). Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. The ISME Journal, 16, 1420-1429.
DOI URL |
[20] |
Cameron DD, Neal AL, van Wees SCM, Ton J (2013). Mycorrhiza-induced resistance: more than the sum of its parts? Trends in Plant Science, 18, 539-545.
DOI PMID |
[21] |
Campos-Soriano L, García-Garrido JM, Segundo BS (2010). Activation of basal defense mechanisms of rice plants by Glomus intraradices does not affect the arbuscular mycorrhizal symbiosis. New Phytologist, 188, 597-614.
DOI PMID |
[22] |
Cardini A, Pellegrino E, Declerck S, Calonne-Salmon M, Mazzolai B, Ercoli L (2021). Direct transfer of zinc between plants is channelled by common mycorrhizal network of arbuscular mycorrhizal fungi and evidenced by changes in expression of zinc transporter genes in fungus and plant. Environmental Microbiology, 23, 5883-5900.
DOI URL |
[23] |
Charters MD, Sait SM, Field KJ (2020). Aphid herbivory drives asymmetry in carbon for nutrient exchange between plants and an arbuscular mycorrhizal fungus. Current Biology, 30, 1801-1808.
DOI PMID |
[24] |
Chen Y, Bonkowski M, Shen Y, Griffiths BS, Jiang YJ, Wang XY, Sun B (2020). Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. Microbiome, 8, 4. DOI: 10.1186/s40168-019-0775-6.
DOI PMID |
[25] |
Cheol Song G, Sim HJ, Kim SG, Ryu CM (2016). Root-mediated signal transmission of systemic acquired resistance against above-ground and below-ground pathogens. Annals of Botany, 118, 821-831.
DOI PMID |
[26] |
Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology, 171, 1009-1023.
DOI PMID |
[27] |
Choudhury FK, Devireddy AR, Azad RK, Shulaev V, Mittler R (2018). Local and systemic metabolic responses during light-induced rapid systemic signaling. Plant Physiology, 178, 1461-1472.
DOI PMID |
[28] |
Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006). Priming: getting ready for battle. Molecular Plant-Microbe Interactions, 19, 1062-1071.
PMID |
[29] |
Corrales A, Mangan SA, Turner BL, Dalling JW (2016). An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecology Letters, 19, 383-392.
DOI PMID |
[30] |
Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009). Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 181, 924-937.
DOI URL |
[31] |
de Novais CB, Sbrana C, da Conceição Jesus E, Rouws LFM, Giovannetti M, Avio L, Siqueira JO, Saggin Júnior OJ, da Silva EMR, de Faria SM, (2020). Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium. Mycorrhiza, 30, 389-396.
DOI URL |
[32] |
Duhamel M, Pel R, Ooms A, Bücking H, Jansa J, Ellers J, van Straalen NM, Wouda T, Vandenkoornhuyse P, Kiers ET (2013). Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae? Ecology, 94, 2019-2029.
PMID |
[33] |
Egerton-Warburton LM, Querejeta JI, Allen MF (2007). Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Journal of Experimental Botany, 58, 1473-1483.
PMID |
[34] |
El-Komy MH (2014). Comparative analysis of defense responses in chocolate spot-resistant and -susceptible faba bean (Vicia faba) cultivars following infection by the necrotrophic fungus Botrytis fabae. The Plant Pathology Journal, 30, 355-366.
DOI URL |
[35] |
Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bücking H (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 203, 646-656.
DOI PMID |
[36] |
Fernández I, Cosme M, Stringlis IA, Yu K, de Jonge R, van Wees SM, Pozo MJ, Pieterse CMJ, van der Heijden MGA (2019). Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. New Phytologist, 223, 867-881.
DOI PMID |
[37] |
Fichman Y, Zandalinas SI, Mittler R (2020). Untangling the ties that bind different systemic signals in plants. Science Signaling, 13, eabb9505. DOI: 10.1126/scisignal.abb9505.
DOI URL |
[38] |
Gallou A, Lucero Mosquera HP, Cranenbrouck S, Suárez JP, Declerck S (2011). Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiological and Molecular Plant Pathology, 76, 20-26.
DOI URL |
[39] | Gilbert L, Johnson D (2017). Plant-plant communication through common mycorrhizal networks//Becard G. How Plants Communicate with Their Biotic Environment. Academic Press, London. |
[40] |
Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001). The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytologist, 151, 717-724.
DOI PMID |
[41] |
Gorzelak MA, Asay AK, Pickles BJ, Simard SW (2015). Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB PLANTS, 7, plv050. DOI: 10.1093/aobpla/plv050.
DOI |
[42] |
Goto Y, Maki N, Ichihashi Y, Kitazawa D, Igarashi D, Kadota Y, Shirasu K (2020). Exogenous treatment with glutamate induces immune responses in Arabidopsis. Molecular Plant-Microbe Interactions, 33, 474-487.
DOI URL |
[43] |
Grime JP, Mackey JM, Hillier SH, Read DJ (1988). Mycorrhizal infection and plant species diversity. Nature, 334, 202.
DOI URL |
[44] |
Gruner K, Griebel T, Návarová H, Attaran E, Zeier J (2013). Reprogramming of plants during systemic acquired resistance. Frontiers in Plant Science, 4, 252. DOI: 10.3389/fpls.2013.00252.
DOI |
[45] | Guo T, Liu XL, Shen H (2015). The effect of transfer between roots of different tobacco plants through common arbuscular mycorrhiza networks on enzyme activities related to disease resistance. Journal of Plant Protection, 42, 390-395. |
[ 郭涛, 刘先良, 申鸿 (2015). 丛枝菌根菌丝桥传递作用对烟草抗病性相关酶活性的影响. 植物保护学报, 42, 390-395.] | |
[46] | Heil M, Silva Bueno JC (2007). Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proceedings of the National Academy of Sciences of the United States of America, 104, 5467-5472. |
[47] |
Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011). A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. The Plant Cell, 23, 3812-3823.
DOI URL |
[48] |
Hettenhausen C, Li J, Zhuang HF, Sun HH, Xu YX, Qi JF, Zhang JX, Lei YT, Qin Y, Sun GL, Wang L, Baldwin IT, Wu JQ (2017). Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. Proceedings of the National Academy of Sciences of the United States of America, 114, 6703-6709.
DOI PMID |
[49] |
Hewins CR, Carrino-Kyker SR, Burke DJ (2015). Seasonal variation in mycorrhizal fungi colonizing roots of Allium tricoccum (wild leek) in a mature mixed hardwood forest. Mycorrhiza, 25, 469-483.
DOI URL |
[50] | Hodge A, Fitter AH (2010). Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 107, 13754-13759. |
[51] |
Hu YJ, Wu SL, Sun YQ, Li T, Zhang X, Chen CY, Lin G, Chen BD (2015). Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L. Mycorrhiza, 25, 131-142.
DOI URL |
[52] | Janoušková M, Caklová P (2020). Molecular quantification of arbuscular mycorrhizal fungal root colonization//Ferrol N, Lanfranco L. Arbuscular Mycorrhizal Fungi. Humana, New York. |
[53] |
Jiang FY, Zhang L, Zhou JC, George TS, Feng G (2021). Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytologist, 230, 304-315.
DOI URL |
[54] |
Jiang YN, Wang WX, Xie QJ, Liu N, Liu LX, Wang DP, Zhang XW, Yang C, Chen XY, Tang DZ, Wang ET (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356, 1172-1175.
DOI PMID |
[55] |
Johnson D, Gilbert L (2015). Interplant signalling through hyphal networks. New Phytologist, 205, 1448-1453.
DOI PMID |
[56] |
Johnson D, Leake JR, Read DJ (2001). Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytologist, 152, 555-562.
DOI PMID |
[57] |
Kachroo A, Kachroo P (2020). Mobile signals in systemic acquired resistance. Current Opinion in Plant Biology, 58, 41-47.
DOI PMID |
[58] |
Karban R, Shiojiri K, Ishizaki S, Wetzel WC, Evans RY (2013). Kin recognition affects plant communication and defence. Proceedings of the Royal Society B, 280, 20123062. DOI: 10.1098/rspb.2012.3062.
DOI |
[59] |
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333, 880-882.
DOI PMID |
[60] |
Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004). Methods of studying soil microbial diversity. Journal of Microbiological Methods, 58, 169-188.
DOI URL |
[61] |
Koch KE (1996). Carbohydrate-modulated gene expression in plants. Plant Physiology and Plant Molecular Biology, 47, 509-540.
DOI URL |
[62] |
Kong CH, Zhang SZ, Li YH, Xia ZC, Yang XF, Meiners SJ, Wang P (2018). Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications, 9, 3867. DOI: 10.1038/s41467-018-06429-1.
DOI URL |
[63] |
Kong HG, Song GC, Sim HJ, Ryu CM (2021). Achieving similar root microbiota composition in neighbouring plants through airborne signalling. The ISME Journal, 15, 397- 408.
DOI URL |
[64] | Lei Y, Wu SL, Hao ZP, Chen BD (2013). Development of arbuscular mycorrhizal hyphal networks mediated by different plants and the time effects. Acta Botanica Boreali- Occidentalia Sinica, 33, 154-161. |
[ 雷垚, 伍松林, 郝志鹏, 陈保冬 (2013). 丛枝菌根根外菌丝网络形成过程中的时间效应及植物介导作用. 西北植物学报, 33, 154-161.] | |
[65] | Lenz DE (2021). Propagation of anti-herbivore defense cues in a common mycorrhizal network. California State University, Sacramento, USA. |
[66] | Li B, Li YY, Wu HM, Zhang FF, Li CJ, Li XX, Lambers H, Li L (2016). Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 113, 6496-6501. |
[67] | Li S, Sina YZ, Xu R, Zi SH, Fan LY, Liu T (2021). Defense signal transmission between alfalfa plants through underground mycorrhizal network. Journal of Tropical and Subtropical Botany, 29, 382-388. |
[ 李莎, 斯那永宗, 徐若, 字淑慧, 范林元, 刘涛 (2021). 丛枝菌丝网络介导苜蓿植株间机械损伤信号的传递. 热带亚热带植物学报, 29, 382-388.] | |
[68] | Lian FZ, Lin YB, Hu L, Wang J, Zeng RS, Song YY (2019). Transfer of mechanical wounding signaling between tomato plants through common mycorrhizal networks. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 48, 9-15. |
[ 廉法卓, 林熠斌, 胡林, 王杰, 曾任森, 宋圆圆 (2019). 菌根菌丝网络介导的番茄植株间机械损伤信号的传递. 福建农林大学学报(自然科学版), 48, 9-15.] | |
[69] |
Liang M, Johnson D, Burslem DFRP, Yu S, Fang M, Taylor JD, Taylor AFS, Helgason T, Liu X (2020). Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nature Communications, 11, 2636. DOI: 10.1038/s41467-020-16507-y.
DOI URL |
[70] |
Lim GH, Liu HZ, Yu KS, Liu RY, Shine MB, Fernandez J, Burch-Smith T, Mobley JK, McLetchie N, Kachroo A, Kachroo P (2020). The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Science Advances, 6, eaaz0478. DOI: 10.1126/sciadv.aaz0478.
DOI |
[71] | Lin XG (2010). Principles and Methods of Soil Microbiology Research. Higher Education Press, Beijing. |
[ 林先贵 (2010). 土壤微生物研究原理与方法. 高等教育出版社, 北京.] | |
[72] | Lin YB, Liu TT, Xue RR, Wu L, Zeng RS, Song YY (2018). Transfer of systemic signaling of insect resistance between roots of tomato plant through arbuscular mycorrhizal networks. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 47, 547-553. |
[ 林熠斌, 刘婷婷, 薛蓉蓉, 吴磊, 曾任森, 宋圆圆 (2018). 丛枝菌根菌丝网络介导的番茄植株根系间抗虫系统性信号的传递. 福建农林大学学报(自然科学版), 47, 547-553.] | |
[73] | Liu RJ, Chen YL (2007). Mycorrhizology. Science Press, Beijing. |
[ 刘润进, 陈应龙 (2007). 菌根学. 科学出版社, 北京.] | |
[74] |
Luthfiana N, Inamura N, Tantriani, Sato T, Saito K, Oikawa A, Chen WG, Tawaraya K (2021). Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Mycorrhiza, 31, 403-412.
DOI PMID |
[75] |
Martínez-Medina A, Pescador L, Fernández I, Rodríguez- Serrano M, García JM, Romero-Puertas MC, Pozo MJ (2019). Nitric oxide and phytoglobin PHYTOGB1 are regulatory elements in the Solanum lycopersicum-Rhizophagus irregularis mycorrhizal symbiosis. New Phytologist, 223, 1560-1574.
DOI PMID |
[76] |
McGuire KL (2007). Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology, 88, 567-574.
PMID |
[77] |
Murata M, Nakai Y, Kawazu K, Ishizaka M, Kajiwara H, Abe H, Takeuchi K, Ichinose Y, Mitsuhara I, Mochizuki A, Seo S (2019). Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance. Plant Physiology, 179, 1822-1833.
DOI PMID |
[78] | Ninkovic V, Markovic D, Rensing M (2021). Plant volatiles as cues and signals in plant communication. Plant, Cell & Environment, 44, 1030-1043. |
[79] |
Noë R, Kiers ET (2018). Mycorrhizal markets, firms, and co-ops. Trends in Ecology & Evolution, 33, 777-789.
DOI URL |
[80] |
Oelmüller R (2019). Interplant communication via hyphal networks. Plant Physiology Reports, 24, 463-473.
DOI URL |
[81] |
Olsson PA, Bååth E, Jakobsen I, Söderström B (1996). Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biology & Biochemistry, 28, 463-470.
DOI URL |
[82] | Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010). The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist, 188, 223-241. |
[83] |
Orlovskis Z, Reymond P (2020). Pieris brassicae eggs trigger interplant systemic acquired resistance against a foliar pathogen in Arabidopsis. New Phytologist, 228, 1652-1661.
DOI URL |
[84] |
Pepe A, Sbrana C, Ferrol N, Giovannetti M (2017). An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. Mycorrhiza, 27, 659-668.
DOI URL |
[85] |
Pfeffer PE, Douds Jr DD, Bücking H, Schwartz DP, Shachar-Hill Y (2004). The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytologist, 163, 617-627.
DOI PMID |
[86] |
Pickett JA, Khan ZR (2016). Plant volatile-mediated signalling and its application in agriculture: successes and challenges. New Phytologist, 212, 856-870.
DOI PMID |
[87] |
Pickles BJ, Wilhelm R, Asay AK, Hahn AS, Simard SW, Mohn WW (2017). Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. New Phytologist, 214, 400-411.
DOI PMID |
[88] |
Pusztahelyi T, Holb IJ, Pócsi I (2015). Secondary metabolites in fungus-plant interactions. Frontiers in Plant Science, 6, 573. DOI: 10.3389/fpls.2015.00573.
DOI PMID |
[89] |
Ren LX, Lou YS, Zhang N, Zhu XD, Hao WY, Sun SB, Shen QR, Xu GH (2013). Role of arbuscular mycorrhizal network in carbon and phosphorus transfer between plants. Biology and Fertility of Soils, 49, 3-11.
DOI URL |
[90] |
Řezáčová V, Zemková L, Beskid O, Püschel D, Konvalinková T, Hujslová M, Slavíková R, Jansa J (2018). Little cross-feeding of the mycorrhizal networks shared between C3-Panicum bisulcatum and C4-Panicum maximum under different temperature regimes. Frontiers in Plant Science, 9, 449. DOI: 10.3389/fpls.2018.00449.
DOI URL |
[91] |
Rivero J, Lidoy J, Llopis-Giménez Á, Herrero S, Flors V, Pozo MJ (2021). Mycorrhizal symbiosis primes the accumulation of antiherbivore compounds and enhances herbivore mortality in tomato. Journal of Experimental Botany, 72, 5038-5050.
DOI URL |
[92] |
Robert-Seilaniantz A, Grant M, Jones JDG (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49, 317-343.
DOI PMID |
[93] |
Saijo Y, Loo EPI (2020). Plant immunity in signal integration between biotic and abiotic stress responses. New Phytologist, 225, 87-104.
DOI URL |
[94] |
Schweiger R, Baier MC, Müller C (2014). Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake. Molecular Plant-Microbe Interactions, 27, 1403-1412.
DOI PMID |
[95] |
Selosse MA, Richard F, He XH, Simard SW (2006). Mycorrhizal networks: des liaisons dangereuses? Trends in Ecology & Evolution, 21, 621-628.
DOI URL |
[96] |
Shao QL, Gao QF, Lhamo D, Zhang HS, Luan S (2020). Two glutamate-and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis. Science Signaling, 13, eaba1453. DOI: 10.1126/scisignal.aba1453.
DOI |
[97] | Sharifi R, Ryu CM (2021). Social networking in crop plants: wired and wireless cross-plant communications. Plant, Cell & Environment, 44, 1095-1110. |
[98] |
Sharma E, Anand G, Kapoor R (2017). Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Annals of Botany, 119, 791-801.
DOI PMID |
[99] |
Silvani VA, Statello M, Scorza MV, Pérgola M, Colombo RP, Godeas AM (2019). A novel in vitro methodology to cultivate arbuscular mycorrhizal fungi combining soil and synthetic media. Symbiosis, 79, 163-170.
DOI |
[100] |
Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 26, 39-60.
DOI URL |
[101] | Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. 3rd ed. Academic Press, New York. |
[102] |
Song YY, Simard SW, Carroll A, Mohn WW, Zeng RS (2015). Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Scientific Reports, 5, 8495. DOI: 10.1038/srep08495.
DOI URL |
[103] | Song YY, Wang M, Zeng RS, Groten K, Baldwin IT (2019). Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. Plant, Cell & Environment, 42, 2945-2961. |
[104] |
Song YY, Ye M, Li CY, He XH, Zhu-Salzman K, Wang RL, Su YJ, Luo SM, Zeng RS (2014). Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Scientific Reports, 4, 3915. DOI: 10.1038/srep03915.
DOI URL |
[105] |
Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010). Interplant communication of tomato plants through underground common mycorrhizal networks. PLOS ONE, 5, e13324. DOI: 10.1371/journal.pone.0013324.
DOI URL |
[106] |
Takahashi F, Shinozaki K (2019). Long-distance signaling in plant stress response. Current Opinion in Plant Biology, 47, 106-111.
DOI PMID |
[107] |
Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, Ruan Y, Geisen S, Shen Q, Kowalchuk GA (2020). Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome, 8, 137. DOI: 10.1186/s40168-020-00892-z.
DOI URL |
[108] |
Tedersoo L, Bahram M, Zobel M (2020). How mycorrhizal associations drive plant population and community biology. Science, 367, eaba1223. DOI: 10.1126/science.aba1223.
DOI |
[109] |
Tomczak VV, Müller C (2017). Influence of arbuscular mycorrhizal stage and plant age on the performance of a generalist aphid. Journal of Insect Physiology, 98, 258-266.
DOI URL |
[110] |
Toyota M, Spencer D, Sawai-Toyota S, Wang JQ, Zhang T, Koo AJ, Howe GA, Gilroy S (2018). Glutamate triggers long-distance, calcium-based plant defense signaling. Science, 361, 1112-1115.
DOI URL |
[111] |
Vahabi K, Reichelt M, Scholz SS, Furch ACU, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R (2018). Alternaria brassicae induces systemic jasmonate responses in Arabidopsis which travel to neighboring plants via a Piriformsopora indica hyphal network and activate abscisic acid responses. Frontiers in Plant Science, 9, 626. DOI: 10.3389/fpls.2018.00626.
DOI URL |
[112] |
van der Heijden MGA, Horton TR (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97, 1139-1150.
DOI URL |
[113] |
van’t Padje A, Oyarte Galvez L, Klein M, Hink MA, Postma M, Shimizu T, Kiers ET (2021). Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. The ISME Journal, 15, 435-449.
DOI URL |
[114] |
vanʼt Padje A, Werner GDA, Kiers ET (2020). Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt “crashes” and “booms” of resource availability. New Phytologist, 229, 2933-2944.
DOI URL |
[115] |
Varga S, Kytöviita MM (2016). Faster acquisition of symbiotic partner by common mycorrhizal networks in early plant life stage. Ecosphere, 7, e01222. DOI: 10.1002/ecs2.1222.
DOI |
[116] |
Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A, Sommer A, Chen YY, Wenig M, Nayem S (2021). Systemic propagation of immunity in plants. New Phytologist, 229, 1234- 1250.
DOI URL |
[117] |
Voets L, de la Providencia IE, Fernandez K, IJdo M, Cranenbrouck S, Declerck S (2009). Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza, 19, 347-356.
DOI URL |
[118] |
Voets L, Goubau I, Olsson PA, Merckx R, Declerck S (2008). Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. FEMS Microbiology Ecology, 65, 350-360.
DOI URL |
[119] |
Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012). Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiology, 159, 789-797.
DOI URL |
[120] |
Wang M, Schäfer M, Li D, Halitschke R, Dong C, McGale E, Paetz C, Song Y, Li S, Dong J, Heiling S, Groten K, Franken P, Bitterlich M, Harrison MJ, Paszkowski U, Baldwin IT (2018). Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi. Elife, 7, e37093. DOI: 10.7554/eLife.37093.
DOI URL |
[121] | Wang NQ, Kong CH, Wang P, Meiners SJ (2021). Root exudate signals in plant-plant interactions. Plant, Cell & Environment, 44, 1044-1058. |
[122] | Wang Q, Wang Q, Wang XJ, Zhang L, Jin L (2015). Research progress on ecological function of arbuscular mycorrhizal network. Chinese Journal of Applied Ecology, 26, 2192- 2202. |
[ 王茜, 王强, 王晓娟, 张亮, 金樑 (2015). 丛枝菌根网络的生态学功能研究进展. 应用生态学报, 26, 2192-2202.] | |
[123] | Wang S, Chen A, Xie K, Yang X, Luo Z, Chen J, Zeng D, Ren Y, Yang C, Wang L, Feng H, López-Arredondo DL, Xu G (2020). Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proceedings of the National Academy of Sciences of the United States of America, 117, 16649-16659. |
[124] | Wang XJ (2019). Plant Physiology. Higher Education Press, Beijing. |
[ 王小菁 (2019). 植物生理学. 高等教育出版社, 北京.] | |
[125] | Wei Y, Wang XY, Li YD, Duan TY (2020). Stress tolerance signal transfer by arbuscular mycorrhizal fungi in a white clover-perennial ryegrass mixture. Acta Prataculturae Sinica, 29, 138-146. |
[ 魏勇, 王晓瑜, 李应德, 段廷玉 (2020). AM真菌在白三叶-黑麦草体系中对抗逆信号的传导作用. 草业学报, 29, 138-146.] | |
[126] |
Weremijewicz J, da Silveira Lobo OʼReilly Sternberg L, Janos DP (2016). Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytologist, 212, 461-471.
DOI PMID |
[127] |
Whiteside MD, Werner GDA, Caldas VEA, van’t Padje A, Dupin SE, Elbers B, Bakker M, Wyatt GAK, Klein M, Hink MA, Postma M, Vaitla B, Noë R, Shimizu TS, West SA, Toby Kiers E (2019). Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Current Biology, 29, 2043- 2050.
DOI PMID |
[128] |
Wilkinson TDJ, Ferrari J, Hartley SE, Hodge A (2019). Aphids can acquire the nitrogen delivered to plants by arbuscular mycorrhizal fungi. Functional Ecology, 33, 576-586.
DOI |
[129] |
Wu JQ, Baldwin IT (2010). New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics, 44, 1-24.
DOI URL |
[130] | Xie LJ, Song YY, Zeng RS, Wang RL, Wei XC, Ye M, Hu L, Zhang H (2012). Disease resistance signal transfer between roots of different tomato plants through common arbuscular mycorrhiza networks. Chinese Journal of Applied Ecology, 23, 1145-1152. |
[ 谢丽君, 宋圆圆, 曾任森, 王瑞龙, 魏晓晨, 叶茂, 胡林, 张晖 (2012). 丛枝菌根菌丝桥介导的番茄植株根系间抗病信号的传递. 应用生态学报, 23, 1145-1152.] | |
[131] | Yan FM (2011). Chemical Ecology. Science Press, Beijing. |
[ 闫凤鸣 (2011). 化学生态学. 科学出版社, 北京.] | |
[132] |
Yuan YG, van Kleunen M, Li JM (2021). A parasite indirectly affects nutrient distribution by common mycorrhizal networks between host and neighboring plants. Ecology, 102, e03339. DOI: 10.1002/ecy.3339.
DOI |
[133] | Zhang JL, Li XL, Yang ZF, Li CJ, Zhang FS (1996). Phosphorus transfer via VA mycorrhizal hyphae link between roots of red clover. Journal of China Agricultural University, 1, 9-14. |
[ 张俊伶, 李晓林, 杨志福, 李春俭, 张福锁 (1996). 五室隔板法研究三叶草根间菌丝桥磷传递的可行性. 中国农业大学学报, 1, 9-14.] | |
[134] |
Zhang L, Feng G, Declerck S (2018a). Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. The ISME Journal, 12, 2339-2351.
DOI URL |
[135] |
Zhang PJ, Zhao C, Ye ZH, Yu XP (2020a). Trade-off between defense priming by herbivore-induced plant volatiles and constitutive defense in tomato. Pest Management Science, 76, 1893-1901.
DOI URL |
[136] |
Zhang W, Li XG, Sun K, Tang MJ, Xu FJ, Zhang M, Dai CC (2020b). Mycelial network-mediated rhizobial dispersal enhances legume nodulation. The ISME Journal, 14, 1015- 1029.
DOI URL |
[137] |
Zhang Y, Kastman EK, Guasto JS, Wolfe BE (2018b). Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nature Communications, 9, 336. DOI: 10.1038/s41467-017-02522-z.
DOI URL |
[138] |
Zhang YC, Zou YN, Liu LP, Wu QS (2019). Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (Poncirus trifoliata). Journal of Integrative Plant Biology, 61, 1099-1111.
DOI URL |
[139] |
Zhang Z, Liu Y, Yuan L, Weber E, van Kleunen M, (2021). Effect of allelopathy on plant performance: a meta-analysis. Ecology Letters, 24, 348-362.
DOI URL |
[140] |
Zhao XT, Song LY, Jiang LW, Zhu YT, Gao QH, Wang DD, Xie J, Lv M, Liu P, Li MJ (2020). The integration of transcriptomic and transgenic analyses reveals the involvement of the SA response pathway in the defense of chrysanthemum against the necrotrophic fungus Alternaria sp. Horticulture Research, 7, 20. DOI: 10.1038/s41438-020-0297-1.
DOI URL |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[3] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[4] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[5] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[6] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[7] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[8] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[9] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
[10] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[11] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[12] | 单立山, 苏铭, 张正中, 王洋, 王珊, 李毅. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4): 475-486. |
[13] | 刘海跃, 李欣玫, 张琳琳, 王姣姣, 贺学礼. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2): 252-260. |
[14] | 陈宝明, 韦慧杰, 陈伟彬, 朱政财, 原亚茹, 张永隆, 蓝志刚. 外来入侵植物对土壤氮转化主要过程及相关微生物的影响[J]. 植物生态学报, 2018, 42(11): 1071-1081. |
[15] | 刘明秀, 梁国鲁. 植物比叶质量研究进展[J]. 植物生态学报, 2016, 40(8): 847-860. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19