植物生态学报 ›› 2022, Vol. 46 ›› Issue (6): 656-666.DOI: 10.17521/cjpe.2022.0041
所属专题: 生物多样性
收稿日期:
2022-01-25
接受日期:
2022-04-21
出版日期:
2022-06-20
发布日期:
2022-04-27
通讯作者:
金光泽
作者简介:
*(taxus@126.com) ORCID:金光泽: 0000-0002-9852-0965基金资助:
PENG Xin1, JIN Guang-Ze1,2,*()
Received:
2022-01-25
Accepted:
2022-04-21
Online:
2022-06-20
Published:
2022-04-27
Contact:
JIN Guang-Ze
Supported by:
摘要:
可能栖息在局域群落但在局部地区不存在的物种集合构成了暗多样性。为探究物种特性和环境因子对阔叶红松林内暗多样性的影响, 该研究利用比尔指数模型估计了黑龙江凉水国家级自然保护区的9 hm2阔叶红松(Pinus koraiensis)林动态监测样地内的主要组成物种的暗多样性概率。基于物种水平, 评估了耐阴性指数、重要值和暗多样性概率之间的相关性, 并分析了生活型和耐阴性对暗多样性概率的影响; 基于样方水平, 分析了群落完整性与环境因子、物种多样性的相关性。结果表明: (1)该样地物种的暗多样性概率平均值为77.79%, 对于乔木, 胡桃楸(Juglans mandshurica)的暗多样性概率最高, 为97.21%; 对于灌木, 暗多样性概率最高的是鸡树条(Viburnum opulus subsp. calvescens)和鼠李(Rhamnus davurica), 为98.01%。(2)暗多样性概率与重要值呈显著负相关关系, 耐阴性指数与重要值呈显著正相关关系。(3)乔木和灌木的暗多样性概率无显著差异, 喜光物种的暗多样性概率显著高于耐阴物种。(4)坡度和地面凹凸度均与群落完整性呈显著正相关关系; 土壤有机质含量、土壤速效钾(K)含量、土壤密度、土壤质量含水率、土壤pH、土壤有效氮(N)含量和土壤全N含量均与群落完整性无显著相关关系, 土壤体积含水率、土壤速效磷(P)含量、土壤全P含量均与群落完整性呈显著的负相关关系。物种多样性指数与群落完整性呈正相关关系。综上, 在阔叶红松林内喜光物种和稀有种的暗多样性概率较高, 坡度、地面凹凸度、土壤体积含水率、土壤速效P含量、土壤全P含量是导致群落完整性差异的主要环境因素; 群落完整性越高, 群落物种多样性越高。
彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响. 植物生态学报, 2022, 46(6): 656-666. DOI: 10.17521/cjpe.2022.0041
PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest. Chinese Journal of Plant Ecology, 2022, 46(6): 656-666. DOI: 10.17521/cjpe.2022.0041
[1] |
Addo-Fordjour P, Rahmad ZB (2015). Environmental factors associated with liana community assemblages in a tropical forest reserve, Ghana. Journal of Tropical Ecology, 31, 69-79.
DOI URL |
[2] | Anselin L (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publisher, Dordrecht, the Netherlands. |
[3] | Beals EW (1984). Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Advances in Ecological Research, 14, 1-55. |
[4] |
Belinchón R, Hemrová L, Münzbergová Z (2020). Functional traits determine why species belong to the dark diversity in a dry grassland fragmented landscape. Oikos, 129, 1468-1480.
DOI URL |
[5] |
Botta-Dukát Z (2012). Co-occurrence-based measure of species' habitat specialization: robust, unbiased estimation in saturated communities. Journal of Vegetation Science, 23, 201-207.
DOI URL |
[6] |
Boussarie G, Bakker J, Wangensteen OS, Mariani S, Bonnin L, Juhel JB, Kiszka JJ, Kulbicki M, Manel S, Robbins WD, Vigliola L, Mouillot D (2018). Environmental DNA illuminates the dark diversity of sharks. Science Advances, 4, eaap9661. DOI: 10.1126/sciadv.aap9661.
DOI URL |
[7] |
Brown JH (1984). On the relationship between abundance and distribution of species. The American Naturalist, 124, 255-279.
DOI URL |
[8] | Burrough PA, McDonnell RA (1998). Principle of Geographic Information Systems. Oxford University Press, New York. |
[9] | Carmona CP, Pärtel M (2020). DarkDiv: Estimating dark diversity and site-specific species pools. [2021-10-18]. https://CRAN.R-project.org/package=DarkDiv. |
[10] |
Curtis JT, McIntosh RP (1951). An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology, 32, 476-496.
DOI URL |
[11] |
Dixon P (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927-930.
DOI URL |
[12] |
Fløjgaard C, Valdez JW, Dalby L, Moeslund JE, Clausen KK, Ejrnæs R, Pärtel M, Brunbjerg AK (2020). Dark diversity reveals importance of biotic resources and competition for plant diversity across habitats. Ecology and Evolution, 10, 6078-6088.
DOI PMID |
[13] |
Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, Phillips OL, Qie L, Coomes DA (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21, 989-1000.
DOI URL |
[14] |
Käber Y, Meyer P, Stillhard J, de Lombaerde E, Zell J, Stadelmann G, Bugmann H, Bigler C (2021). Tree recruitment is determined by stand structure and shade tolerance with uncertain role of climate and water relations. Ecology and Evolution, 11, 12182-12203.
DOI URL |
[15] |
Körner C (2007). The use of “altitude” in ecological research. Trends in Ecology & Evolution, 22, 569-574.
DOI URL |
[16] |
Lewis RJ, de Bello F, Bennett JA, Fibich P, Finerty GE, Götzenberger L, Hiiesalu I, Kasari L, Lepš J, Májeková M, Mudrák O, Riibak K, Ronk A, Rychtecká T, Vitová A, Pärtel M (2017). Applying the dark diversity concept to nature conservation. Conservation Biology, 31, 40-47.
DOI PMID |
[17] |
Lewis RJ, Szava-Kovats R, Pärtel M (2016). Estimating dark diversity and species pools: an empirical assessment of two methods. Methods in Ecology and Evolution, 7, 104-113.
DOI URL |
[18] |
Mahdavi P, Akhani H, van der Maarel E,(2013). Species diversity and life form patterns in steppe vegetation along a 3000 m altitudinal gradient in the Alborz Mountains, Iran. Folia Geobotanica, 48, 7-22.
DOI URL |
[19] |
Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Svenning JC (2013). Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany, 31, 129-144.
DOI URL |
[20] |
Moeslund JE, Brunbjerg AK, Clausen KK, Dalby L, Fløjgaard C, Juel A, Lenoir J (2017). Using dark diversity and plant characteristics to guide conservation and restoration. Journal of Applied Ecology, 54, 1730-1741.
DOI URL |
[21] |
Münzbergová Z, Herben T (2004). Identification of suitable unoccupied habitats in metapopulation studies using co-occurrence of species. Oikos, 105, 408-414.
DOI URL |
[22] |
Niinemets Ü, Valladares F (2006). Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological Monographs, 76, 521-547.
DOI URL |
[23] |
Noreika N, Pärtel M, Öckinger E (2020). Community completeness as a measure of restoration success: multiple-study comparisons across ecosystems and ecological groups. Biodiversity and Conservation, 29, 3807-3827.
DOI URL |
[24] |
Nuñez CI, Raffaele E, Nuñez MA, Cuassolo F (2009). When do nurse plants stop nursing? Temporal changes in water stress levels in Austrocedrus chilensis growing within and outside shrubs. Journal of Vegetation Science, 20, 1064-1071.
DOI URL |
[25] |
Odland A (2009). Interpretation of altitudinal gradients in South Central Norway based on vascular plants as environmental indicators. Ecological Indicators, 9, 409-421.
DOI URL |
[26] |
Pärtel M, Szava-Kovats R, Zobel M (2011). Dark diversity: shedding light on absent species. Trends in Ecology & Evolution, 26, 124-128.
DOI URL |
[27] |
Pärtel M, Szava-Kovats R, Zobel M (2013). Community completeness: linking local and dark diversity within the species pool concept. Folia Geobotanica, 48, 307-317.
DOI URL |
[28] |
Riibak K, Bennett JA, Kook E, Reier Ü, Tamme R, Bueno CG, Pärtel M (2020). Drivers of plant community completeness differ at regional and landscape scales. Agriculture, Ecosystems & Environment, 301, 107004. DOI: 10.1016/j.agee.2020.107004.
DOI URL |
[29] |
Riibak K, Reitalu T, Tamme R, Helm A, Gerhold P, Znamenskiy S, Bengtsson K, Rosén E, Prentice HC, Pärtel M (2015). Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress-tolerance. Ecography, 38, 713-721.
DOI URL |
[30] |
Riibak K, Ronk A, Kattge J, Pärtel M (2017). Dispersal limitation determines large-scale dark diversity in Central and Northern Europe. Journal of Biogeography, 44, 1770-1780.
DOI URL |
[31] |
Ronk A, Szava-Kovats R, Pärtel M (2015). Applying the dark diversity concept to plants at the European scale. Ecography, 38, 1015-1025.
DOI URL |
[32] |
Ronk A, Szava-Kovats R, Zobel M, Pärtel M (2017). Observed and dark diversity of alien plant species in Europe: estimating future invasion risk. Biodiversity and Conservation, 26, 899-916.
DOI URL |
[33] |
Seddon PJ (2010). From reintroduction to assisted colonization: moving along the conservation translocation spectrum. Restoration Ecology, 18, 796-802.
DOI URL |
[34] |
Shi BK, Gao WF, Cai HY, Jin GZ (2016). Spatial variation of soil respiration is linked to the forest structure and soil parameters in an old-growth mixed broadleaved-Korean pine forest in northeastern China. Plant and Soil, 400, 263-274.
DOI URL |
[35] |
Tang LL, Wang RX, He KS, Shi C, Yang T, Huang YP, Zheng PF, Shi FC (2019). Throwing light on dark diversity of vascular plants in China: predicting the distribution of dark and threatened species under global climate change. PeerJ, 7, e6731. DOI: 10.7717/peerj.6731.
DOI URL |
[36] |
Trindade DPF, Carmona CP, Pärtel M (2020). Temporal lags in observed and dark diversity in the Anthropocene. Global Change Biology, 26, 3193-3201.
DOI PMID |
[37] |
Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernández C, Romoleroux K, Losos E, Magård E, Balslev H (2004). Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214-229.
DOI URL |
[38] |
Valladares F, Niinemets Ü (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237-257.
DOI URL |
[39] |
Veech JA (2013). A probabilistic model for analysing species co-occurrence. Global Ecology and Biogeography, 22, 252-260.
DOI URL |
[40] |
Wang XG, Ye J, Li BH, Zhang J, Lin F, Hao ZQ (2010). Spatial distributions of species in an old-growth temperate forest, northeastern China. Canadian Journal of Forest Research, 40, 1011-1019.
DOI URL |
[41] | Wang YQ (1995). The Mixed Broadleaved-Korean Pine Forest. Northeast Forestry University Press, Harbin. |
[王业蘧 (1995). 阔叶红松林. 东北林业大学出版社, 哈尔滨.] | |
[42] | Wen PY, Jin GZ (2019). Effects of topography on species diversity in a typical mixed broadleaved-Korean pine forest. Acta Ecologica Sinica, 39, 945-956. |
[温佩颖, 金光泽 (2019). 地形对阔叶红松林物种多样性的影响. 生态学报, 39, 945-956.] | |
[43] |
Xu LN, Jin GZ (2012). Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, Northeast China. Biodiversity Science, 20, 470-481.
DOI |
[徐丽娜, 金光泽 (2012). 小兴安岭凉水典型阔叶红松林动态监测样地: 物种组成与群落结构. 生物多样性, 20, 470-481.]
DOI |
|
[44] | Xie J, Yan QL, Zhang T (2020). Temporal effects of thinning on the composition and growth of regenerated woody plants in Larix kaempferi plantations. Chinese Journal of Applied Ecology, 31, 2481-2490. |
[谢锦, 闫巧玲, 张婷 (2020). 间伐对日本落叶松人工林林下更新木本植物组成和生长影响的时间效应. 应用生态学报, 31, 2481-2490.]
DOI |
|
[45] | Zhou YL, Dong SL, Nie SQ (1986). Ligneous Flora of Heilongjiang. Heilongjiang Science and Technology Press, Harbin. |
[周以良, 董世林, 聂绍荃 (1986). 黑龙江树木志. 黑龙江省科学技术出版社, 哈尔滨.] | |
[46] |
Zhu Y, Cai HY, Jiang F, Jin GZ (2017). Variation of the biotic neighbourhood and topographic effects on tree survival in an old-growth temperate forest. Journal of Vegetation Science, 28, 1166-1177.
DOI URL |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[3] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[4] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[5] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[6] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[7] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[8] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[9] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[10] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[11] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[12] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[13] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[14] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[15] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19