植物生态学报 ›› 2023, Vol. 47 ›› Issue (1): 1-24.DOI: 10.17521/cjpe.2022.0107
所属专题: 青藏高原植物生态学:生态系统生态学; 凋落物; 土壤呼吸; 生物多样性
• 综述 • 下一篇
杨元合1,2,*(), 张典业1, 魏斌1,2, 刘洋1,3, 冯雪徽1,2, 毛超1,4, 徐玮婕1,2, 贺美1, 王璐1,2, 郑志虎1,2, 王媛媛1, 陈蕾伊1, 彭云峰1
收稿日期:
2022-03-26
接受日期:
2022-06-27
出版日期:
2023-01-20
发布日期:
2022-10-25
通讯作者:
*杨元合,E-mail:yhyang@ibcas.ac.cn
基金资助:
YANG Yuan-He1,2,*(), ZHANG Dian-Ye1, WEI Bin1,2, LIU Yang1,3, FENG Xue-Hui1,2, MAO Chao1,4, XU Wei-Jie1,2, HE Mei1, WANG Lu1,2, ZHENG Zhi-Hu1,2, WANG Yuan-Yuan1, CHEN Lei-Yi1, PENG Yun-Feng1
Received:
2022-03-26
Accepted:
2022-06-27
Online:
2023-01-20
Published:
2022-10-25
Contact:
*YANG Yuan-He,E-mail:yhyang@ibcas.ac.cn
Supported by:
摘要:
理解草地生态系统结构和功能对氮富集的响应及其机制有助于准确评估大气氮沉降等外源氮输入的生态效应。全球范围内建立的多水平氮添加实验为认识草地生态系统结构和功能对氮输入的非线性响应机制提供了有效途径。为了反映学术界基于多水平氮添加控制实验取得的主要研究进展, 该文综述了草地群落多样性和生态系统碳氮循环过程对外源氮输入的非线性响应特征及其驱动机制。按照目前的研究, 氮输入会导致草地植物物种多样性、功能多样性以及土壤细菌多样性下降, 但真菌多样性的变化并不明显。地上和地下生产力对氮输入的响应趋势存在差异: 地上生产力沿氮添加梯度呈“先上升后饱和”的变化规律, 而根系生产量和根冠比呈下降趋势, 根系周转速率则呈“先上升后下降”的单峰格局。不同碳分解过程对氮输入的响应也不尽相同: 凋落物分解速率沿氮添加梯度表现出“指数衰减、线性增加或无显著变化”的多元响应, 而土壤呼吸和CH4吸收速率与施氮量的关系则以“低氮促进、高氮抑制”的单峰趋势为主。类似地, 不同土壤碳组分对氮输入的响应存在差异: 氮添加总体会导致草地土壤碳库和颗粒态有机碳含量增加, 而矿物结合态碳含量随施氮量呈“增加、不变或下降”的多元响应。植物氮吸收量沿氮添加梯度呈“先上升后饱和”的变化特征, 但不同土壤氮转化过程沿氮添加梯度呈现差异化响应, 且不同草地生态系统中观察到的土壤N2O排放速率与施氮量之间的关系存在差异: 温带草地中以指数增加为主, 而高寒草地中则出现“先上升后饱和”或者“线性增加”的趋势。未来研究需重点关注根际过程及磷循环对氮输入的非线性响应, 并从多维度生物多样性等角度解析多水平氮添加影响草地生物地球化学循环过程的机理。
杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制. 植物生态学报, 2023, 47(1): 1-24. DOI: 10.17521/cjpe.2022.0107
YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input. Chinese Journal of Plant Ecology, 2023, 47(1): 1-24. DOI: 10.17521/cjpe.2022.0107
图1 青藏高原高寒草原多水平氮添加实验平台景观(刘洋摄)。该实验平台隶属于中国科学院植物研究所杨元合课题组, 位于青海省刚察县三角城种羊场, 开始于2013年5月, 涉及8个氮添加水平(0, 1, 2, 4, 8, 16, 24, 32 g·m-2·a-1), 所施氮肥类型为NH4NO3。
Fig. 1 Multi-level nitrogen (N) manipulation experiment in an alpine steppe on the Qingzang Plateau (photo credit: LIU Yang). This experiment was maintained by Dr. YANG Yuan-He’s group in Institute of Botany, Chinese Academy of Sciences, and located in Sanjiaocheng sheep farm, Gangca County, Qinghai Province. It was conducted since May 2013, with eight N levels (0, 1, 2, 4, 8, 16, 24, 32 g·m-2·a-1). The form of N fertilizer is NH4NO3.
图2 多维度生物多样性对氮输入的响应及其主要机制。橙色箭头代表下降趋势,绿色箭头代表没有显著变化。
Fig. 2 Responses of multidimensional biodiversity to nitrogen input and their primary mechanisms. Orange arrows indicate downward trends, while green arrows indicate non-significant changes.
图3 植被生产力及其分配对氮输入的响应及其主要机制。正号表示氮输入的促进效应, 负号表示氮输入的抑制效应。
Fig. 3 Responses of vegetation productivity and its allocation to nitrogen (N) input and their primary mechanisms. ANPP, aboveground net primary productivity; P, phosphorus. The positive sign means the stimulating effects of N input, and vice versa.
图5 不同土壤碳组分对氮输入的响应及其主要机制。向上的箭头或者正号表示氮添加的促进效应, 反之则表示氮添加的抑制效应。
Fig. 5 Responses of various soil carbon fractions to nitrogen input and their primary mechanisms. MAOC, mineral-associated organic carbon; POC, particulate organic carbon; SOC, soil organic carbon. The arrow-up or positive sign means the stimulating effects of nitrogen input, and vice versa.
图6 热带-温带草地(A)和高寒草地(B)生态系统土壤N2O排放对氮输入的响应及主要其机制。
Fig. 6 Responses of nitrous oxide (N2O) emissions to nitrogen (N) input and their primary mechanisms in tropical and temperate (A) as well as alpine grasslands (B). AOA, ammonia-oxidizing archaea.
[1] |
Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience, 48, 921-934.
DOI URL |
[2] |
Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989). Nitrogen saturation in northern forest ecosystems: excess nitrogen from fossil fuel combustion may stress the biosphere. BioScience, 39, 378-386.
DOI URL |
[3] |
Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK, Kato E, Poulter B, Sitch S, Stocker BD, Viovy N, et al. (2015). The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348, 895-899.
DOI PMID |
[4] |
Aronson EL, Helliker BR (2010). Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology, 91, 3242-3251.
PMID |
[5] |
Avolio ML, Koerner SE, La Pierre KJ, Wilcox KR, Wilson GWT, Smith MD, Collins SL (2014). Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in a tallgrass prairie. Journal of Ecology, 102, 1649-1660.
DOI URL |
[6] |
Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 358-372.
DOI URL |
[7] |
Band N, Kadmon R, Mandel M, DeMalach N (2022). Assessing the roles of nitrogen, biomass, and niche dimensionality as drivers of species loss in grassland communities. Proceedings of the National Academy of Sciences of the United States of America, 119, e2112010119. DOI: 10.1073/pnas.2112010119.
DOI |
[8] |
Berg B (2014). Decomposition patterns for foliar litter—A theory for influencing factors. Soil Biology & Biochemistry, 78, 222-232.
DOI URL |
[9] |
Berg B, Erhagen B, Johansson MB, Nilsson M, Stendahl J, Trum F, Vesterdal L (2015). Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems—A review. Forest Ecology and Management, 358, 248-260.
DOI URL |
[10] |
Bodelier PLE, Laanbroek HJ (2004). Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology, 47, 265-277.
DOI PMID |
[11] |
Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000). Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature, 403, 421-424.
DOI URL |
[12] |
Booth MS, Stark JM, Rastetter E (2005). Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs, 75, 139-157.
DOI URL |
[13] |
Borer ET, Seabloom EW, Gruner DS, Harpole WS, Hillebrand H, Lind EM, Adler PB, Alberti J, Anderson TM, Bakker JD, Biederman L, Blumenthal D, Brown CS, Brudvig LA, Buckley YM, et al. (2014). Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508, 517-520.
DOI |
[14] |
Bowman WD, Gartner JR, Holland K, Wiedermann M (2006). Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? Ecological Applications, 16, 1183-1193.
DOI URL |
[15] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399.
DOI PMID |
[16] |
Cao J, Pang S, Wang Q, Williams MA, Jia X, Dun S, Yang J, Zhang Y, Wang J, Lü X, Hu Y, Li L, Li Y, Han X (2020). Plant-bacteria-soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Functional Ecology, 34, 723-734.
DOI URL |
[17] |
Cardenas LM, Thorman R, Ashlee N, Butler M, Chadwick D, Chambers B, Cuttle S, Donovan N, Kingston H, Lane S, Dhanoa MS, Scholefield D (2010). Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs. Agriculture, Ecosystems and Environment, 136, 218-226.
DOI URL |
[18] |
Carey CJ, Dove NC, Beman JM, Hart SC, Aronson EL (2016). Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biology & Biochemistry, 99, 158-166.
DOI URL |
[19] |
Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Mu M, Saatchi S, Santoro M, Thurner M, Weber U, Ahrens B, Beer C, Cescatti A, Randerson JT, Reichstein M (2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514, 213-217.
DOI |
[20] |
Chapin III FS, Bloom AJ, Field CB, Waring RH (1987). Plant responses to multiple environmental factors: physiological ecology provides tools for studying how interacting environmental resources control plant growth. BioScience, 37, 49-57.
DOI URL |
[21] | Chapin III FS, Matson PA, Vitousek PM (2011). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[22] |
Chen C, Chen HYH, Chen XL, Huang ZQ (2019a). Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nature Communications, 10, 1332. DOI: 10.1038/s41467-019-09258-y.
DOI |
[23] |
Chen D, Xing W, Lan Z, Saleem M, Wu Y, Hu S, Bai Y (2019b). Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. Functional Ecology, 33, 175-187.
DOI URL |
[24] |
Chen DM, Lan ZC, Hu SJ, Bai YF (2015). Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification. Soil Biology & Biochemistry, 89, 99-108.
DOI URL |
[25] |
Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF (2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669.
DOI URL |
[26] |
Chen H, Li D, Feng W, Niu S, Plante A, Luo Y, Wang K (2018a). Different responses of soil organic carbon fractions to additions of nitrogen. European Journal of Soil Science, 69, 1098-1104.
DOI URL |
[27] |
Chen L, Liu L, Mao C, Qin S, Wang J, Liu F, Blagodatsky S, Yang G, Zhang Q, Zhang D, Yu J, Yang Y (2018b). Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nature Communications, 9, 3951. DOI: 10.1038/s41467-018-06232-y.
DOI |
[28] |
Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014). Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology, 20, 2356-2367.
DOI PMID |
[29] |
Chen Y, Liu X, Hou YH, Zhou SR, Zhu B (2021). Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil, 458, 93-103.
DOI |
[30] | Cheng SL, Fang HJ, Xu M, Geng J, He S, Yu GX, Cao ZC (2018). Regulation of plant-soil-microbe interactions to soil organic carbon in natural ecosystems under elevated nitrogen deposition: a review. Acta Ecologica Sinica, 38, 8285-8295. |
[ 程淑兰, 方华军, 徐梦, 耿静, 何舜, 于光夏, 曹子铖 (2018). 氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展. 生态学报, 38, 8285-8295.] | |
[31] |
Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44.
DOI PMID |
[32] |
Clark CM, Hobbie SE, Venterea R, Tilman D (2009). Long-lasting effects on nitrogen cycling 12 years after treatments cease despite minimal long-term nitrogen retention. Global Change Biology, 15, 1755-1766.
DOI URL |
[33] |
Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715.
DOI |
[34] | Cleland EE, Harpole WS (2010). Nitrogen enrichment and plant communities. Annals of the New York Academy of Sciences, 1195, 46-61. |
[35] |
Cleland EE, Lind EM, DeCrappeo NM, DeLorenze E, Wilkins RA, Adler PB, Bakker JD, Brown CS, Davies KF, Esch E, Firn J, Gressard S, Gruner DS, Hagenah N, Harpole WS, et al. (2019). Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands. Ecosystems, 22, 1466-1477.
DOI |
[36] |
Craine JM, Morrow C, Fierer N (2007). Microbial nitrogen limitation increases decomposition. Ecology, 88, 2105-2113.
PMID |
[37] |
Crowther TW, Riggs C, Lind EM, Borer ET, Seabloom EW, Hobbie SE, Wubs J, Adler PB, Firn J, Gherardi L, Hagenah N, Hofmockel KS, Knops JMH, McCulley RL, MacDougall AS, et al. (2019). Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecology Letters, 22, 936-945.
DOI PMID |
[38] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
DOI |
[39] |
DeMalach N (2018). Toward a mechanistic understanding of the effects of nitrogen and phosphorus additions on grassland diversity. Perspectives in Plant Ecology, Evolution and Systematics, 32, 65-72.
DOI URL |
[40] |
DeMalach N, Zaady E, Kadmon R (2017). Light asymmetry explains the effect of nutrient enrichment on grassland diversity. Ecology Letters, 20, 60-69.
DOI PMID |
[41] | Deng L, Peng CH, Zhu GY, Chen L, Liu YL, Shangguan ZP (2018). Positive responses of belowground C dynamics to nitrogen enrichment in China. Science of the Total Environment, 616- 617, 1035-1044. |
[42] |
Deng Q, Hui D, Dennis S, Reddy KC (2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecology and Biogeography, 26, 713-728.
DOI URL |
[43] |
Di Lonardo DP, de Boer W, Zweers H, van der Wal A (2019). Effect of the amount of organic trigger compounds, nitrogen and soil microbial biomass on the magnitude of priming of soil organic matter. PLoS ONE, 14, e0216730. DOI: 10.1371/journal.pone.0216730.
DOI |
[44] |
Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104, 20684-20689.
DOI PMID |
[45] |
Dijkstra FA, Hobbie SE, Knops JMH, Reich PB (2004). Nitrogen deposition and plant species interact to influence soil carbon stabilization. Ecology Letters, 7, 1192-1198.
DOI URL |
[46] | Dong XX, Bo YC, Sun JP, Zhang XL, Wang CH, Dong KH (2019). Short term effects on ecosystem CO2 exchange in a semi-arid grassland agro-pastoral ecotone, following differing levels of nitrogen application. Acta Prataculturae Sinica, 28, 163-170. |
[ 董斅晓, 薄元超, 孙建平, 张晓琳, 王常慧, 董宽虎 (2019). 农牧交错带半干旱草地生态系统CO2交换对短期不同水平氮添加的响应. 草业学报, 28, 163-170.] | |
[47] |
Entwistle EM, Zak DR, Argiroff WA (2018). Anthropogenic N deposition increases soil C storage by reducing the relative abundance of lignolytic fungi. Ecological Monographs, 88, 225-244.
DOI URL |
[48] | Fang HJ, Cheng SL, Yu GR, Wang YS, Xu MJ, Dang XS, Li LS, Wang L (2014). Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils: a review. Acta Ecologica Sinica, 34, 4799-4806. |
[ 方华军, 程淑兰, 于贵瑞, 王永生, 徐敏杰, 党旭升, 李林森, 王磊 (2014). 大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制. 生态学报, 34, 4799-4806.] | |
[49] | Fang JY, Geng XQ, Zhao X, Shen HH, Hu HF (2018). How many areas of grasslands are there in China? Chinese Science Bulletin, 63, 1731-1739. |
[ 方精云, 耿晓庆, 赵霞, 沈海花, 胡会峰 (2018). 我国草地面积有多大? 科学通报, 63, 1731-1739.] | |
[50] |
Faucon MP, Houben D, Lambers H (2017). Plant functional traits: soil and ecosystem services. Trends in Plant Science, 22, 385-394.
DOI URL |
[51] |
Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu C, Cleland EE, et al. (2015). Grassland productivity limited by multiple nutrients. Nature Plants, 1, 15080. DOI: 10.1038/nplants.2015.80.
DOI |
[52] |
Feng JG, Zhu B (2021). Global patterns and associated drivers of priming effect in response to nutrient addition. Soil Biology & Biochemistry, 153, 108118. DOI: 10.1016/j.soilbio.2020.108118.
DOI |
[53] |
Feng XH, Qin SQ, Zhang DY, Chen PD, Hu J, Wang GQ, Liu Y, Wei B, Li QL, Yang YH, Chen LY (2022). Nitrogen input enhances microbial carbon use efficiency by altering plant-microbe-mineral interactions. Global Change Biology, 28, 4845-4860.
DOI PMID |
[54] |
Fierer N, Bradford MA, Jackson RB (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
DOI PMID |
[55] |
Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal, 6, 1007-1017.
DOI |
[56] |
Foereid B, de Neergaard A, Høgh-Jensen H (2004). Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biology & Biochemistry, 36, 1075-1085.
DOI URL |
[57] |
Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011). Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology & Biochemistry, 43, 86-96.
DOI URL |
[58] |
Fornara DA, Tilman D (2012). Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology, 93, 2030-2036.
PMID |
[59] |
Fowler D, Pyle JA, Raven JA, Sutton MA (2013). The global nitrogen cycle in the twenty-first century: introduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20130165. DOI: 10.1098/rstb.2013.0165.
DOI |
[60] |
Fu W, Wu H, Zhao AH, Hao ZP, Chen BD (2020). Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects. Chinese Journal of Plant Ecology, 44, 475-493.
DOI URL |
[ 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬 (2020). 陆地生态系统氮沉降的生态效应:研究进展与展望. 植物生态学报, 44, 475-493.]
DOI |
|
[61] |
Garcia-Pausas J, Paterson E (2011). Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biology & Biochemistry, 43, 1705-1713.
DOI URL |
[62] |
Gessner MO, Swan CM, Dang C, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010). Diversity meets decomposition. Trends in Ecology and Evolution, 25, 372-380.
DOI PMID |
[63] |
Gong JR, Zhu CC, Yang LL, Yang B, Wang B, Baoyin TT, Liu M, Zhang ZH, Shi JY (2020). Effects of nitrogen addition on above- and belowground litter decomposition and nutrient dynamics in the litter-soil continuum in the temperate steppe of Inner Mongolia, China. Journal of Arid Environments, 172, 104036. DOI: 10.1016/j.jaridenv.2019.104036.
DOI |
[64] |
Grime JP (2006). Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science, 17, 255-260.
DOI URL |
[65] | Guo DL, Fan PP (2007). Four hypotheses about the effects of soil nitrogen availability on fine root production and turnover. Chinese Journal of Applied Ecology, 18, 2354-2360. |
[ 郭大立, 范萍萍 (2007). 关于氮有效性影响细根生产量和周转率的四个假说. 应用生态学报, 18, 2354-2360.] | |
[66] | Han WX, Fang JY (2008). Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power. Chinese Journal of Plant Ecology (Chinese Version), 32, 951-960. |
[ 韩文轩, 方精云 (2008). 幂指数异速生长机制模型综述. 植物生态学报, 32, 951-960.]
DOI |
|
[67] |
Harpole WS, Sullivan LL, Lind EM, Firn J, Adler PB, Borer ET, Chase J, Fay PA, Hautier Y, Hillebrand H, MacDougall AS, Seabloom EW, Williams R, Bakker JD, Cadotte MW, et al. (2016). Addition of multiple limiting resources reduces grassland diversity. Nature, 537, 93-96.
DOI |
[68] |
Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
DOI PMID |
[69] |
He NP, Liu CC, Piao SL, Sack L, Xu L, Luo YQ, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, et al. (2019). Ecosystem traits linking functional traits to macroecology. Trends in Ecology and Evolution, 34, 200-210.
DOI PMID |
[70] |
He NP, Yu Q, Wang RM, Zhang YH, Gao Y, Yu GR (2013). Enhancement of carbon sequestration in soil in the temperature grasslands of northern China by addition of nitrogen and phosphorus. PLoS ONE, 8, e77241. DOI: 10.1371/journal.pone.0077241.
DOI |
[71] | He YL, Qi YC, Peng Q, Dong YS, Yan ZQ, Li ZL (2018). Effects of exogenous carbon and nitrogen addition on the key process of carbon cycle in grassland ecosystem: a review. China Environmental Science, 38, 1133-1141. |
[ 贺云龙, 齐玉春, 彭琴, 董云社, 闫钟清, 李兆林 (2018). 外源碳氮添加对草地碳循环关键过程的影响. 中国环境科学, 38, 1133-1141.] | |
[72] |
Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC, (2004). Carbon sequestration in ecosystems: the role of stoichiometry. Ecology, 85, 1179-1192.
DOI URL |
[73] |
Hicks LC, Meir P, Nottingham AT, Reay DS, Stott AW, Salinas N, Whitaker J (2019). Carbon and nitrogen inputs differentially affect priming of soil organic matter in tropical lowland and montane soils. Soil Biology & Biochemistry, 129, 212-222.
DOI URL |
[74] |
Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012). Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 82, 389-405.
DOI URL |
[75] | Hoben JP, Gehl RJ, Millar N, Grace PR, Robertson GP (2011). Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology, 17, 1140-1152. |
[76] |
Horn EL, Cooledge EC, Jones DL, Hoyle FC, Brailsford FL, Murphy DV (2021). Addition of base cations increases microbial carbon use efficiency and biomass in acidic soils. Soil Biology & Biochemistry, 161, 108392. DOI: 10.1016/j.soilbio.2021.108392.
DOI |
[77] |
Horswill P, OʼSullivan O, Phoenix GK, Lee JA, Leake JR (2008). Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environmental Pollution, 155, 336-349.
DOI PMID |
[78] |
Hou S, Hättenschwiler S, Yang J, Sistla S, Wei H, Zhang Z, Hu Y, Wang R, Cui S, Lü X, Han X (2021). Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytologist, 229, 296-307.
DOI URL |
[79] |
Humbert JY, Dwyer JM, Andrey A, Arlettaz R (2016). Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review. Global Change Biology, 22, 110-120.
DOI URL |
[80] |
Irvine IC, Vivanco L, Bentley PN, Martiny JBH (2012). The effect of nitrogen enrichment on C1-cycling microorganisms and methane flux in salt marsh sediments. Frontiers in Microbiology, 3, 90. DOI: 10.3389/fmicb.2012.00090.
DOI |
[81] |
Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 110, 11911-11916.
DOI PMID |
[82] |
Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419-445.
DOI URL |
[83] |
Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322.
DOI |
[84] |
Jian S, Li J, Chen J, Wang G, Mayes MA, Dzantor KE, Hui D, Luo Y (2016). Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biology & Biochemistry, 101, 32-43.
DOI URL |
[85] |
Jones DL, Cooledge EC, Hoyle FC, Griffiths RI, Murphy DV (2019). pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities. Soil Biology and Biochemistry, 138, 107584. DOI: 10.1016/j.soilbio.2019.107584.
DOI |
[86] |
Keller AB, Borer ET, Collins SL, DeLancey LC, Fay PA, Hofmockel KS, Leakey ADB, Mayes MA, Seabloom EW, Walter CA, Wang Y, Zhao Q, Hobbie SE (2022). Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decade-long fertilization. Global Change Biology, 28, 1659-1677.
DOI URL |
[87] |
Kim DG, Hernandez-Ramirez G, Giltrap D (2013). Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: a meta-analysis. Agriculture, Ecosystems and Environment, 168, 53-65.
DOI URL |
[88] |
Kim DG, Mishurov M, Kiely G (2010). Effect of increased N use and dry periods on N2O emission from a fertilized grassland. Nutrient Cycling in Agroecosystems, 88, 397-410.
DOI URL |
[89] |
King GM, Schnell S (1994). Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature, 370, 282-284.
DOI |
[90] | Kou YP, Li JB, Wang YS, Li CN, Tu B, Yao MJ, Li XZ (2017). Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils. Soil Biology & Biochemistry, 111, 104-114. |
[91] |
Koyama A, Wallenstein MD, Simpson RT, Moore JC (2014). Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Frontiers in Microbiology, 5, 516. DOI: 10.3389/fmicb.2014.00516.
DOI |
[92] |
Kuzyakov Y, Friedel JK, Stahr K (2000). Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry, 32, 1485-1498.
DOI URL |
[93] |
Kuzyakov Y, Gavrichkova O (2010). Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology, 16, 3386-3406.
DOI URL |
[94] |
La Pierre KJ, Smith MD (2015). Functional trait expression of grassland species shift with short- and long-term nutrient additions. Plant Ecology, 216, 307-318.
DOI URL |
[95] |
Lal R (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627.
DOI PMID |
[96] |
Lan ZC, Bai YF (2012). Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: critical thresholds and implications for long-term ecosystem responses. Philosophical Transactions of the Royal Society of B: Biological Sciences, 367, 3125-3134.
DOI URL |
[97] |
Lan ZC, Jenerette GD, Zhan SX, Li WH, Zheng SX, Bai YF (2015). Testing the scaling effects and mechanisms of N-induced biodiversity loss: evidence from a decade-long grassland experiment. Journal of Ecology, 103, 750-760.
DOI URL |
[98] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
PMID |
[99] |
Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, et al. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 112, 10967-10972.
DOI PMID |
[100] |
Li L, Zhu-Barker X, Ye R, Doane TA, Horwath WR (2018). Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability. Soil Biology & Biochemistry, 119, 41-49.
DOI URL |
[101] |
Li WB, Jin CJ, Guan DX, Wang QK, Wang AZ, Yuan FH, Wu JB (2015). The effects of simulated nitrogen deposition on plant root traits: a meta-analysis. Soil Biology & Biochemistry, 82, 112-118.
DOI URL |
[102] | Ling XL, Shi BK, Cui HY, Song WZ, Sun W (2021). Effects of nitrogen and phosphorus addition on soil aggregates structure and carbon content in Songnen grassland. Chinese Journal of Grassland, 43, 54-63. |
[ 凌小莉, 史宝库, 崔海莹, 宋文政, 孙伟 (2021). 氮磷添加对松嫩草地土壤团聚体结构及其碳含量的影响. 中国草地学报, 43, 54-63.] | |
[103] | Liu HM, Zhang HF, Qin J, Wang H, Zhang YJ, Yang DL (2019). Effects of simulated nitrogen deposition on soil nitrogen-transforming microorganisms in Stipa baicalensis steppe. Journal of Agro-Environment Science, 38, 2386-2394. |
[ 刘红梅, 张海芳, 秦洁, 王慧, 张艳军, 杨殿林 (2019). 模拟氮沉降对贝加尔针茅草原土壤氮转化微生物的影响. 农业环境科学学报, 38, 2386-2394.] | |
[104] |
Liu J, Wu NN, Wang H, Sun JF, Peng B, Jiang P, Bai E (2016). Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter. Ecology, 97, 1796-1806.
DOI PMID |
[105] |
Liu L, Greaver TL (2009). A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters, 12, 1103-1117.
DOI URL |
[106] |
Liu P, Huang JH, Han XG, Sun OJ, Zhou ZY (2006). Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 34, 266-275.
DOI URL |
[107] |
Liu WX, Jiang L, Yang S, Wang Z, Tian R, Peng ZY, Chen YL, Zhang XX, Kuang JL, Ling N, Wang SP, Liu LL (2020). Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology, 101, e03053. DOI: 10.1002/ecy.3053.
DOI |
[108] |
Liu WX, Liu LL, Yang X, Deng MF, Wang Z, Wang PD, Yang S, Li P, Peng ZY, Yang L, Jiang L (2021). Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Global Change Biology, 27, 3939-3950.
DOI URL |
[109] |
Liu WX, Qiao CL, Yang S, Bai WM, Liu LL (2018). Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition. Geoderma, 332, 37-44.
DOI URL |
[110] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[111] |
Liu Y, Peng YF, Men MX, Peng ZP, Yang YH (2021). Response of root dynamics to nitrogen addition and the influencing factors in a Tibetan alpine steppe, China. Chinese Journal of Applied Ecology, 32, 3119-3126.
DOI |
[ 刘洋, 彭云峰, 门明新, 彭正萍, 杨元合 (2021). 青藏高原高寒草原根系动态对氮添加的响应及其调控因素. 应用生态学报, 32, 3119-3126.]
DOI |
|
[112] |
Liu YW, Xu R, Xu XL, Wei D, Wang YH, Wang YS (2013). Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi-level nitrogen addition. Plant and Soil, 373, 515-529.
DOI URL |
[113] | Lu JY, Zhang HS, Tian H, Xiong JB, Liu Y (2022). Research progress on effects of nitrogen deposition on soil nitrogen cycling in grassland ecosystems. Acta Prataculturae Sinica, 31, 221-234. |
[ 陆姣云, 张鹤山, 田宏, 熊军波, 刘洋 (2022). 氮沉降影响草地生态系统土壤氮循环过程的研究进展. 草业学报, 31, 221-234.] | |
[114] |
Lu M, Yang YH, Luo YQ, Fang CM, Zhou XH, Chen JK, Yang X, Li B (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189, 1040-1050.
DOI PMID |
[115] |
Lu XF, Hou EQ, Guo JY, Gilliam FS, Li JL, Tang SB, Kuang YW (2021). Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: a meta-analysis. Global Change Biology, 27, 2780-2792.
DOI PMID |
[116] | Luo QP, Gong JR, Zhai ZW, Pan Y, Liu M, Xu S, Wang YH, Yang LL, Baoyin TT (2016). The responses of soil respiration to nitrogen addition in a temperate grassland in northern China. Science of the Total Environment, 569- 570, 1466-1477. |
[117] |
Luo R, Kuzyakov Y, Liu D, Fan J, Luo J, Lindsey S, He J, Ding W (2020). Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls. Soil Biology & Biochemistry, 144, 107764. DOI: 10.1016/j.soilbio.2020.107764.
DOI |
[118] | Luo YQ, Zhou XH (2006). Soil Respiration and the Environment. Academic Press, London. |
[119] |
Lv CQ, Tian HQ, Huang Y (2007). Ecological effects of increased nitrogen deposition in terrestrial ecosystems. Chinese Journal of Plant Ecology (Chinese Version), 31, 205-218.
DOI URL |
[ 吕超群, 田汉勤, 黄耀 (2007). 陆地生态系统氮沉降增加的生态效应. 植物生态学报, 31, 205-218.]
DOI |
|
[120] |
Ma FF, Song B, Quan Q, Zhang FY, Wang JS, Zhou QP, Niu SL (2020). Light competition and biodiversity loss cause saturation response of aboveground net primary productivity to nitrogen enrichment. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005556. DOI: 10.1029/2019JG005556.
DOI |
[121] |
Ma FF, Zhang FY, Quan Q, Song B, Wang JS, Zhou QP, Niu SL (2021). Common species stability and species asynchrony rather than richness determine ecosystem stability under nitrogen enrichment. Ecosystems, 24, 686-698.
DOI |
[122] |
Maaroufi NI, Nordin A, Palmqvist K, Hasselquist NJ, Forsmark B, Rosenstock NP, Wallander H, Gundale MJ (2019). Anthropogenic nitrogen enrichment enhances soil carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity. Global Change Biology, 25, 2900-2914.
DOI PMID |
[123] |
Manzoni S, Čapek P, Mooshammer M, Lindahl BD, Richter A, Šantrůčková H (2017). Optimal metabolic regulation along resource stoichiometry gradients. Ecology Letters, 20, 1182-1191.
DOI PMID |
[124] |
Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196, 79-91.
DOI PMID |
[125] |
Mao C, Kou D, Peng YF, Qin SQ, Zhang QW, Yang YH (2021). Soil nitrogen transformations respond diversely to multiple levels of nitrogen addition in a Tibetan alpine steppe. Journal of Geophysical Research: Biogeosciences, 126, e2020JG006211. DOI: 10.1029/2020JG006211.
DOI |
[126] | Marschner P (2012). Mineral Nutrition of Higher Plants. 3rd ed. Academic Press, London. |
[127] |
McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21, 713-720.
DOI URL |
[128] |
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185.
DOI PMID |
[129] |
McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Tresederi KK (2010). Functional diversity in resource use by fungi. Ecology, 91, 2324-2332.
PMID |
[130] |
McHugh TA, Morrissey EM, Mueller RC, Gallegos-Graves LV, Kuske CR, Reed SC (2017). Bacterial, fungal, and plant communities exhibit no biomass or compositional response to two years of simulated nitrogen deposition in a semiarid grassland. Environmental Microbiology, 19, 1600-1611.
DOI PMID |
[131] |
Mganga KZ, Kuzyakov Y (2018). Land use and fertilisation affect priming in tropical andosols. European Journal of Soil Biology, 87, 9-16.
DOI URL |
[132] |
Midolo G, Alkemade R, Schipper AM, Benítez-López A, Perring MP, de Vries W, (2019). Impacts of nitrogen addition on plant species richness and abundance: a global meta-analysis. Global Ecology and Biogeography, 28, 398-413.
DOI URL |
[133] |
Migliavacca M, Musavi T, Mahecha MD, Nelson JA, Knauer J, Baldocchi DD, Perez-Priego O, Christiansen R, Peters J, Anderson K, Bahn M, Black TA, Blanken PD, Bonal D, Buchmann N, et al. (2021). The three major axes of terrestrial ecosystem function. Nature, 598, 468-472.
DOI |
[134] |
Moorhead DL, Sinsabaugh RL (2006). A theoretical model of litter decay and microbial interaction. Ecological Monographs, 76, 151-174.
DOI URL |
[135] |
Mulder C, Elser JJ (2009). Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Global Change Biology, 15, 2730-2738.
DOI URL |
[136] |
Müller I, Schmid B, Weiner J (2000). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 115-127.
DOI URL |
[137] |
Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature, 419, 915-917.
DOI URL |
[138] |
Nessel MP, Konnovitch T, Romero GQ, González AL (2021). Nitrogen and phosphorus enrichment cause declines in invertebrate populations: a global meta-analysis. Biological Reviews of the Cambridge Philosophical Society, 96, 2617-2637.
DOI PMID |
[139] |
Ning Q, Hättenschwiler S, Lü X, Kardol P, Zhang Y, Wei CZ, Xu C, Huang J, Li A, Yang J, Wang J, Peng Y, Peñuelas J, Sardans J, He J, et al. (2021). Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Global Change Biology, 27, 5976-5988.
DOI PMID |
[140] |
Niu K, Choler P, de Bello F, Mirotchnick N, Du G, Sun S (2014). Fertilization decreases species diversity but increases functional diversity: a three-year experiment in a Tibetan alpine meadow. Agriculture, Ecosystems and Environment, 182, 106-112.
DOI URL |
[141] |
Niu S, Classen AT, Dukes JS, Kardol P, Liu L, Luo Y, Rustad L, Sun J, Tang J, Templer PH, Thomas RQ, Tian D, Vicca S, Wang Y, Xia J, Zaehle S (2016). Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 19, 697-709.
DOI URL |
[142] |
Omar SA, Ismail MA (1999). Microbial populations, ammonification and nitrification in soil treated with urea and inorganic salts. Folia Microbiologica, 44, 205-212.
PMID |
[143] | Pan H, Li Y, Meng CM, Zheng Y, Liu XM, Zhuge YP, Jia ZJ, Di HJ, Xu JM (2022). Effects of nitrogen levels on interactions between active methanotrophs and nitrifiers. Acta Pedologica Sinica, 59, 557-567. |
[ 潘红, 李勇, 孟春梅, 郑燕, 刘杏梅, 诸葛玉平, 贾仲君, 邸洪杰, 徐建明 (2022). 氮素水平对土壤甲烷氧化和硝化微生物相互作用的影响. 土壤学报, 59, 557-567.] | |
[144] |
Peng Y, Li F, Zhou G, Fang K, Zhang D, Li C, Yang G, Wang G, Wang J, Mohammat A, Yang Y (2017a). Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe. Environmental Research Letters, 12, 024018. DOI: 10.1088/1748-9326/aa5ba6.
DOI |
[145] |
Peng Y, Peng Z, Zeng X, Houx III JH (2019a). Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective. Plant and Soil, 436, 245-252.
DOI |
[146] |
Peng YF, Chen HYH, Yang YH (2020). Global pattern and drivers of nitrogen saturation threshold of grassland productivity. Functional Ecology, 34, 1979-1990.
DOI URL |
[147] |
Peng YF, Guo DL, Yang YH (2017b). Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 26, 102-114.
DOI URL |
[148] | Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Yang YH (2017c). Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 23, 5249-5259. |
[149] | Peng YF, Wang GQ, Li F, Yang GB, Fang K, Liu L, Qin SQ, Zhang DY, Zhou GY, Fang HJ, Liu XJ, Liu CY, Yang YH (2019b). Unimodal response of soil methane consumption to increasing nitrogen additions. Environmental Science & Technology, 53, 4150-4160. |
[150] | Peng YF, Wang GQ, Li F, Zhou GY, Yang GB, Fang K, Liu L, Qin SQ, Zhang DY, Yang YH (2018). Soil temperature dynamics modulate N2O flux response to multiple nitrogen additions in an alpine steppe. Journal of Geophysical Research: Biogeosciences, 123, 3308-3319. |
[151] |
Peng YF, Yang YH (2016). Allometric biomass partitioning under nitrogen enrichment: evidence from manipulative experiments around the world. Scientific Reports, 6, 28918. DOI: 10.1038/srep28918.
DOI |
[152] |
Picek T, Kaštovská E, Edwards K, Zemanová K, Dušek J (2008). Short term effects of experimental eutrophication on carbon and nitrogen cycling in two types of wet grassland. Community Ecology, 9, 81-90.
DOI URL |
[153] | Ping XY, Zhou GS, Sun JS (2010). Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology, 34, 100-111. |
[ 平晓燕, 周广胜, 孙敬松 (2010). 植物光合产物分配及其影响因子研究进展. 植物生态学报, 34, 100-111.]
DOI |
|
[154] |
Poeplau C, Helfrich M, Dechow R, Szoboszlay M, Tebbe CC, Don A, Greiner B, Zopf D, Thumm U, Korevaar H, Geerts R (2019). Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands. Soil Biology & Biochemistry, 130, 167-176.
DOI URL |
[155] | Qin JM, Wang CH, Cao Y, Hao J, Chen XP, Dong KH (2022). Effects of nitrogen addition and mowing on plant carbon and nitrogen pools in typical grassland of Inner Mongolia. Acta Agrestia Sinica, 30, 12-20. |
[ 秦加敏, 王常慧, 曹颖, 郝杰, 陈晓鹏, 董宽虎 (2022). 氮添加和刈割对内蒙古典型草原植被碳氮库的影响. 草地学报, 30, 12-20.]
DOI |
|
[156] |
Qin SQ, Fang K, Wang GQ, Peng YF, Zhang DY, Li F, Zhou GY, Yang YH (2018). Responses of exchangeable base cations to continuously increasing nitrogen addition in alpine steppe: a case study of Stipa purpurea steppe. Chinese Journal of Plant Ecology, 42, 95-104.
DOI URL |
[ 秦书琪, 房凯, 王冠钦, 彭云峰, 张典业, 李飞, 周国英, 杨元合 (2018). 高寒草原土壤交换性盐基离子对氮添加的响应: 以紫花针茅草原为例. 植物生态学报, 42, 95-104.]
DOI |
|
[157] |
Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010). Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology, 91, 3463-3470.
PMID |
[158] | Raposo E, Brito LF, Janusckiewicz ER, Oliveira LF, Versuti J, Assumpção FM, Cardoso AS, Siniscalchi D, Delevatti LM, Malheiros EB, Reis RA, Ruggieri AC (2020). Greenhouse gases emissions from tropical grasslands affected by nitrogen fertilizer management. Agronomy Journal, 112, 4666-4680. |
[159] |
Riggs CE, Hobbie SE (2016). Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology & Biochemistry, 99, 54-65.
DOI URL |
[160] |
Seabloom EW, Adler PB, Alberti J, Biederman L, Buckley YM, Cadotte MW, Collins SL, Dee L, Fay PA, Firn J, Hagenah N, Harpole WS, Hautier Y, Hector A, Hobbie SE, et al. (2021). Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 102, e03218. DOI: 10.1002/ecy.3218.
DOI |
[161] |
Shcherbak I, Millar N, Robertson GP (2014). Global meta analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 111, 9199-9204.
DOI PMID |
[162] |
Shipley B, Meziane D (2002). The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16, 326-331.
DOI URL |
[163] | Silva LVB, Vasconcelos HL, Mack MC, de Siqueira Ferreira A, Bruna EM (2020). Effects of experimental nitrogen enrichment on soil properties and litter decomposition in a Neotropical savanna. Austral Ecology, 45, 1093-1102. |
[164] |
Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013). Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecology Letters, 16, 930-939.
DOI PMID |
[165] |
Song B, Niu SL, Li LH, Zhang LX, Yu GR (2014). Soil carbon fractions in grasslands respond differently to various levels of nitrogen enrichments. Plant and Soil, 384, 401-412.
DOI URL |
[166] |
Song B, Sun J, Zhou QP, Zong N, Li LH, Niu SL (2017). Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes. Biogeosciences, 14, 3947-3956.
DOI URL |
[167] |
Song L, Bao X, Liu X, Zhang Y, Christie P, Fangmeier A, Zhang F (2011). Nitrogen enrichment enhances the dominance of grasses over forbs in a temperate steppe ecosystem. Biogeosciences, 8, 2341-2350.
DOI URL |
[168] |
Song M, Guo Y, Yu F, Zhang X, Cao G, Cornelissen JHC (2018). Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage. Global Change Biology, 24, 4160-4172.
DOI PMID |
[169] |
Spohn M, Pötsch EM, Eichorst SA, Woebken D, Wanek W, Richter A (2016). Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biology & Biochemistry, 97, 168-175.
DOI URL |
[170] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[171] |
Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876-1879.
PMID |
[172] |
Strickland MS, Rousk J (2010). Considering fungal: bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biology & Biochemistry, 42, 1385-1395.
DOI URL |
[173] |
Sun Y, Xu XL, Kuzyakov Y (2014). Mechanisms of rhizosphere priming effects and their ecological significance. Chinese Journal of Plant Ecology, 38, 62-75.
DOI URL |
[ 孙悦, 徐兴良, Kuzyakov Y (2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.]
DOI |
|
[174] | Suttie JM, Reynolds SG, Batello C (2005). Grasslands of the World. No. 34. Food and Agriculture Organization of the United Nations, Rome, Italy. |
[175] |
Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019.
DOI |
[176] |
Tian DS, Niu SL, Pan QM, Ren TT, Chen SP, Bai YF, Han XG (2016a). Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland. Functional Ecology, 30, 490-499.
DOI URL |
[177] |
Tian Q, Liu N, Bai W, Li L, Chen J, Reich PB, Yu Q, Guo D, Smith MD, Knapp AK, Cheng W, Lu P, Gao Y, Yang A, Wang T, et al. (2016b). A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74.
DOI URL |
[178] |
Tian Q, Lu P, Zhai X, Zhang R, Zheng Y, Wang H, Nie B, Bai W, Niu S, Shi P, Yang Y, Li K, Yang D, Stevens C, Lambers H, Zhang W (2022). An integrated belowground trait-based understanding of nitrogen-driven plant diversity loss. Global Change Biology, 28, 3651-3664.
DOI URL |
[179] |
Tilman D (1987). Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecological Monographs, 57, 189-214.
DOI URL |
[180] |
Tilman D (1993). Species richness of experimental productivity gradients: How important is colonization limitation? Ecology, 74, 2179-2191.
DOI URL |
[181] |
Tognetti PM, Prober SM, Báez S, Chaneton EJ, Firn J, Risch AC, Schuetz M, Simonsen AK, Yahdjian L, Borer ET, Seabloom EW, Arnillas CA, Bakker JD, Brown CS, Cadotte MW, et al. (2021). Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 118, e2023718118. DOI: 10.1073/pnas.2023718118.
DOI |
[182] |
Treseder KK (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 11, 1111-1120.
DOI PMID |
[183] |
Tripathi SK, Kushwaha CP, Singh KP (2008). Tropical forest and savanna ecosystems show differential impact of N and P additions on soil organic matter and aggregate structure. Global Change Biology, 14, 2572-2581.
DOI URL |
[184] |
Vivanco L, Irvine IC, Martiny JBH (2015). Nonlinear responses in salt marsh functioning to increased nitrogen addition. Ecology, 96, 936-947.
PMID |
[185] |
Wang C, Liu DW, Bai E (2018). Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology & Biochemistry, 120, 126-133.
DOI URL |
[186] |
Wang C, Ren F, Zhou XH, Ma WH, Liang CZ, Wang JZ, Cheng JW, Zhou HK, He JS (2020). Variations in the nitrogen saturation threshold of soil respiration in grassland ecosystems. Biogeochemistry, 148, 311-324.
DOI |
[187] |
Wang J, Gao Y, Zhang Y, Yang J, Smith MD, Knapp AK, Eissenstat DM, Han X (2019a). Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Global Change Biology, 25, 2958-2969.
DOI URL |
[188] |
Wang JS, Song B, Ma FF, Tian DS, Li Y, Yan T, Quan Q, Zhang FY, Li ZL, Wang BX, Gao Q, Chen WN, Niu SL (2019b). Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow. Functional Ecology, 33, 2239-2253.
DOI URL |
[189] | Wang X, Du YG, Guo XW (2021). Effect of nitrogen deposition on grasslands nitrous oxide emission rates by Meta-analysis method. Mountain Research, 39, 338-345. |
[ 王霞, 杜岩功, 郭小伟 (2021). Meta分析模拟氮沉降对我国北方草地氧化亚氮排放速率的影响. 山地学报, 39, 338-345.] | |
[190] |
Wang YB, Sun YH, Ding W, Zhang ET, Li WH, Chi YG, Zheng SX (2020). Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe. Chinese Journal of Plant Ecology, 44, 22-32.
DOI URL |
[ 王玉冰, 孙毅寒, 丁威, 张恩涛, 李文怀, 迟永刚, 郑淑霞 (2020). 长期氮添加对典型草原植物多样性与初级生产力的影响及途径. 植物生态学报, 44, 22-32.]
DOI |
|
[191] |
Ward D, Kirkman K, Hagenah N, Tsvuura Z (2017). Soil respiration declines with increasing nitrogen fertilization and is not related to productivity in long-term grassland experiments. Soil Biology & Biochemistry, 115, 415-422.
DOI URL |
[192] | Wardle DA (2002). Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton University Press, Princeton. |
[193] | Wei B, Zhang DY, Kou D, Yang GB, Liu FT, Peng YF, Yang YH (2022). Decreased ultraviolet radiation and decomposer biodiversity inhibit litter decomposition under continuous nitrogen inputs. Functional Ecology, 36, 998-1009. |
[194] |
Wei C, Yu Q, Bai E, Lü X, Li Q, Xia J, Kardol P, Liang W, Wang Z, Han X (2013). Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems. Global Change Biology, 19, 3688-3697.
DOI PMID |
[195] |
Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215.
DOI URL |
[196] | Wen HY, Fu H, Guo D (2017). Influence of nitrogen addition on Stipa bungeana and Heteropappus altaicus litter decomposition and nutrient release in a steppe located on the Loess Plateau. Acta Ecologica Sinica, 37, 2014-2022. |
[ 文海燕, 傅华, 郭丁 (2017). 黄土高原典型草原优势植物凋落物分解及养分释放对氮添加的响应. 生态学报, 37, 2014-2022.] | |
[197] |
Widdig M, Schleuss PM, Biederman LA, Borer ET, Crawley MJ, Kirkman KP, Seabloom EW, Wragg PD, Spohn M (2020). Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biology & Biochemistry, 146, 107815. DOI: 10.1016/j.soilbio.2020.107815.
DOI |
[198] |
Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI PMID |
[199] |
Xiao Y, Liu X, Zhang L, Song ZP, Zhou SR (2021). The allometry of plant height explains species loss under nitrogen addition. Ecology Letters, 24, 553-562.
DOI PMID |
[200] | Xin XJ, Wang G, Yang YB, Ren ZW (2014). Effects of N, P addition on above/below ground biomass allocation in a subalpine meadow. Ecological Science, 33, 452-458. |
[ 辛小娟, 王刚, 杨莹博, 任正炜 (2014). 氮、磷添加对亚高山草甸地上/地下生物量分配的影响. 生态科学, 33, 452-458.] | |
[201] |
Xu C, Xu X, Ju C, Chen HYH, Wilsey BJ, Luo Y, Fan W (2021). Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide. Global Change Biology, 27, 1170-1180.
DOI PMID |
[202] |
Xu Z, Li MH, Zimmermann NE, Li SP, Li H, Ren H, Sun H, Han X, Jiang Y, Jiang L (2018). Plant functional diversity modulates global environmental change effects on grassland productivity. Journal of Ecology, 106, 1941-1951.
DOI URL |
[203] |
Yang GJ, Hautier Y, Zhang ZJ, Lü XT, Han XG (2022). Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. Global Change Biology, 28, 2711-2720.
DOI URL |
[204] |
Yang LL, Gong JR, Liu M, Yang B, Zhang ZH, Luo QP, Zhai ZW, Pan Y (2017). Advances in the effect of nitrogen deposition on grassland litter decomposition. Chinese Journal of Plant Ecology, 41, 894-913.
DOI |
[ 杨丽丽, 龚吉蕊, 刘敏, 杨波, 张子荷, 罗亲普, 翟占伟, 潘琰 (2017). 氮沉降对草地凋落物分解的影响研究进展. 植物生态学报, 41, 894-913.]
DOI |
|
[205] |
Yang S, Liu WX, Qiao CL, Wang J, Deng MF, Zhang BB, Liu LL (2019). The decline in plant biodiversity slows down soil carbon turnover under increasing nitrogen deposition in a temperate steppe. Functional Ecology, 33, 1362-1372.
DOI |
[206] |
Yang XX, Ren F, Zhou HK, He JS (2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166.
DOI URL |
[ 杨晓霞, 任飞, 周华坤, 贺金生 (2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.]
DOI |
|
[207] |
Yao M, Rui J, Li J, Dai Y, Bai Y, Heděnec P, Wang J, Zhang S, Pei K, Liu C, Wang Y, He Z, Frouz J, Li X (2014). Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biology & Biochemistry, 79, 81-90.
DOI URL |
[208] |
Ye CL, Chen DM, Hall SJ, Pan S, Yan XB, Bai TS, Guo H, Zhang Y, Bai YF, Hu SJ (2018). Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecology Letters, 21, 1162-1173.
DOI PMID |
[209] |
Yuan X, Niu D, Gherardi LA, Liu Y, Wang Y, Elser JJ, Fu H (2019). Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment. Soil Biology & Biochemistry, 138, 107580. DOI: 10.1016/j.soilbio.2019.107580.
DOI |
[210] |
Yue K, Peng Y, Peng CH, Yang WQ, Peng X, Wu FZ (2016). Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Scientific Reports, 6, 19895. DOI: 10.1038/srep19895.
DOI |
[211] |
Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA, (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507, 488-491.
DOI |
[212] |
Zeng J, Liu XJ, Song L, Lin XG, Zhang HY, Shen CC, Chu HY (2016). Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology & Biochemistry, 92, 41-49.
DOI URL |
[213] | Zhang DY, Peng YF, Li F, Yang GB, Wang J, Yu JC, Zhou GY, Yang YH (2021a). Changes in above-/below-ground biodiversity and plant functional composition mediate soil respiration response to nitrogen input. Functional Ecology, 35, 1171-1182. |
[214] | Zhang DY, Peng YF, Li F, Yang GB, Wang J, Yu JC, Zhou GY, Yang YH (2021b). Above- and below-ground resource acquisition strategies determine plant species responses to nitrogen enrichment. Annals of Botany, 128, 31-44. |
[215] | Zhang DY, Peng YF, Li F, Yang GB, Wang J, Yu JC, Zhou GY, Yang YH (2019). Trait identity and functional diversity co-drive response of ecosystem productivity to nitrogen enrichment. Journal of Ecology, 107, 2402-2414. |
[216] |
Zhang JF, Han XG (2008). N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmospheric Environment, 42, 291-302.
DOI URL |
[217] |
Zhang KP, Ni YY, Liu XJ, Chu HY (2020a). Microbes changed their carbon use strategy to regulate the priming effect in an 11-year nitrogen addition experiment in grassland. Science of the Total Environment, 727, 138645. DOI: 10.1016/j.scitotenv.2020.138645.
DOI |
[218] |
Zhang L, Yuan F, Bai J, Duan H, Gu X, Hou L, Huang Y, Yang M, He JS, Zhang Z, Yu L, Song C, Lipson DA, Zona D, Oechel W, Janssens IA, Xu X (2020b). Phosphorus alleviation of nitrogen-suppressed methane sink in global grasslands. Ecology Letters, 23, 821-830.
DOI URL |
[219] | Zhang SH, Zhang Y, Ma XY, Wang C, Ma Q, Yang XC, Xu T, Ma Y, Zheng Z (2022). Mechanisms underlying loss of plant biodiversity by atmospheric nitrogen deposition in grasslands. Acta Ecologica Sinica, 42, 1252-1261. |
[ 张世虎, 张悦, 马晓玉, 王聪, 马群, 杨雪纯, 徐婷, 马越, 郑智 (2022). 大气氮沉降影响草地植物物种多样性机制研究综述. 生态学报, 42, 1252-1261.] | |
[220] |
Zhang TA, Chen HYH, Ruan HH (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825.
DOI |
[221] |
Zhang Y, Loreau M, Lü X, He N, Zhang G, Han X (2016). Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biology, 22, 1445-1455.
DOI PMID |
[222] |
Zhang Y, Lü X, Isbell F, Stevens C, Han X, He N, Zhang G, Yu Q, Huang J, Han X (2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20, 3520-3529.
DOI PMID |
[223] |
Zhang Y, Zou J, Meng D, Dang S, Zhou J, Osborne B, Ren Y, Liang T, Yu K (2020c). Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: a meta-analysis. Ecology and Evolution, 10, 13602-13612.
DOI URL |
[224] |
Zhao M, Zhang HX, Baskin CC, Wei CZ, Yang JJ, Zhang YH, Jiang Y, Jiang L, Han XG (2022). Intra-annual species gain overrides species loss in determining species richness in a typical steppe ecosystem after a decade of nitrogen enrichment. Journal of Ecology, 110, 1942-1956.
DOI URL |
[225] |
Zheng JJ, Fang HJ, Cheng SL, Yu GR, Zhang PL, Xu MJ, Li YN (2012). Effects of N addition on soil organic carbon components in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 32, 5363-5372.
DOI URL |
[ 郑娇娇, 方华军, 程淑兰, 于贵瑞, 张裴雷, 徐敏杰, 李英年 (2012). 增氮对青藏高原东缘典型高寒草甸土壤有机碳组成的影响. 生态学报, 32, 5363-5372.] | |
[226] | Zhou YP, Zhang YG, Ma W, Liang XS, Ma XY, Wang ZW (2020). Effects of nitrogen addition and water reduction on the traits of five plants in Hulunbeir Grassland. Ecology and Environmental Sciences, 29, 41-48. |
[ 周一平, 张玉革, 马望, 梁潇洒, 马欣雨, 王正文 (2020). 氮添加和干旱对呼伦贝尔草原5种植物性状的影响. 生态环境学报, 29, 41-48.]
DOI |
|
[227] |
Zi HB, Chen Y, Hu L, Wang CT (2018). Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan. Chinese Journal of Plant Ecology, 42, 38-49.
DOI URL |
[ 字洪标, 陈焱, 胡雷, 王长庭 (2018). 氮肥添加对川西北高寒草甸植物群落根系动态的影响. 植物生态学报, 42, 38-49.]
DOI |
|
[228] |
Ziter C, MacDougall AS (2013). Nutrients and defoliation increase soil carbon inputs in grassland. Ecology, 94, 106-116.
PMID |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[3] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[4] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[5] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[6] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[7] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[8] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[9] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[10] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[11] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[12] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[13] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[14] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[15] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19