植物生态学报 ›› 2018, Vol. 42 ›› Issue (2): 252-260.DOI: 10.17521/cjpe.2017.0138
所属专题: 菌根真菌
• 研究论文 • 上一篇
出版日期:
2018-02-20
发布日期:
2018-04-16
通讯作者:
贺学礼
基金资助:
LIU Hai-Yue,LI Xin-Mei,ZHANG Lin-Lin,WANG Jiao-Jiao,HE Xue-Li()
Online:
2018-02-20
Published:
2018-04-16
Contact:
Xue-Li HE
Supported by:
摘要:
2015年7月, 沿荒漠植物花棒(Hedysarum scoparium)天然分布带, 在内蒙古、宁夏、甘肃选取7个典型样地, 采集花棒根际0-30 cm土层样品, 研究丛枝菌根(AM)真菌群落结构变化和土壤因子的生态功能。试验基于形态特征对分离的AM真菌孢子进行分类鉴定, 共分离鉴定AM真菌6属42种。群落结构分析表明不同样地的AM真菌群落结构差异显著, 土壤因子对AM真菌群落有重要影响。由东到西随干旱程度加剧, AM真菌种丰度、孢子密度、Shannon-Wiener指数逐渐降低。共有种孢子密度由东向西逐渐降低, 但在群落中所占比例逐渐增加。同一样地不同AM真菌种属、不同样地同一种属的AM真菌孢子密度不同。相关性分析结果显示土壤有机碳、pH值、氨态氮和有效磷对AM真菌影响显著, 土壤湿度对AM真菌影响极显著。结果表明花棒根际AM真菌群落结构和物种多样性具有明显的空间异质性, 并与土壤因子关系密切, 其中土壤湿度对AM真菌生态分布的影响最明显。
刘海跃, 李欣玫, 张琳琳, 王姣姣, 贺学礼. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布. 植物生态学报, 2018, 42(2): 252-260. DOI: 10.17521/cjpe.2017.0138
LIU Hai-Yue, LI Xin-Mei, ZHANG Lin-Lin, WANG Jiao-Jiao, HE Xue-Li. Eco-geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China. Chinese Journal of Plant Ecology, 2018, 42(2): 252-260. DOI: 10.17521/cjpe.2017.0138
样地 Site | 海拔 Altitude (m) | 经纬度 Latitude and longitude | 土壤温度 Soil temperature (°C) | 土壤湿度 Soil moisture (%) |
---|---|---|---|---|
鄂尔多斯沙地草地生态研究观测站 Ordos Sandland Ecological Research Station | 1 269.0 | 39.19° N, 110.11° E | 23.40 ± 0.21 | 9.81 ± 0.05 |
乌海海勃湾区 Wuhai Haibowan District | 1 150.0 | 39.49° N, 106.49° E | 30.54 ± 0.32 | 5.71 ± 0.07 |
磴口阿敦乌苏 Dengkou Aton Usu | 1 030.0 | 40.39° N, 106.74° E | 22.14 ± 0.23 | 4.67 ± 0.06 |
阿拉善木仁高勒苏木 Mu Ren Gao Le Su Mu, Alxa League | 1 295.0 | 39.10° N, 105.52° E | 28.06 ± 0.45 | 7.29 ± 0.04 |
沙坡头沙漠试验研究站 Shapotou Desert Experimental Research Station | 2 027.5 | 37.27° N, 104.59° E | 40.05 ± 0.51 | 6.34 ± 0.09 |
民勤连古城国家级自然保护区 Minqin Liangucheng National Nature Reserve | 1 400.0 | 39.00° N, 102.37° E | 29.35 ± 0.22 | 4.48 ± 0.05 |
安西极旱荒漠自然保护区 Anxi Extreme-Arid Desert National Nature | 1 514.0 | 40.20° N, 096.50° E | 27.66 ± 0.37 | 1.37 ± 0.02 |
表1 采样地概况(平均值±标准误差)
Table 1 Basic information of the sampling sites (mean ± SE)
样地 Site | 海拔 Altitude (m) | 经纬度 Latitude and longitude | 土壤温度 Soil temperature (°C) | 土壤湿度 Soil moisture (%) |
---|---|---|---|---|
鄂尔多斯沙地草地生态研究观测站 Ordos Sandland Ecological Research Station | 1 269.0 | 39.19° N, 110.11° E | 23.40 ± 0.21 | 9.81 ± 0.05 |
乌海海勃湾区 Wuhai Haibowan District | 1 150.0 | 39.49° N, 106.49° E | 30.54 ± 0.32 | 5.71 ± 0.07 |
磴口阿敦乌苏 Dengkou Aton Usu | 1 030.0 | 40.39° N, 106.74° E | 22.14 ± 0.23 | 4.67 ± 0.06 |
阿拉善木仁高勒苏木 Mu Ren Gao Le Su Mu, Alxa League | 1 295.0 | 39.10° N, 105.52° E | 28.06 ± 0.45 | 7.29 ± 0.04 |
沙坡头沙漠试验研究站 Shapotou Desert Experimental Research Station | 2 027.5 | 37.27° N, 104.59° E | 40.05 ± 0.51 | 6.34 ± 0.09 |
民勤连古城国家级自然保护区 Minqin Liangucheng National Nature Reserve | 1 400.0 | 39.00° N, 102.37° E | 29.35 ± 0.22 | 4.48 ± 0.05 |
安西极旱荒漠自然保护区 Anxi Extreme-Arid Desert National Nature | 1 514.0 | 40.20° N, 096.50° E | 27.66 ± 0.37 | 1.37 ± 0.02 |
图1 不同样地花棒根际AM真菌种丰富度(A)和组成(B)。不同小写字母表示不同样地间差异显著(p < 0.05)。ALS, 阿拉善; AX, 安西; DK, 磴口; EDS, 鄂尔多斯; MQ, 民勤; SPT, 沙坡头; WH, 乌海。
Fig. 1 Species richness (A) and composition (B) of arbuscular mycorrhizae (AM) fungi associated with Hedysarum scoparium in different sites. Different lowercase letters indicate the significant difference among sites (p < 0.05). ALS, Alxa; AX, Anxi; DK, Dengkou; EDS, Ordos; MQ, Minqin; SPT, Shapotou; WH, Wuhai.
图2 不同样地花棒根际AM真菌物种组成的RDA分析。ALS, 阿拉善; AX, 安西; DK, 磴口; EDS, 鄂尔多斯; MQ, 民勤; SPT, 沙坡头; WH, 乌海。ACP, 酸性磷酸酶; ALP, 碱性磷酸酶; AN, 氨态氮; AP, 有效磷; EEG, 易提取球囊霉素; pH, pH值; SH, 土壤湿度; SOC, 有机碳; ST, 土壤温度; TEG, 总体提取球囊霉素; UA, 脲酶。
Fig. 2 RDA analysis of species composition of arbuscular mycorrhizae (AM) fungi associated with Hedysarum scoparium in different sites. ALS, Alxa; AX, Anxi; DK, Dengkou; EDS, Ordos; MQ, Minqin; SPT, Shapotou; WH, Wuhai. ACP, acid phosphatase; ALP, alkaline phosphatase; AN, ammonia nitrogen; AP, available phosphorus; EEG, easily extractable glomalin; pH, pH value; SH, soil moisture; SOC, organic carbon; ST, soil temperature; TEG, total extractable glomalin; UA, urease.
图3 不同样地花棒根际AM真菌孢子密度(A)和球囊霉素含量(B) (平均值±标准误差)。不同小写字母表示不同样地间差异显著(p < 0.05)。ALS, 阿拉善; AX, 安西; DK, 磴口; EDS, 鄂尔多斯; MQ, 民勤; SPT, 沙坡头; WH, 乌海。
Fig. 3 Spore density (A) and glomalin content (B) of arbuscular mycorrhizae (AM) fungi associated with Hedysarum scoparium in different sites (mean ± SE). Different lowercase letters indicate the significant difference among sites (p < 0.05). ALS, Alxa; AX, Anxi; DK, Dengkou; EDS, Ordos; MQ, Minqin; SPT, Shapotou; WH, Wuhai.
AM真菌 AM fungi | 鄂尔多斯 Ordos | 乌海 Wuhai | 磴口 Dengkou | 阿拉善 Alxa | 沙坡头 Shapotou | 民勤 Minqin | 安西 Anxi |
---|---|---|---|---|---|---|---|
凹坑无梗囊霉 Acaulospora excavata | 1.00 | 5.33 | 1.67 | 2.33 | 0.33 | 0.33 | - |
刺无梗囊霉 Acaulospora spinosa | - | - | 0.33 | 0.33 | - | - | - |
附柄无梗囊霉 Acaulospora appendicola | - | 1.33 | - | - | 0.33 | - | - |
光壁无梗囊霉 Acaulospora laevis | 2.33 | 0.33 | 3.67 | 1.33 | 0.67 | 2.33 | - |
孔窝无梗囊霉 Acaulospora foveata | 2.33 | 3.00 | 0.67 | 6.33 | 4.33 | 2.00 | - |
毛氏无梗囊霉 Acaulospora morrowae | 7.33 | - | 3.67 | 1.67 | 3.67 | 5.00 | 1.33 |
蜜色无梗囊霉 Acaulospora mellea | 5.67 | 9.00 | 1.67 | 2.00 | 3.00 | 4.33 | - |
膨胀无梗囊霉 Acaulospora dilatata | 0.67 | 4.00 | - | 0.33 | 0.67 | - | - |
浅窝无梗囊霉 Acaulospora lacunosa | 14.33 | 4.67 | 1.33 | 1.00 | 0.33 | - | - |
疣状无梗囊霉 Acaulospora tuberculata | 0.67 | - | - | 0.33 | - | - | - |
瑞氏无梗囊霉 Acaulospora rehmii | 17.00 | - | 2.33 | 8.33 | 3.00 | 4.33 | 7.67 |
双网无梗囊霉 Acaulospora bireticulata | 3.33 | 9.67 | 2.67 | 3.33 | 0.67 | 7.67 | 0.33 |
细凹无梗囊霉 Acaulospora scrobiculata | 0.67 | 13.67 | - | 0.33 | 0.67 | 0.67 | - |
细齿无梗囊霉 Acaulospora denticulate | 1.00 | 0.33 | - | 2.00 | 0.33 | - | - |
皱壁无梗囊霉 Acaulospora rugosa | - | - | 0.33 | - | 0.33 | 0.33 | - |
Acaulospora sp. 1 | 1.00 | - | 0.67 | - | - | - | - |
Acaulospora sp. 2 | - | 0.33 | - | - | - | - | - |
Acaulospora sp. 3 | 3.00 | - | 0.67 | 15.33 | 4.33 | 0.33 | 0.67 |
层状近明囊霉 Claroideoglomus lamellosum | 17.00 | 7.33 | 6.67 | 28.33 | 8.00 | 2.67 | - |
近明囊霉 Claroideoglomus claroideum | 7.00 | 3.33 | 1.33 | 0.67 | 3.67 | 0.67 | - |
黄近明囊霉 Claroideoglomus luteum | 2.00 | 0.33 | 0.33 | 1.00 | 0.67 | 1.33 | - |
幼套近明囊霉 Claroideoglomus etunicatum | 0.33 | 1.00 | - | 8.33 | 1.33 | 0.67 | - |
地管柄囊霉 Funneliformis geosporum | 0.67 | - | 0.67 | 1.33 | 0.33 | - | - |
摩西管柄囊霉 Funneliformis mosseae | 6.33 | 0.67 | - | 0.67 | 0.33 | 1.00 | - |
道氏球囊霉 Glomus dominikii | 2.33 | - | 0.33 | 8.00 | 4.33 | 7.67 | _ |
地表球囊霉 Glomus versiforme | 1.67 | - | - | 0.33 | 1.33 | 1.00 | - |
多梗球囊霉 Glomus multicaule | 5.33 | 6.00 | 2.67 | 29.67 | 7.00 | 2.00 | - |
黑球囊霉 Glomus melanosporum | 1.00 | 3.33 | - | - | 3.00 | 0.67 | - |
聚丛球囊霉 Glomus aggregatum | 0.33 | - | 0.33 | - | - | - | - |
聚集球囊霉 Glomus glomorulatum | 1.67 | 4.67 | - | 0.67 | 1.33 | 0.67 | - |
卷曲球囊霉 Glomus convolutum | 3.67 | 1.33 | 0.33 | 1.67 | 1.00 | 0.33 | 0.67 |
宽柄球囊霉 Glomus magnicaule | - | 1.00 | - | - | 0.33 | 6.67 | 1.00 |
膨果球囊霉 Glomus pansihalos | 3.00 | 0.33 | 5.33 | 21.67 | 6.00 | 0.33 | - |
透光球囊霉 Glomus diaphanum | 0.33 | 0.67 | 4.67 | 0.67 | 0.33 | - | - |
网状球囊霉 Glomus reticulatum | 31.33 | 6.00 | 15.67 | 19.00 | 9.00 | 13.00 | 4.00 |
微丛球囊霉 Glomus microaggregatum | 2.00 | 1.67 | 1.67 | 0.67 | - | 0.33 | - |
隐球囊霉 Glomus occultum | 2.33 | - | 3.00 | 1.33 | - | 1.33 | 0.33 |
粘质球囊霉 Glomus viscosum | 3.33 | 1.00 | 1.00 | 8.33 | 1.67 | - | - |
Glomus sp. 1 | - | 1.00 | 0.33 | 1.00 | - | - | - |
美丽盾巨孢囊霉 Scutellospara calospora | 0.33 | 0.33 | - | 0.33 | 0.33 | 0.33 | - |
沙荒缩管柄囊霉 Septoglomus deserticola | 6.67 | 3.33 | 2.00 | 8.00 | 4.00 | 7.00 | 5.67 |
缩管柄囊霉 Septoglomus constrictum | 0.33 | 3.33 | - | 3.67 | 0.67 | - | 1.33 |
种数 Number of species | 36 | 30 | 28 | 35 | 34 | 28 | 10 |
表2 丛枝菌根真菌空间分布
Table 2 Spatial distribution of arbuscular mycorrhizae (AM) fungi
AM真菌 AM fungi | 鄂尔多斯 Ordos | 乌海 Wuhai | 磴口 Dengkou | 阿拉善 Alxa | 沙坡头 Shapotou | 民勤 Minqin | 安西 Anxi |
---|---|---|---|---|---|---|---|
凹坑无梗囊霉 Acaulospora excavata | 1.00 | 5.33 | 1.67 | 2.33 | 0.33 | 0.33 | - |
刺无梗囊霉 Acaulospora spinosa | - | - | 0.33 | 0.33 | - | - | - |
附柄无梗囊霉 Acaulospora appendicola | - | 1.33 | - | - | 0.33 | - | - |
光壁无梗囊霉 Acaulospora laevis | 2.33 | 0.33 | 3.67 | 1.33 | 0.67 | 2.33 | - |
孔窝无梗囊霉 Acaulospora foveata | 2.33 | 3.00 | 0.67 | 6.33 | 4.33 | 2.00 | - |
毛氏无梗囊霉 Acaulospora morrowae | 7.33 | - | 3.67 | 1.67 | 3.67 | 5.00 | 1.33 |
蜜色无梗囊霉 Acaulospora mellea | 5.67 | 9.00 | 1.67 | 2.00 | 3.00 | 4.33 | - |
膨胀无梗囊霉 Acaulospora dilatata | 0.67 | 4.00 | - | 0.33 | 0.67 | - | - |
浅窝无梗囊霉 Acaulospora lacunosa | 14.33 | 4.67 | 1.33 | 1.00 | 0.33 | - | - |
疣状无梗囊霉 Acaulospora tuberculata | 0.67 | - | - | 0.33 | - | - | - |
瑞氏无梗囊霉 Acaulospora rehmii | 17.00 | - | 2.33 | 8.33 | 3.00 | 4.33 | 7.67 |
双网无梗囊霉 Acaulospora bireticulata | 3.33 | 9.67 | 2.67 | 3.33 | 0.67 | 7.67 | 0.33 |
细凹无梗囊霉 Acaulospora scrobiculata | 0.67 | 13.67 | - | 0.33 | 0.67 | 0.67 | - |
细齿无梗囊霉 Acaulospora denticulate | 1.00 | 0.33 | - | 2.00 | 0.33 | - | - |
皱壁无梗囊霉 Acaulospora rugosa | - | - | 0.33 | - | 0.33 | 0.33 | - |
Acaulospora sp. 1 | 1.00 | - | 0.67 | - | - | - | - |
Acaulospora sp. 2 | - | 0.33 | - | - | - | - | - |
Acaulospora sp. 3 | 3.00 | - | 0.67 | 15.33 | 4.33 | 0.33 | 0.67 |
层状近明囊霉 Claroideoglomus lamellosum | 17.00 | 7.33 | 6.67 | 28.33 | 8.00 | 2.67 | - |
近明囊霉 Claroideoglomus claroideum | 7.00 | 3.33 | 1.33 | 0.67 | 3.67 | 0.67 | - |
黄近明囊霉 Claroideoglomus luteum | 2.00 | 0.33 | 0.33 | 1.00 | 0.67 | 1.33 | - |
幼套近明囊霉 Claroideoglomus etunicatum | 0.33 | 1.00 | - | 8.33 | 1.33 | 0.67 | - |
地管柄囊霉 Funneliformis geosporum | 0.67 | - | 0.67 | 1.33 | 0.33 | - | - |
摩西管柄囊霉 Funneliformis mosseae | 6.33 | 0.67 | - | 0.67 | 0.33 | 1.00 | - |
道氏球囊霉 Glomus dominikii | 2.33 | - | 0.33 | 8.00 | 4.33 | 7.67 | _ |
地表球囊霉 Glomus versiforme | 1.67 | - | - | 0.33 | 1.33 | 1.00 | - |
多梗球囊霉 Glomus multicaule | 5.33 | 6.00 | 2.67 | 29.67 | 7.00 | 2.00 | - |
黑球囊霉 Glomus melanosporum | 1.00 | 3.33 | - | - | 3.00 | 0.67 | - |
聚丛球囊霉 Glomus aggregatum | 0.33 | - | 0.33 | - | - | - | - |
聚集球囊霉 Glomus glomorulatum | 1.67 | 4.67 | - | 0.67 | 1.33 | 0.67 | - |
卷曲球囊霉 Glomus convolutum | 3.67 | 1.33 | 0.33 | 1.67 | 1.00 | 0.33 | 0.67 |
宽柄球囊霉 Glomus magnicaule | - | 1.00 | - | - | 0.33 | 6.67 | 1.00 |
膨果球囊霉 Glomus pansihalos | 3.00 | 0.33 | 5.33 | 21.67 | 6.00 | 0.33 | - |
透光球囊霉 Glomus diaphanum | 0.33 | 0.67 | 4.67 | 0.67 | 0.33 | - | - |
网状球囊霉 Glomus reticulatum | 31.33 | 6.00 | 15.67 | 19.00 | 9.00 | 13.00 | 4.00 |
微丛球囊霉 Glomus microaggregatum | 2.00 | 1.67 | 1.67 | 0.67 | - | 0.33 | - |
隐球囊霉 Glomus occultum | 2.33 | - | 3.00 | 1.33 | - | 1.33 | 0.33 |
粘质球囊霉 Glomus viscosum | 3.33 | 1.00 | 1.00 | 8.33 | 1.67 | - | - |
Glomus sp. 1 | - | 1.00 | 0.33 | 1.00 | - | - | - |
美丽盾巨孢囊霉 Scutellospara calospora | 0.33 | 0.33 | - | 0.33 | 0.33 | 0.33 | - |
沙荒缩管柄囊霉 Septoglomus deserticola | 6.67 | 3.33 | 2.00 | 8.00 | 4.00 | 7.00 | 5.67 |
缩管柄囊霉 Septoglomus constrictum | 0.33 | 3.33 | - | 3.67 | 0.67 | - | 1.33 |
种数 Number of species | 36 | 30 | 28 | 35 | 34 | 28 | 10 |
图4 花棒根际AM真菌共有种的孢子密度(A)及其占总孢子密度的比例(B)。ALS, 阿拉善; AX, 安西; DK, 磴口; EDS, 鄂尔多斯; MQ, 民勤; SPT, 沙坡头; WH, 乌海。
Fig. 4 The spore density of common species associated with Hedysarum scoparium (A) and its proportion among all arbuscular mycorrhizae (AM) fungal species (B) in different sites. ALS, Alxa; AX, Anxi; DK, Dengkou; EDS, Ordos; MQ, Minqin; SPT, Shapotou; WH, Wuhai.
环境因子Environmental factor | 种丰度 Species richness | 孢子密度 Spore density | Shannon-Wiener指数 Shannon-Wiener index | 辛普森指数 Simpson index | 易提取球囊霉素 Easily extractable glomalin | 总提取球囊霉素 Total extractable glomalin |
---|---|---|---|---|---|---|
SOC | 0.271 | -0.511* | 0.347 | 0.338. | -0.512* | -0.435* |
AP | 0.386 | 0.051 | 0.537* | 0.532* | 0.283 | 0.302 |
AN | 0.275 | 0.637** | 0.215 | 0.170 | 0.309 | 0.256 |
pH | 0.411 | -0.725** | 0.303 | 0.275 | -0.764** | -0.751** |
ST | 0.030 | -0.305 | 0.158 | 0.188 | -0.090 | 0.055 |
SH | 0.787** | 0.581** | 0.688** | 0.608** | 0.563** | 0.664** |
LA | 0.762** | -0.381 | 0.772** | 0.718** | 0.504* | 0.518* |
表3 AM真菌物种多样性和环境因子相关性分析
Table 3 Correlation analysis between species diversity of arbuscular mycorrhizae (AM) fungi associated with Hedysarum scoparium and environmental factors
环境因子Environmental factor | 种丰度 Species richness | 孢子密度 Spore density | Shannon-Wiener指数 Shannon-Wiener index | 辛普森指数 Simpson index | 易提取球囊霉素 Easily extractable glomalin | 总提取球囊霉素 Total extractable glomalin |
---|---|---|---|---|---|---|
SOC | 0.271 | -0.511* | 0.347 | 0.338. | -0.512* | -0.435* |
AP | 0.386 | 0.051 | 0.537* | 0.532* | 0.283 | 0.302 |
AN | 0.275 | 0.637** | 0.215 | 0.170 | 0.309 | 0.256 |
pH | 0.411 | -0.725** | 0.303 | 0.275 | -0.764** | -0.751** |
ST | 0.030 | -0.305 | 0.158 | 0.188 | -0.090 | 0.055 |
SH | 0.787** | 0.581** | 0.688** | 0.608** | 0.563** | 0.664** |
LA | 0.762** | -0.381 | 0.772** | 0.718** | 0.504* | 0.518* |
样地 Site | SOC (mg·g-1) | AP (µg·g -1) | AN (μg·g-1) | pH | ACP (µg·g-1·h-1) | ALP (µg·g-1·h-1) | UA (μg·g-1·h-1) | EEG (mg·g-1) | TEG (mg·g-1) |
---|---|---|---|---|---|---|---|---|---|
鄂尔多斯 Ordos | 10.00 ± 1.00c | 6.14 ± 0.50b | 64.24 ± 2.13b | 7.62 ± 0.27c | 51.97 ± 1.62c | 59.82 ± 0.92b | 7.33 ± 0.23e | 3.98 ± 0.03a | 11.17 ± 0.24a |
乌海 Wuhai | 36.78 ± 2.01a | 5.16 ± 0.46c | 53.22 ± 2.70c | 8.57 ± 0.04a | 32.01 ± 1.41f | 17.33 ± 2.00e | 1.58 ± 0.05g | 2.36 ± 0.12b | 8.28 ± 0.53b |
磴口 Dengkou | 9.92 ± 1.61c | 8.57 ± 1.19a | 93.34 ± 3.92a | 8.51 ± 0.06a | 55.70 ± 0.93b | 56.50 ± 0.94c | 10.64 ± 0.38b | 2.39 ± 0.10b | 7.61 ± 0.15c |
阿拉善 Alxa | 14.42 ± 1.63b | 5.97 ± 0.16bc | 50.20 ± 0.52cd | 8.25 ± 0.17b | 85.19 ± 1.19a | 82.72 ± 2.40a | 7.94 ± 0.35d | 1.59 ± 0.12c | 7.56 ± 0.56c |
沙坡头 Shapotou | 10.92 ± 0.52c | 7.83 ± 0.07a | 40.27 ± 1.02e | 8.54 ± 0.08a | 44.46 ± 2.96d | 30.92 ± 0.83d | 11.41 ± 0.23a | 1.40 ± 0.06cd | 4.01 ± 0.17d |
民勤 Minqin | 11.67 ± 0.58c | 6.40 ± 0.22b | 26.29 ± 0.82f | 8.56 ± 0.13a | 29.04 ± 1.45f | 17.62 ± 0.80e | 10.08 ± 0.39c | 1.31 ± 0.16d | 3.60 ± 0.26d |
安西 Anxi | 9.58 ± 1.18c | 3.81 ± 0.10d | 46.58 ± 1.90d | 8.68 ± 0.12a | 37.58 ± 2.07e | 17.15 ± 1.67e | 6.35 ± 0.30f | 0.84 ± 0.11e | 3.46 ± 0.19d |
附件I 不同样地土壤因子(平均值±标准误差, n = 3)
Appendix I Soil characteristics in the different sites (mean ± SE, n = 3)
样地 Site | SOC (mg·g-1) | AP (µg·g -1) | AN (μg·g-1) | pH | ACP (µg·g-1·h-1) | ALP (µg·g-1·h-1) | UA (μg·g-1·h-1) | EEG (mg·g-1) | TEG (mg·g-1) |
---|---|---|---|---|---|---|---|---|---|
鄂尔多斯 Ordos | 10.00 ± 1.00c | 6.14 ± 0.50b | 64.24 ± 2.13b | 7.62 ± 0.27c | 51.97 ± 1.62c | 59.82 ± 0.92b | 7.33 ± 0.23e | 3.98 ± 0.03a | 11.17 ± 0.24a |
乌海 Wuhai | 36.78 ± 2.01a | 5.16 ± 0.46c | 53.22 ± 2.70c | 8.57 ± 0.04a | 32.01 ± 1.41f | 17.33 ± 2.00e | 1.58 ± 0.05g | 2.36 ± 0.12b | 8.28 ± 0.53b |
磴口 Dengkou | 9.92 ± 1.61c | 8.57 ± 1.19a | 93.34 ± 3.92a | 8.51 ± 0.06a | 55.70 ± 0.93b | 56.50 ± 0.94c | 10.64 ± 0.38b | 2.39 ± 0.10b | 7.61 ± 0.15c |
阿拉善 Alxa | 14.42 ± 1.63b | 5.97 ± 0.16bc | 50.20 ± 0.52cd | 8.25 ± 0.17b | 85.19 ± 1.19a | 82.72 ± 2.40a | 7.94 ± 0.35d | 1.59 ± 0.12c | 7.56 ± 0.56c |
沙坡头 Shapotou | 10.92 ± 0.52c | 7.83 ± 0.07a | 40.27 ± 1.02e | 8.54 ± 0.08a | 44.46 ± 2.96d | 30.92 ± 0.83d | 11.41 ± 0.23a | 1.40 ± 0.06cd | 4.01 ± 0.17d |
民勤 Minqin | 11.67 ± 0.58c | 6.40 ± 0.22b | 26.29 ± 0.82f | 8.56 ± 0.13a | 29.04 ± 1.45f | 17.62 ± 0.80e | 10.08 ± 0.39c | 1.31 ± 0.16d | 3.60 ± 0.26d |
安西 Anxi | 9.58 ± 1.18c | 3.81 ± 0.10d | 46.58 ± 1.90d | 8.68 ± 0.12a | 37.58 ± 2.07e | 17.15 ± 1.67e | 6.35 ± 0.30f | 0.84 ± 0.11e | 3.46 ± 0.19d |
[1] |
Alguacil M, Lozano Z, Campoy MJ, Roldán A (2010). Phosphorus fertilization management modifies the biodiversity of AM fungi in a tropical savanna forage system.Soil Biology & Biochemistry, 42, 1114-1122.
DOI URL |
[2] |
Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001). Occurrence of arbuscular mycorrhizal fungi in saline soils of the tabriz plain of iran in relation to some physical and chemical properties of soil.Mycorrhiza, 11, 119-122.
DOI URL PMID |
[3] | Bai CM, He XL, Shan BQ, Zhao LL (2009). Study on relationships between arbuscular mycorrhizal fungi and soil enzyme activities of Astragalus adsurgens in the desert.Journal of Northwest A&F UniversityNatural Science edition), 37, 84-90. |
[白春明, 贺学礼, 山宝琴, 赵丽莉 (2009). 荒漠境沙打旺根围AM真菌与土壤酶活性的关系. 西北农林科技大学学报(自然科学版), 37, 84-90.] | |
[4] |
Bai CM, He XL, Tang HL, Shan BQ, Zhao LL (2009). Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China. Soil Biology & Biochemistry, 41, 941-947.
DOI URL |
[5] |
Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009). Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism.Ecology Letters, 12, 13-21.
DOI URL PMID |
[6] |
Chen Z, He XL, Guo HJ, Yao XQ, Chen C (2012). Diversity of arbuscular mycorrhizal fungi in the rhizosphere of three host plants in the farming-pastoral zone, North China.Symbiosis, 57, 149-160.
DOI URL |
[7] |
Davison J, Moora M, ?pik M, Adholeya A, Ainsaar L, Ba A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, P?rtel M, Reier ü, Saks ü, Singh R, Vasar M, Zobel M (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism.Science, 349, 970-973.
DOI URL PMID |
[8] |
Ding XH, Luo SH, Liu JW, Li K, Liu GH (2012). Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeir.Acta Ecologica Sinica, 32, 3467-3476.
DOI URL |
[丁小慧, 罗淑政, 刘金巍, 李魁, 刘国华 (2012). 呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化. 生态学报, 32, 3467-3476. ]
DOI URL |
|
[9] | Duan XY, He XL (2008). Ecological research on arbuscular mycorrhizal fungi from the rhizosphere of Hedysarum scoparium in Mu Us sandland. Agricultural Research in the Arid Areas, 26(5), 234-238. |
[段小圆, 贺学礼 (2008). 毛乌素沙地花棒(Hedysarum scoparium)根围AM真菌生态学研究. 干旱地区农业研究, 26(5), 234-238.] | |
[10] |
Feddermann N, Finlay R, Boller T, Elfstrand M (2010). Functional diversity in arbuscular mycorrhiza—The role of gene expression, phosphorous nutrition and symbiotic efficiency.Fungal Ecology, 3(1), 1-8.
DOI URL |
[11] |
Fitzsimons MS, Miller RM, Jastrow JD (2008). Scale-dependent niche axes of arbuscular mycorrhizal fungi.Oecologia, 158, 117-127.
DOI URL PMID |
[12] |
Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010). Agroecology: The key role of arbuscular mycorrhizas in ecosystem services.Mycorrhiza, 20, 519-530.
DOI URL PMID |
[13] |
Guo QH, Hu CC, He XL, Wang XQ, Chang H, Chen YY (2016). Exploration of the spatial distribution of am fungi in the rhizospheres ofAmmopiptanthus mongolicus- associated plants. Acta Ecologica Sinica, 36, 5809-5819.
DOI URL |
[郭清华, 胡从从, 贺学礼, 王晓乾, 常辉, 陈严严 (2016). 蒙古沙冬青伴生植物AM真菌的空间分布. 生态学报, 36, 5809-5819.]
DOI URL |
|
[14] |
Hazard C, Gosling P, van der Gast C, Mitchell DT, Doohan FM, Bending GD (2013). The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale.Isme Journal, 7, 498-508.
DOI URL PMID |
[15] |
He XL, Chen Z, Guo HJ, Chen C (2012). Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Caragana korshinskii Kom. in desert zone. Acta Ecologica Sinica, 32, 3041-3049.
DOI URL |
[贺学礼, 陈烝, 郭辉娟, 陈程 (2012). 荒漠柠条锦鸡儿AM真菌多样性. 生态学报, 32, 3041-3049.]
DOI URL |
|
[16] | He XL, Cheng C, He B (2011). Spatial distribution of arbuscular mycorrhizal fungi and glomalin ofHippophae rhamnoides L. in farming-pastoral zone from the two northern provinces of China. Acta Ecologica Sinica, 31, 1653-1661. |
[贺学礼, 陈程, 何博 (2011). 北方两省农牧交错带沙棘根围AM真菌与球囊霉素空间分布. 生态学报, 31, 1653-1661.] | |
[17] | He XL, Li YP, Zhao LL (2010). Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biology & Biochemistry, 42, 1313-1319. |
[18] | He XL, Liu XW, Li YP (2010a). The spatio-temporal distribution of arbuscular mycorrhizal fungi in the rhizosphere of Ammopiptanthus mongolicus from Shapotou. Acta Ecologica Sinica, 30, 370-376. |
[贺学礼, 刘雪伟, 李英鹏 (2010a). 沙坡头地区沙冬青AM真菌的时空分布. 生态学报, 30, 370-376.] | |
[19] |
He XL, Tang HL, Zhang YX (2006a). Floristic eco-geographical distribution of Hedysarum L. in China.Journal of Hebei University (Natural Science edition), 26, 625-630.
DOI URL |
[贺学礼, 唐宏亮, 张玉霄 (2006a). 中国岩黄耆属(Hedysarum L.)植物区系生态地理分布. 河北大学学报(自然科学版), 26, 625-630.]
DOI URL |
|
[20] | He XL, Wang LY, Ma J, Zhao LL (2010b). AM fungal diversity in the rhizosphere of Salvia miltiorrhiza in Anguo City of Hebei Province. Biodiversity Science, 18, 187-194. |
[贺学礼, 王凌云, 马晶, 赵丽莉 (2010b). 河北省安国地区丹参根围AM真菌多样性. 生物多样性, 18, 187-194.] | |
[21] | He XL, Zhao LL, Yang HY (2006b). Diversity and spatial distribution of arbuscular mycorrhizal fungi ofCaragana korshinskii in the Loess Plateau. Acta Ecologica Sinica, 26, 3835-3840. |
[贺学礼, 赵丽莉, 杨宏宇 (2006b). 黄土高原柠条锦鸡儿AM真菌多样性及空间分布. 生态学报, 26, 3835-3840.] | |
[22] |
Hoffmann GG, Teicher K (1961). A colorimetric technique for determining urease activity in soil.Dung Boden, 95, 55-63.
DOI URL |
[23] |
Ianson DC, Allen MF (1986). The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites.Mycologia, 78, 164-168.
DOI URL |
[24] | Ji CH, Zhang SB, Gai JP, Bai DS, Li XL, Feng G (2007). Arbuscular mycorrhizal fungal diversity in arid zones in northwestern China.Biodiversity Science, 15, 77-83. |
[冀春花, 张淑彬, 盖京苹, 白灯莎, 李晓林, 冯固 (2007). 西北干旱区AM真菌多样性研究. 生物多样性, 15, 77-83.] | |
[25] |
Landis FC, Gargas A, Givnish TJ (2004). Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas.New Phytologist, 164, 493-504.
DOI URL |
[26] |
Li XP, Zhang FP, Hu M, Wei YF (2012). Analysis of the regulation of spatial-temporal variation of the vegetation coverage based on SPOT NDVI data—A case study in Northwest China. Agricultural Research in the Arid Areas, 30(5), 180-184, 199-199.
DOI URL |
[李旭谱, 张福平, 胡猛, 魏永芬 (2012). 基于SPOT NDVI的植被覆盖时空演变规律分析——以西北五省为例. 干旱地区农业研究, 30(5), 180-184, 199-199.]
DOI URL |
|
[27] | Li YP, He XL, Zhao LL (2010). Tempo-spatial dynamics of arbuscular mycorrhizal fungi under clonal plantPsammochloa villosa, Trin. Bor in Mu Us sandland. European Journal of Soil Biology, 46, 295-301. |
[28] |
Odland A, Moral RD (2002). Thirteen years of wetland vegetation succession following a permanent drawdown, Myrkdalen Lake, Norway.Plant Ecology, 162, 185-198.
DOI URL |
[29] |
Pringle A, Bever JD (2002). Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a north carolina grassland.American Journal of Botany, 89, 1439-1446.
DOI URL PMID |
[30] |
Rillig MC (2004). Arbuscular mycorrhizae and terrestrial ecosystem processes.Ecology Letters, 7, 740-754.
DOI URL |
[31] |
Rosendahl S (2008). Communities, populations and individuals of arbuscular mycorrhizal fungi.New Phytologist, 178, 253-266.
DOI URL PMID |
[32] |
Santos JC, Finlay RD, Tehler A (2006). Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient.New Phytologist, 172, 159-168.
DOI URL PMID |
[33] | Schenck NC, Perez Y (1990). Manual for the identification of VA Mycorrhizal Fungi. 3rd edn. Synergistic, Gainesville, USA. |
[34] |
Tarafdar JC, Marschner H (1994). Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus.Soil Biology & Biochemistry, 26, 387-395.
DOI URL |
[35] |
van Aarle IM, Olsson PA, Soderstrom B (2002). Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization.New Phytologist, 155, 173-182.
DOI URL |
[36] |
Vogelsang KM, Reynolds HL, Bever JD (2006). Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system.New Phytologist, 172, 554-562.
DOI URL PMID |
[37] |
Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011). Belowground biodiversity effects of plant symbionts support aboveground productivity.Ecology Letters, 14, 1001-1009.
DOI URL PMID |
[38] |
Wright SF, Upadhyaya A (1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi.Plant and Soil, 198, 97-107.
DOI URL |
[39] | Xu LR (1985). The ecological differentiation of theHedysarum L. and geographical distribution in China. Acta Botanica Boreali-Occidentalia Sinica, 5, 275-285. |
[徐朗然 (1985). 中国岩黄耆属植物的生态分化及地理分布. 西北植物学报, 5, 275-285.] | |
[40] | Yang J, He XL, Zhao LL (2011). Species diversity of arbuscular mycorrhizal fungi in the rhizosphere ofSalix psammophila in Inner Mongolia desert. Biodiversity Science, 19, 377-385. |
[杨静, 贺学礼, 赵丽莉 (2011). 内蒙古荒漠沙柳AM真菌物种多样性. 生物多样性, 19, 377-385.] | |
[41] | Zhang MQ, Wang YS, Zhang C, Huang L (1994). The ecological distribution characteristics of some genera and species of VAM fungi in northern China.Mycosystema, 13, 166-172. |
[张美庆, 王幼珊, 张弛, 黄磊 (1994). 我国北方VA菌根真菌某些属和种的生态分布. 菌物学报, 13, 166-172.] | |
[42] |
Zhao JL, He XL (2013). Diversity of arbuscular mycorrhizal fungi associated with clonal plants in Mu Us sandy land.Chinese Journal of Eco-Agriculture, 21, 199-206.
DOI URL |
[赵金莉, 贺学礼 (2013). 毛乌素沙地典型克隆植物根际AM真菌多样性研究. 中国生态农业学报, 21, 199-206.]
DOI URL |
|
[43] |
Zhu ZY, Ma YQ, Liu ZL, Zhao YZ (1999). Endemic plants and floristic characteristics in Alashan-Ordos biodiversity center.Journal of Arid Land Resources & Environment, 13(2), 1-16.
DOI URL |
[朱宗元, 马毓泉, 刘钟龄, 赵一之 (1999). 阿拉善—鄂尔多斯生物多样性中心的特有植物和植物区系的性质. 干旱区资源与环境, 13(2), 1-16.]
DOI URL |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[4] | 王丽萍, 乌俊杰, 柴勇, 李家华, 杨昌级, 赵士杰. 高黎贡山中山湿性常绿阔叶林优势种空间分布格局及其关联性[J]. 植物生态学报, 2024, 48(2): 180-191. |
[5] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[8] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[9] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[10] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[11] | 李晓田, 王铁娟, 韩文娟, 张丽, 张慧, 刘晓婷, 刘雅洁. 东阿拉善珍稀濒危植物绵刺种群结构与点格局分析[J]. 植物生态学报, 2023, 47(4): 506-514. |
[12] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[13] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[14] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[15] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19