植物生态学报 ›› 2024, Vol. 48 ›› Issue (4): 483-495.DOI: 10.17521/cjpe.2023.0033 cstr: 32100.14.cjpe.2023.0033
所属专题: 红树林及红树植物
盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清*()
收稿日期:
2023-02-06
接受日期:
2023-07-12
出版日期:
2024-04-20
发布日期:
2024-05-11
通讯作者:
* (fanhq666@126.com)
基金资助:
PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing*()
Received:
2023-02-06
Accepted:
2023-07-12
Online:
2024-04-20
Published:
2024-05-11
Contact:
* (fanhq666@126.com)
Supported by:
摘要:
深入理解中国沿海红树林树高变异及其机制, 可以为中国沿海红树林修复、造林及重建红树林生态系统提供科学依据。该研究以1990-2022年发表的所有关于中国土壤、气候和潮差与红树林树高相关的文献为研究资料, 建立红树林树高与环境因子数据库, 对比红树林树高和环境因子在广西与东南沿海之间的差异, 并分析环境因子与红树林树高的关系及影响广西沿海与东南沿海红树林树高的关键因子。结果表明: (1)广西沿海红树林树高显著低于东南沿海的红树林。(2)广西与东南沿海的环境因子存在显著差异, 其中年降雨量、平均潮差、土壤盐度在广西最高; 土壤pH、土壤全氮含量和土壤全磷含量在广西最低。(3)除年降雨量、土壤有机质含量与红树林树高相关性不显著外, 其余环境因子与红树林树高显著相关。其中, 平均潮差、土壤pH和土壤盐度与红树林树高显著负相关; 年平均气温、土壤密度、土壤全氮含量和土壤全磷含量与红树林树高显著正相关。(4)结构方程模型结果显示, 平均潮差、土壤全磷含量和土壤pH是影响红树林树高最关键的环境因子, 年降雨量和年平均气温可直接影响红树林树高或通过调控其他环境因子之间相互关系从而间接影响红树林树高。(5)线性混合效应模型显示, 年平均气温、平均潮差和土壤盐度是限制广西沿海红树林树高的主要因素; 而东南沿海地区(除福建外)红树林的树高主要受到土壤因子限制。
盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制. 植物生态学报, 2024, 48(4): 483-495. DOI: 10.17521/cjpe.2023.0033
PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas. Chinese Journal of Plant Ecology, 2024, 48(4): 483-495. DOI: 10.17521/cjpe.2023.0033
图1 文献中红树林研究样地在中国沿海地区的分布。FJ, 福建样地; GD, 广东样地; GX, 广西样地; HN, 海南样地; 浙江和港澳台地区数据缺乏。
Fig. 1 Distribution of mangrove research literature in coastal areas of China. FJ, Fujian plots; GD, Guangdong plots; GX, Gangxi plots; HN, Hainan plots; lack of data in Zhejiang, Hong Kong, Macau, Taiwan of China.
图2 广西与东南沿海红树林树高比较(平均值±标准差)。FJ, 福建; GD, 广东; GX, 广西; HN, 海南; GX1, 广西文献中的研究数据; GX2, 2017年广西沿海270个10 m × 10 m的红树林样方调查数据。不同小写字母表示差异显著(p < 0.05)。
Fig. 2 Comparison of tree height of mangroves in coast of Guangxi and Southeast China (mean ± SD). FJ, Fujian; GD, Guangdong; GX, Guangxi; HN, Hainan; GX1, research data in literature of Guangxi; GX2, survey data of 270 mangrove plots of 10 m × 10 m along the coast of Guangxi in 2017. Different lowercase letters indicate significant differences (p < 0.05).
图3 广西与东南沿海地区环境因子比较(平均值±标准差)。MAP, 年降雨量; MAT, 平均气温; MTR, 平均潮差; pH, 土壤pH; SD, 土壤密度; SOM, 有机质含量; SS, 土壤盐度; TN, 土壤全氮含量; TP, 土壤全磷含量。FJ, 福建; GD, 广东; GX, 广西; HN, 海南。不同小写字母表示存在显著的差异(p < 0.05)。
Fig. 3 Comparison of environmental factors in coast of Guangxi and Southeast China (mean ± SD). MAP, mean annual precipitation; MAT, mean annual air temperature; MTR, mean tidal range; pH, soil pH; SD, soil density; SOM, soil organic matter content; SS, soil salinity; TN, soil total nitrogen content; TP, soil total phosphorus content. FJ, Fujian; GD, Guangdong; GX, Guangxi; HN, Hainan. Different lowercase letters indicate significant differences (p < 0.05).
图4 环境因子与红树林树高的关系。H, 树高; MAP, 年降雨量; MAT, 年平均气温; MTR, 平均潮差; pH, 土壤pH; SD, 土壤密度; SOM, 土壤有机质含量; SS, 土壤盐度; TN, 土壤全氮含量; TP, 土壤全磷含量。图中灰色区域表示95%的置信区间。
Fig. 4 Relationship between environmental factors and tree height of mangroves. H, tree height; MAP, mean annual precipitation; MAT, mean annual air temperature; MTR, mean tidal range; pH, soil pH; SD, soil density; SOM, soil organic matter content; SS, soil salinity; TN, soil total nitrogen content; TP, soil total phosphorus content. Grey areas indicate 95% confidence interval.
图5 环境因子对红树林树高影响的结构方程模型。H, 树高; pH, 土壤pH; MAP, 年降雨量; MAT, 年平均气温; MTR, 平均潮差; SD, 土壤密度; SOM, 土壤有机质含量; SS, 土壤盐度; TN, 土壤全氮含量; TP, 土壤全磷含量。*, p < 0.05; **, p < 0.01; ***, p < 0.001。红色箭头表示正相关, 蓝色箭头表示负相关, 箭头的粗细代表相关性的强弱。
Fig. 5 Structural equation model for the effect of environmental factors on tree height of mangroves. H, tree height; pH, soil pH; MAP, mean annual precipitation; MAT, mean annual air temperature; MTR, mean tidal range; SD, soil density; SOM, soil organic matter content; SS, soil salinity; TN, soil total nitrogen content; TP, soil total phosphorus content. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Red arrows indicate positive correlation; blue arrows indicate negative correlation, thickness of arrows represent the strength of the correlation.
图6 环境因子对树高影响的线性混合效应模型。FJ, 福建; GD, 广东; GX, 广西; HN, 海南。pH, 土壤pH; MAP, 年降雨量; MAT, 年平均气温; MTR, 平均潮差; SD, 土壤密度; SOM, 土壤有机质含量; SS, 土壤盐度; TN, 土壤全氮含量; TP, 土壤全磷含量。绿色表示显著负相关(p < 0.05), 紫色表示显著正相关(p < 0.05), 黑色表示相关性不显著(p > 0.05)。
Fig. 6 Linear mixed-effects model of environmental factors on tree height. FJ, Fujian; GD, Guangdong; GX, Guangxi. HN, Hainan. pH, soil pH; MAP, mean annual precipitation; MAT, mean annual air temperature; MTR, mean tidal range; SD, soil density; SOM, soil organic matter content; SS, soil salinity; TN, soil total nitrogen content; TP, soil total phosphorus content. Green indicate significant negative correlation (p < 0.05), purple indicates significant positive correlation (p < 0.05), black indicates no significant correlation (p > 0.05).
[1] | Alongi DM (2008). Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76, 1-13. |
[2] | Alongi DM (2015). The impact of climate change on mangrove forests. Current Climate Change Reports, 1, 30-39. |
[3] | Andrews TJ, Clough BF, Muller GJ (1984). Photosynthetic gas exchange properties and carbon isotope ratios of some mangroves in North Queensland//Teas HJ. Physiology and Management of Mangroves. Springer, Dordrecht, the Netherlands. 15-23. |
[4] |
Ball MC, Farquhar DG (1984). Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiology, 74, 1-6.
DOI PMID |
[5] |
Banerjee K, Gatti R C, Mitra A (2017). Climate change- induced salinity variation impacts on a stenoecious mangrove species in the Indian Sundarbans. Ambio, 46, 492-499.
DOI PMID |
[6] |
Blokhina OB, Chirkova TV, Fagerstedt KV (2001). Anoxic stress leads to hydrogen peroxide formation in plant cells. Journal of Experimental Botany, 52, 1179-1190.
PMID |
[7] | Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2010). Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytologist, 168, 597-612. |
[8] | Cavender-Bares J, Holbrook NM (2001). Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant, Cell & Environment, 24, 1243-1256. |
[9] | Chen LZ, Wang WQ, Lin P (2005). Influence of waterlogging time on the growth of Kandelia candel seedlings. Acta Oceanologica Sinica, 27(2), 141-147. |
[陈鹭真, 王文卿, 林鹏 (2005). 潮汐淹水时间对秋茄幼苗生长的影响. 海洋学报, 27(2), 141-147.] | |
[10] | Danielsen F, Sørensen MK, Olwig M F, Selvam V, Parish F, Burgess ND, Hiraishi T, Karunagaran VM, Rasmussen MS, Hansen LB, Quarto A, Suryadiputra N (2005). The Asian tsunami, a protective role for coastal vegetation. Science, 310, 643. DOI: 10.1126/science.1118387. |
[11] | Dalimunthe SA, Putri IAP (2017). Mangrove rehabilitation in Seribu Islands at the crossroad of awareness and tokenism//DasGupta R, Shaw R. Participatory Mangrove Management in a Changing Climate—Perspectives from the Asia-Pacific. Springer, Tokyo, Japan. 229-245. |
[12] |
Duarte B, Santos D, Marques JC, Caçador I (2013). Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti- oxidant feedback—Implications for resilience in climate change. Plant Physiology and Biochemistry, 67, 178-188.
DOI PMID |
[13] |
Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007). A world without mangroves? Science, 317, 41-42.
DOI PMID |
[14] | Ellison JC (2000). How South Pacific mangroves may respond to predicted climate change and sea-level rise. Advances in Global Change Research, 2, 289-300. |
[15] | Ellison JC (2012). Climate Change Vulnerability Assessment and Adaptation Planning for Mangrove Systems. World Wildlife Fund, Washington D.C. |
[16] | Fan HQ, Wang WQ (2017). Some thematic issues for mangrove conservation in China. Journal of Xiamen University (Natural Science), 56(3), 323-330. |
[范航清, 王文卿 (2017). 中国红树林保育的若干重要问题. 厦门大学学报(自然科学版), 56(3), 323-330.] | |
[17] | Fan HQ, Yin Y, Lao LR (1993). Correlation analysis of aboveground biomass of coastal mangrove Avicennia marina in Guangxi. Journal of Guangxi Academy of Sciences, 9(2), 25-30. |
[范航清, 尹毅, 劳丽荣 (1993). 广西海岸白骨壤红树植物地上部生物量的相关分析. 广西科学院学报, 9(2), 25-30.] | |
[18] | Gambrell RP, Delaune RD, Patrick WH (1991). Redox processes in soils following oxygen depletion. Plant Life Under Oxygen Deprivation, 53, 81-86. |
[19] | Geldenhuys C, Cotiyane P, Rajkaran A (2016). Understanding the creek dynamics and environmental characteristics that determine the distribution of mangrove and salt marsh communities at Nahoon Estuary. South African Journal of Botany, 107, 137-147. |
[20] | Gilman EL, Ellison J, Duke NC, Field C (2008). Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany, 89, 237-250. |
[21] | Guan GF, Wang YS Cheng H, Jiang ZY, Fei J (2015). Physiological and biochemical response to drought stress in the leaves of Aegiceras corniculatum and Kandelia obovata. Ecotoxicology, 24, 1668-1676. |
[22] | He BY (2009). Studies on the Eco-physiological Mechanisms for the Key Techniques in Mangrove Afforestation in the Diurnal Tidal Region. PhD dissertation, Xiamen University, Xiamen, Fujian. |
[何斌源 (2009). 全日潮海区红树林造林关键技术的生理生态基础研究. 博士研究论文, 厦门大学, 福建厦门.] | |
[23] | Huang LY, Hu BQ, Fan HQ (2014). Ecological responses of Avicennia marina to key environmental factors: a review. Journal of Guangxi Academy of Sciences, 30(4), 257-262. |
[黄灵玉, 胡宝清, 范航清 (2014). 白骨壤对关键环境因子的生态响应研究进展. 广西科学院学报, 30(4), 257-262.] | |
[24] |
Jagtap TG, Nagle VL (2007). Response and adaptability of mangrove habitats from the Indian subcontinent to changing climate. AMBIO, 36, 328-334.
PMID |
[25] | Jayalath N, Fitzpatrick RW, Mosley L, Marschner P (2016). Type of organic carbon amendment influences pH changes in acid sulfate soils in flooded and dry conditions. Journal of Soils and Sediments, 16, 518-526. |
[26] | Jin C, Wang JW, Zheng J, Chen QX, Li JQ, Lu X (2012). An assessment method of Kandelia obovata population biomass. Acta Ecologica Sinica, 32, 3414-3422. |
[金川, 王金旺, 郑坚, 陈秋夏, 李俊清, 卢翔 (2012). 异速生长法计算秋茄红树林生物量. 生态学报, 32, 3414-3422.] | |
[27] |
Jonsson M, Wardle DA (2010). Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems. Biology Letters, 6, 116-119.
DOI PMID |
[28] | Khan MA, Aziz I (2001). Salinity tolerance in some mangrove species from Pakistan. Wetlands Ecology and Management, 9, 229-233. |
[29] | Komiyama A, Ong JE, Poungparn S (2008). Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany, 89, 128-137. |
[30] | Ladanai S, Ågren GI, Olsson BA (2010). Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems, 13, 302-316. |
[31] | Li YH (2012). Impact of global climate change on mangrove ecosystem in Quanzhou Bay estuary wetland and its countermeasures. Straits Science, (2), 10-12. |
[李裕红 (2012). 全球气候变化对泉州湾河口湿地红树林生态系统的影响及对策. 海峡科学, (2), 10-12.] | |
[32] | Lin P (1999). Mangrove Ecosystem in China. Science Press, Beijing. |
[林鹏 (1999). 中国红树林生态系统. 科学出版社, 北京.] | |
[33] | Liu CY, Fang WJ, Cai Q, Ma SH, Jiang XX, Ji CJ, Fang JY (2017). Allometric relationship between tree height and diameter of larch forests in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 53, 1081-1088. |
[刘春云, 方文静, 蔡琼, 马素辉, 姜星星, 吉成均, 方精云 (2017). 中国落叶松林胸径-树高相关关系的探讨. 北京大学学报(自然科学版), 53, 1081-1088.] | |
[34] | Liu J, Wang YS (2020). Proline metabolism and molecular cloning of AmP5CS in the mangrove Avicennia marina under heat stress. Ecotoxicology, 29, 698-706. |
[35] | Liu R, Zhang WG, Jiang XL, Zhang J (2010). Study on the characteristics of degradation succession of Elymus nutans community and its correlation to soil properties. Pratacultural Science, 27(10), 96-103. |
[刘蓉, 张卫国, 江小雷, 张军 (2010). 垂穗披碱草群落退化演替的植被特性及其与土壤性状的相关性研究. 草业科学, 27(10), 96-103.] | |
[36] | Macreadie PI, Anton A, Raven JA, Beaumont N, Connolly RM, Friess DA, Kelleway JJ, Kennedy H, Kuwae T, Lavery PS, Lovelock CE, Smale DA, Apostolaki ET, Atwood TB, Baldock J, et al. (2019). The future of Blue Carbon science. Nature Communications, 10, 3988. DOI: 10.1038/s41467-019-11693-w. |
[37] | McKee KL (2011). Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science, 91, 475-483. |
[38] | McKee KL, Cahoon DR, Feller IC (2007). Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16, 545-556. |
[39] | Murray NJ, Phinn SR, DeWitt M, Ferrari R, Johnston R, Lyons MB, Clinton N, Thau D, Fuller RA (2019). The global distribution and trajectory of tidal flats. Nature, 565, 222-225. |
[40] | Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke JO, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ (2008). The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany, 89, 155-185. |
[41] | Naidoo G (1985). Effects of waterlogging and salinity on plant-water relations and on the accumulation of solutes in three mangrove species. Aquatic Botany, 22, 133-143. |
[42] |
Oku H, Baba S, Koga H, Takara K, Iwasaki H (2003). Lipid composition of mangrove and its relevance to salt tolerance. Journal of Plant Research, 116, 37-45.
PMID |
[43] | Oxmann JF, Pham QH, Schwendenmann L, Stellman JM, Lara RJ (2010). Mangrove reforestation in Vietnam: the effect of sediment physicochemical properties on nutrient cycling. Plant and Soil, 326, 225-241. |
[44] | Pan YF, Liang ZH, Li JB, Liang SC, Jiang Y, Wu HP, Wang JJ, Fu RJ, Zhou JM (2021). Community structure and species diversity of evergreen deciduous broad-leaved mixed forest in karst hills of Guilin. Acta Ecologica Sinica, 41, 2451-2459. |
[盘远方, 梁志慧, 李嘉宝, 梁士楚, 姜勇, 吴华萍, 王菁菁, 傅瑞静, 周健梅 (2021). 桂林岩溶石山常绿落叶阔叶混交林群落结构与物种多样性. 生态学报, 41, 2451-2459.] | |
[45] | Rahman MM, Khan MNI, Hoque AKF, Ahmed I (2015). Carbon stock in the Sundarbans mangrove forest, spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management, 23, 269-283. |
[46] | Record S, Charney ND, Zakaria RM, Ellison AM (2013). Projecting global mangrove species and community distributions under climate change. Ecosphere, 4, 1-23. |
[47] |
Satheeshkumar P, Khan AB (2012). Identification of mangrove water quality by multivariate statistical analysis methods in Pondicherry coast, India. Environmental Monitoring and Assessment, 184, 3761-3774.
DOI PMID |
[48] | Schmelter T (2007). Considerations on group-wise identical designs for linear mixed models. Journal of Statistical Planning and Inference, 137, 4003-4010. |
[49] | Sha C, Wang ML, Jiang YL, Lin GH (2018). Interactions between pH and other physicochemical properties of mangrove sediments: a review. Chinese Science Bulletin, 63, 2745-2756. |
[沙聪, 王木兰, 姜玥璐, 林光辉 (2018). 红树林土壤pH和其他土壤理化性质之间的相互作用. 科学通报, 63, 2745-2756.] | |
[50] |
Simard M, Fatoyinbo L, Smetanka C, Rivera-Monroy VH, Castañeda-Moya E, Thomas N, van der Stocken T (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12, 40-45.
DOI |
[51] | Soares MLG, Schaeffer-Novelli Y (2005). Above-ground biomass of mangrove species. I. Analysis of models. Estuarine, Coastal and Shelf Science, 65, 1-18. |
[52] | Spitale D, Petraglia A, Tomaselli M (2009). Structural equation modelling detects unexpected differences between bryophyte and vascular plant richness along multiple environmental gradients. Journal of Biogeography, 36, 745-755. |
[53] |
Stuart SA, Choat B, Martin KC, Holbrook NM, Ball MC (2007). The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist, 173, 576-583.
DOI PMID |
[54] | Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000). Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany, 68, 15-28. |
[55] | Temmerman S, Meire P, Bouma TJ, Herman PM, Ysebaert T, de Vriend HJ (2013). Ecosystem-based coastal defence in the face of global change. Nature, 504, 79-83. |
[56] | Tian CC, Wang CB, Tian YY, Wu XQ, Xiao BD (2015). Root radial oxygen loss and the effects on rhizosphere microarea of two submerged plants. Polish Journal of Environmental Studies, 24, 1795-1802. |
[57] | Tomlinson PB (1986). The Botany of Mangroves. Cambridge University Press, Cambridge, UK. 1-30. |
[58] | Turner WR, Oppenheimer M, Wilcove DS (2009). A force to fight global warming. Nature, 462, 278-279. |
[59] | Vargas-Larreta B, Castedo-Dorado F, Álvarez-González JG, Barrio-Anta M, Cruz-Cobos F (2009). A generalized height-diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico). Forestry, 82, 445-462. |
[60] | Wang DZ, Zhang DY, Zhang ZD, Huang XR (2016). Height- diameter relationship for conifer mixed forest based on nonlinear mixed-effects model. Scientia Silvae Sinicae, 52(1), 30-36. |
[王冬至, 张冬燕, 张志东, 黄选瑞 (2016). 基于非线性混合模型的针阔混交林树高与胸径关系. 林业科学, 52(1), 30-36.] | |
[61] | Wang WQ, Wang M (2007). The Mangroves of China. Science Press, Beijing. 143-168. |
[王文卿, 王瑁 (2007). 中国红树林. 科学出版社, 北京. 143-168.] | |
[62] |
Wang YS (2021). Impacts, challenges and opportunities of global climate change on mangrove ecosystems. Journal of Tropical Oceanography, 40(3), 1-14.
DOI |
[王友绍 (2021). 全球气候变化对红树林生态系统的影响、挑战与机遇. 热带海洋学报, 40(3), 1-14.]
DOI |
|
[63] |
Wang YT, Qiu Q, Xin GR, Yang ZY, Zheng J, Ye ZH, Li SS (2013). Heavy metal contamination in a vulnerable mangrove swamp in South China. Environmental Monitoring and Assessment, 185, 5775-5787.
DOI PMID |
[64] | Xu D, Li Y, Howard A, Guan Y (2013). Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland. Chemosphere, 92, 201-206. |
[65] | Zhang BH, Chen SL, Gu GC (2010). Tidal types and characteristics of the harbors along the Guangxi coast. Journal of Marine Sciences, 28(3), 9-16. |
[张伯虎, 陈沈良, 谷国传 (2010). 广西沿岸重点港湾的潮型与潮汐特征. 海洋学研究, 28(3), 9-16.] | |
[66] | Zhang GH (2009). Analysis of tidal characteristics in Guangxi coastal area. Pearl River, (1), 29-30. |
[张桂宏 (2009). 广西沿海地区潮汐特性分析. 人民珠江, (1), 29-30.] | |
[67] | Zhang XQ, Zhang JG, Duan AG (2014). Compatibility of stand volume model for Chinese fir based on tree-level and stand-level. Scientia Silvae Sinicae, 50(1), 82-87. |
[张雄清, 张建国, 段爱国 (2014). 基于单木水平和林分水平的杉木兼容性林分蓄积量模型. 林业科学, 50(1), 82-87.] | |
[68] | Zhao JQ, Zhang YW, Liu ZF, Zhao YL, Wang M (2019). Seasonal variability of tides in the deep northern South China Sea. Science China Earth Sciences, 49, 717-730. |
[赵玖强, 张艳伟, 刘志飞, 赵玉龙, 王萌 (2019). 南海北部深海潮汐的季节性变化特征. 中国科学: 地球科学, 49, 717-730.] | |
[69] | Zheng DZ, Liao BW, Zheng SF (1993). Studies on the Techniques of Afforestation and Management of Main Mangrove Species. Science Press, Beijing. 248-365. |
[郑德璋, 廖宝文, 郑松发 (1993). 红树林主要树种造林与经营技术研究. 科技出版社, 北京. 248-365.] | |
[70] | Zheng HL, Lin P (1997). Some physiological responses of Avicennia marina to salinity. Journal of Xiamen University (Natural Science), 36, 135-139. |
[郑海雷, 林鹏 (1997). 红树植物白骨壤对盐度的某些生理反应. 厦门大学学报(自然科学版), 36, 135-139.] |
[1] | 付照琦 胡旭 田沁瑞 葛艳灵 周红娟 吴小云 陈立欣. 晋西黄土区2种典型森林树种夜间液流特征及对环境因子的响应[J]. 植物生态学报, 2024, 48(9): 0-0. |
[2] | 江康威, 张青青, 王亚菲, 李宏, 丁雨, 杨永强, 吐尔逊娜依•热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(6): 701-718. |
[3] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[4] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[5] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[6] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[7] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[8] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[9] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[10] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[11] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[12] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[13] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
[14] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[15] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19