植物生态学报 ›› 2021, Vol. 45 ›› Issue (4): 370-382.DOI: 10.17521/cjpe.2020.0343
赵文芹1, 席本野2, 刘金强2, 刘洋2, 邹松言2, 宋午椰1,*(), 陈立欣1
收稿日期:
2020-10-20
接受日期:
2021-02-10
出版日期:
2021-04-20
发布日期:
2021-04-02
通讯作者:
宋午椰
作者简介:
* myclover17@126.com基金资助:
ZHAO Wen-Qin1, XI Ben-Ye2, LIU Jin-Qiang2, LIU Yang2, ZOU Song-Yan2, SONG Wu-Ye1,*(), CHEN Li-Xin1
Received:
2020-10-20
Accepted:
2021-02-10
Online:
2021-04-20
Published:
2021-04-02
Contact:
SONG Wu-Ye
Supported by:
摘要:
研究不同土壤水分阈值灌溉下毛白杨(Populus tomentosa)生长季蒸腾与环境因子的关系, 对于科学制定毛白杨高效水分管理策略至关重要。该研究以毛白杨人工林为研究对象, 设置不同灌溉处理: 充分灌溉(DF, 当滴头正下方20 cm处的土壤水势达到-18 kPa时灌溉)、控水灌溉(DC, 当滴头正下方20 cm处的土壤水势达到-45 kPa时灌溉)和无灌溉(CK, 空白对照)。采用热扩散技术, 对毛白杨生长季树干液流通量进行连续观测, 并同步监测太阳辐射(SR)、空气温度(Ta)、空气湿度(RH)、土壤体积含水率(SWC)和风速(WS)等环境因子。结果显示: 1)不同灌溉处理下毛白杨树干液流通量日变化趋势相似, 呈现单峰型, 并存在显著的夜间液流活动。灌溉处理不会影响树干液流的启动时间, 但会造成树干液流峰值时间出现差异, 充分灌溉会使液流峰值到达时间提前。灌溉会增大毛白杨蒸腾量, 毛白杨的蒸腾量随着土壤水分灌溉阈值的减小而增大。2)毛白杨树干液流密度与SR和空气水汽压亏缺(VPD)存在明显的时滞现象, 树干液流通量变化提前于VPD, 而滞后于SR。不同灌溉处理对时滞现象无显著影响。3) 3个处理下, 蒸腾与VPD、SR及SWC具有显著正相关关系, 与风速具有显著负相关关系, 且对气象因子的响应程度不同。综上所述, 灌溉能够有效调节人工林水分生理对环境因子的适应过程, 但增加灌溉未必会造成蒸腾相应增加。根据林分蒸腾需水和自然降雨的关系, 生长季前期(该研究为4-7月)进行灌溉有利于毛白杨人工林水分生理活动的进行。
赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应. 植物生态学报, 2021, 45(4): 370-382. DOI: 10.17521/cjpe.2020.0343
ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions. Chinese Journal of Plant Ecology, 2021, 45(4): 370-382. DOI: 10.17521/cjpe.2020.0343
处理 Treatment | 样树 Sample tree | 树高 Height (m) | 胸径 Diameter breast height (cm) | 边材厚度 Sapwood thickness (cm) | 边材面积 Sapwood area (cm2) |
---|---|---|---|---|---|
充分灌溉 Full irrigation | 1 | 13.6 | 13.8 | 5.8 | 134.86 |
2 | 10.2 | 14.2 | 5.9 | 142.85 | |
3 | 14.4 | 12.5 | 5.3 | 110.51 | |
4 | 13.6 | 14.0 | 5.8 | 138.82 | |
5 | 10.5 | 14.0 | 5.8 | 138.82 | |
控水灌溉 Water-controlled irrigation | 1 | 10.0 | 11.4 | 4.8 | 91.80 |
2 | 14.2 | 15.1 | 6.2 | 161.66 | |
3 | 12.8 | 13.9 | 5.8 | 136.84 | |
对照 Control | 1 | 10.3 | 10.7 | 4.5 | 80.81 |
2 | 13.4 | 14.3 | 6.0 | 144.88 | |
3 | 11.6 | 11.2 | 4.7 | 87.80 | |
4 | 12.5 | 12.5 | 5.3 | 110.51 |
表1 毛白杨试验样树特征
Table 1 Characteristics of sample tree of Populus tomentosa
处理 Treatment | 样树 Sample tree | 树高 Height (m) | 胸径 Diameter breast height (cm) | 边材厚度 Sapwood thickness (cm) | 边材面积 Sapwood area (cm2) |
---|---|---|---|---|---|
充分灌溉 Full irrigation | 1 | 13.6 | 13.8 | 5.8 | 134.86 |
2 | 10.2 | 14.2 | 5.9 | 142.85 | |
3 | 14.4 | 12.5 | 5.3 | 110.51 | |
4 | 13.6 | 14.0 | 5.8 | 138.82 | |
5 | 10.5 | 14.0 | 5.8 | 138.82 | |
控水灌溉 Water-controlled irrigation | 1 | 10.0 | 11.4 | 4.8 | 91.80 |
2 | 14.2 | 15.1 | 6.2 | 161.66 | |
3 | 12.8 | 13.9 | 5.8 | 136.84 | |
对照 Control | 1 | 10.3 | 10.7 | 4.5 | 80.81 |
2 | 13.4 | 14.3 | 6.0 | 144.88 | |
3 | 11.6 | 11.2 | 4.7 | 87.80 | |
4 | 12.5 | 12.5 | 5.3 | 110.51 |
图1 观测期内不同灌溉处理的环境因子日均变化(平均值±标准差)。
Fig. 1 Change of the environment factors of different irrigation treatments during the observation period (mean ± SD).
图2 不同灌溉处理下毛白杨液流通量密度日动态变化(平均值±标准差)。
Fig. 2 Daily variation of sap flux density for Populus tomentosa under different irrigation treatments (mean ± SD).
月份 Month | 处理 Treatment | 启动时刻 Start time | 到达峰值的时刻 Peak time | 峰值 Peak Fd value (mL·m-2·s-1) | 平均液流通量密度 Daily Fd value (mL·m-2·s-1) |
---|---|---|---|---|---|
4 | DF | 8:00 ± 60 min | 13:00 ± 100 min | 32.94 ± 3.47 a | 10.66 ± 2.64 a |
DC | 8:00 ± 70 min | 13:00 ± 90 min | 72.60 ± 4.77 a | 24.65 ± 7.09 b | |
CK | 8:00 ± 100 min | 13:10 ± 100 min | 36.18 ± 3.77 c | 12.28 ± 2.32 c | |
5 | DF | 6:00 ± 40 min | 11:10 ± 60 min | 63.87 ± 3.11 a | 24.59 ± 6.74 a |
DC | 6:00 ± 40 min | 11:10 ± 70 min | 78.83 ± 4.19 b | 31.32 ± 8.25 a | |
CK | 6:00 ± 40 min | 11:30 ± 70 min | 61.61 ± 3.21 c | 24.27 ± 6.06 a | |
6 | DF | 5:50 ± 50 min | 12:00 ± 70 min | 58.00 ± 7.73 a | 25.03 ± 7.39 b |
DC | 5:50 ± 50 min | 12:00 ± 70 min | 69.58 ± 7.43 b | 30.80 ± 7.65 b | |
CK | 5:50 ± 50 min | 12:20 ± 60 min | 55.34 ± 6.18 ac | 24.24 ± 6.15 b | |
7 | DF | 7:00 ± 40 min | 12:00 ± 80 min | 51.55 ± 4.75 a | 19.81 ± 6.31 a |
DC | 7:00 ± 70 min | 12:30 ± 90 min | 61.70 ± 5.73 b | 25.20 ± 5.92 a | |
CK | 7:00 ± 70 min | 12:30 ± 80 min | 49.98 ± 6.48 ac | 19.38 ± 5.37 a | |
8 | DF | 7:20 ± 40 min | 12:30 ± 70 min | 38.16 ± 13.18 a | 17.00 ± 6.51 a |
DC | 7:20 ± 40 min | 13:00 ± 60 min | 47.40 ± 15.02 a | 20.98 ± 4.96 a | |
CK | 7:20 ± 40 min | 13:00 ± 70 min | 41.91 ± 14.63 a | 19.09 ± 5.32 a | |
9 | DF | 7:40 ± 40 min | 12:20 ± 60 min | 35.02 ± 9.22 a | 13.40 ± 4.52 a |
DC | 7:40 ± 40 min | 12:50 ± 60 min | 42.85 ± 9.89 b | 16.73 ± 3.40 a | |
CK | 7:40 ± 40 min | 12:50 ± 50 min | 38.73 ± 9.44 a | 15.53 ± 4.82 a | |
10 | DF | 9:00 ± 70 min | 13:00 ± 100 min | 6.55 ± 8.55 a | 3.37 ± 2.03 c |
DC | 9:00 ± 70 min | 13:30 ± 90 min | 11.27 ± 11.01 a | 4.46 ± 1.54 c | |
CK | 9:00 ± 80 min | 13:30 ± 90 min | 9.67 ± 10.28 c | 3.77 ± 1.57 c |
表2 毛白杨树干液流通量密度月变化特征值(平均值±标准差,n = 1 440)
Table 2 Sap flux density characteristics of Populus tomentosa at different month (mean± SD, n = 1 440)
月份 Month | 处理 Treatment | 启动时刻 Start time | 到达峰值的时刻 Peak time | 峰值 Peak Fd value (mL·m-2·s-1) | 平均液流通量密度 Daily Fd value (mL·m-2·s-1) |
---|---|---|---|---|---|
4 | DF | 8:00 ± 60 min | 13:00 ± 100 min | 32.94 ± 3.47 a | 10.66 ± 2.64 a |
DC | 8:00 ± 70 min | 13:00 ± 90 min | 72.60 ± 4.77 a | 24.65 ± 7.09 b | |
CK | 8:00 ± 100 min | 13:10 ± 100 min | 36.18 ± 3.77 c | 12.28 ± 2.32 c | |
5 | DF | 6:00 ± 40 min | 11:10 ± 60 min | 63.87 ± 3.11 a | 24.59 ± 6.74 a |
DC | 6:00 ± 40 min | 11:10 ± 70 min | 78.83 ± 4.19 b | 31.32 ± 8.25 a | |
CK | 6:00 ± 40 min | 11:30 ± 70 min | 61.61 ± 3.21 c | 24.27 ± 6.06 a | |
6 | DF | 5:50 ± 50 min | 12:00 ± 70 min | 58.00 ± 7.73 a | 25.03 ± 7.39 b |
DC | 5:50 ± 50 min | 12:00 ± 70 min | 69.58 ± 7.43 b | 30.80 ± 7.65 b | |
CK | 5:50 ± 50 min | 12:20 ± 60 min | 55.34 ± 6.18 ac | 24.24 ± 6.15 b | |
7 | DF | 7:00 ± 40 min | 12:00 ± 80 min | 51.55 ± 4.75 a | 19.81 ± 6.31 a |
DC | 7:00 ± 70 min | 12:30 ± 90 min | 61.70 ± 5.73 b | 25.20 ± 5.92 a | |
CK | 7:00 ± 70 min | 12:30 ± 80 min | 49.98 ± 6.48 ac | 19.38 ± 5.37 a | |
8 | DF | 7:20 ± 40 min | 12:30 ± 70 min | 38.16 ± 13.18 a | 17.00 ± 6.51 a |
DC | 7:20 ± 40 min | 13:00 ± 60 min | 47.40 ± 15.02 a | 20.98 ± 4.96 a | |
CK | 7:20 ± 40 min | 13:00 ± 70 min | 41.91 ± 14.63 a | 19.09 ± 5.32 a | |
9 | DF | 7:40 ± 40 min | 12:20 ± 60 min | 35.02 ± 9.22 a | 13.40 ± 4.52 a |
DC | 7:40 ± 40 min | 12:50 ± 60 min | 42.85 ± 9.89 b | 16.73 ± 3.40 a | |
CK | 7:40 ± 40 min | 12:50 ± 50 min | 38.73 ± 9.44 a | 15.53 ± 4.82 a | |
10 | DF | 9:00 ± 70 min | 13:00 ± 100 min | 6.55 ± 8.55 a | 3.37 ± 2.03 c |
DC | 9:00 ± 70 min | 13:30 ± 90 min | 11.27 ± 11.01 a | 4.46 ± 1.54 c | |
CK | 9:00 ± 80 min | 13:30 ± 90 min | 9.67 ± 10.28 c | 3.77 ± 1.57 c |
图3 不同灌溉条件下毛白杨生长季冠层导度逐日变化(A)及差异显著性(平均值±标准差)(B)比较。CK, 对照; DC, 控水灌溉; DF, 充分灌溉。不同小写字母表示同一月份不同灌溉条件下冠层导度差异(p < 0.05)。
Fig. 3 Canopy conductance of poplar (A) and the statistic comparison (mean ± SD)(B) under different irrigation treatments. CK, control; DC, water-controlled irrigation; DF, full irrigation. Different lowercase letters indicate the significant difference of canopy conductance under different irrigation in the same month (p< 0.05).
图6 不同灌溉下毛白杨生长季(A)和每月(平均值±标准差) (B)日蒸腾量的变化。CK, 对照; DC, 控水灌溉; DF, 充分灌溉。不同小写字母表示同一月份不同灌溉下蒸腾量差异显著(p< 0.05)。
Fig. 6 Change of daily transpiration of poplar under different irrigation treatments in the growing season (A) and each month (mean ± SD)(B). CK, control; DC, water-controlled irrigation; DF, full irrigation. Different lowercase letters represent significant difference of transpiration under different irrigation in the same month (p< 0.05).
图7 不同土壤水分下毛白杨树干液流通量密度(Fd)与空气水汽压亏缺(VPD)和太阳辐射(SR)之间的相关系数。A, 充分灌溉处理。B, 控水灌溉处理。C, 对照处理。
Fig. 7 Correlation coefficient of the sap flow rate (Fd) with vapor pressure deficit (VPD) and global radiation (SR) of popular under different soil water content. A, Full irrigation. B, Water-controlled irrigation. C, Control.
图8 不同土壤水分下环境因子对毛白杨蒸腾量的直接影响。SR,太阳总辐射; SWC,土壤含水量; T,蒸腾量; VPD, 空气水汽压亏缺; WS, 风速。CK, 对照; DC, 控水灌溉; DF, 充分灌溉。每个箭头代表2个变量之间的因果关系。***,p < 0.0001; **, p < 0.001; *, p < 0.05; ns, p > 0.05。
Fig. 8 Direct effects of environmental factors on daily transpiration of poplar.SR, solar radiation; SWC, soil water contnet; T,transpiration; VPD, vapor pressure deficit; WS, wind speed. CK, control; DC, water-controlled irrigation; DF, full irrigation. Each arrow represents a causal relationship between two variables. ***, p < 0.0001; **, p < 0.001; *, p < 0.05; ns, p > 0.05.
[1] |
Bernier PY, Bartlett P, Black TA, Barr A, Kljun N, McCaughey JH (2006). Drought constraints on transpiration and canopy conductance in mature aspen and jack pine stands. Agricultural and Forest Meteorology, 140, 64-78.
DOI URL |
[2] | Bi HL, Lan ZP, Sun SW, Fu JP, Peng JJ, Ma X ( 2017). Spatial distribution of fine root in the poplar plantation under drip irrigation. Forest Research, 30, 946-953. |
[ 秘洪雷, 兰再平, 孙尚伟, 傅建平, 彭晶晶, 马鑫 ( 2017). 滴灌栽培杨树人工林细根空间分布特征. 林业科学研究, 30, 946-953.] | |
[3] | Campbell GS, Norman JM (1977). An Introduction to Environmental Biophysics. Springer,New York. |
[4] | Chen SN, Kong Z, Chen LX, Liu QQ, Liu PS, Zhang ZZ ( 2020). The stand transpiration characteristics of Pinus tabulaeformisand its influential factors in a semi-arid urban environment . Acta Ecologica Sinica, 40, 1269-1280. |
[ 陈胜楠, 孔喆, 陈立欣, 刘清泉, 刘平生, 张志强 ( 2020). 半干旱区城市环境下油松林分蒸腾特征及其影响因子. 生态学报, 40, 1269-1280.] | |
[5] |
Chuang YL, Oren R, Bertozzi AL, Phillips N, Katul GG (2006). The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate. Ecological Modelling, 191, 447-468.
DOI URL |
[6] |
Coyle DR, Coleman MD (2005). Forest production responses to irrigation and fertilization are not explained by shifts in allocation. Forest Ecology and Management, 208, 137-152.
DOI URL |
[7] | Dang HZ, Yang WB, Li W, Zhang YY, Li CL ( 2014). Radial variation and time lag of sap flow of Populus gansuensis in Minqin Oasis, Northwest China . Chinese Journal of Applied Ecology, 25, 2501-2510. |
[ 党宏忠, 杨文斌, 李卫, 张友焱, 李昌龙 ( 2014). 民勤绿洲二白杨树干液流的径向变化及时滞特征. 应用生态学报, 25, 2501-2510.] | |
[8] |
Daudet FA, Le Roux X, Sinoquet H, Adam B (1999). Wind speed and leaf boundary layer conductance variation within tree crown. Agricultural and Forest Meteorology, 97, 171-185.
DOI URL |
[9] |
Dong WY, Qin J, Li JY, Zhao Y, Nie LS, Zhang ZY (2011). Interactions between soil water content and fertilizer on growth characteristics and biomass yield of Chinese white poplar (Populus tomentosaCarr.) seedlings. Soil Science and Plant Nutrition, 57, 303-312.
DOI URL |
[10] |
Dragoni D, Caylor KK, Schmid HP (2008). Decoupling structural and environmental determinants of sap velocity. Agricultural and Forest Meteorology, 149, 570-581.
DOI URL |
[11] | Du TS, Kang SZ, Zhang BZ, Li SE, Yang XY ( 2008). Stem sap flow of grape under different drip irrigation patterns and its relationships with environmental factors in arid oasis region of Shiyang River basin. Chinese Journal of Applied Ecology, 19, 299-305. |
[ 杜太生, 康绍忠, 张宝忠, 李思恩, 杨秀英 ( 2008). 石羊河流域干旱荒漠绿洲区不同滴灌模式下葡萄茎液流变化及其与环境因子的关系. 应用生态学报, 19, 299-305.] | |
[12] |
Ford CR, Goranson CE, Mitchell RJ, Will RE, Teskey RO (2004). Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees. Tree Physiology, 24, 951-960.
DOI URL |
[13] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
PMID |
[14] |
Granier A, Biron P, Lemoine D (2000). Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 100, 291-308.
DOI URL |
[15] |
Hogg EH, Hurdle PA (1997). Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit. Tree Physiology, 17, 501-509.
PMID |
[16] |
Hutley LB, O’Grady AP, Eamus D (2001). Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia. Oecologia, 126, 434-443.
DOI PMID |
[17] | Jia LM, Xing CS, Li JR, Wei YK ( 2005). Productivity and benefit analysis of fast-growing and high-yield plantations of poplar under subsurface drip irrigation. Journal of Beijing Forestry University, 27(6), 43-49. |
[ 贾黎明, 邢长山, 李景锐, 韦艳葵 ( 2005). 地下滴灌条件下杨树速生丰产林生产力及效益分析. 北京林业大学学报, 27(6), 43-49.] | |
[18] |
Kagotani Y, Nishida K, Kiyomizu T, Sasaki K, Kume A, Hanba YT (2016). Photosynthetic responses to soil water stress in summer in two Japanese urban landscape tree species (Ginkgo biloba and Prunus yedoensis): effects of pruning mulch and irrigation management. Trees, 30, 697-708.
DOI URL |
[19] |
Kumagai T, Saitoh TM, Sato Y, Morooka T, Manfroi OJ, Kuraji K, Suzuki M (2004). Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: dry spell effects. Journal of Hydrology, 287, 237-251.
DOI URL |
[20] |
Kumagai T, Tateishi M, Shimizu T, Otsuki K (2008). Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agricultural and Forest Meteorology, 148, 1444-1455.
DOI URL |
[21] |
Kume T, Komatsu H, Kuraji K, Suzuki M (2008). Less than 20-min time lags between transpiration and stem sap flow in emergent trees in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 148, 1181-1189.
DOI URL |
[22] | Liu DL, Li JY, Ma D ( 2008). Spatial variation pattern of Platycladus orientalis stem sap flow . Chinese Journal of Ecology, 27, 1262-1268. |
[ 刘德良, 李吉跃, 马达 ( 2008). 侧柏树干边材液流空间变化规律. 生态学杂志, 27, 1262-1268.] | |
[23] | Liu WN, Jia JB, Yu XX, Jia GD, Hou GR ( 2017). Characteristics of canopy stomatal conductance ofPlatycladus orientalisand its responses to environmental factors in the mountainous area of North China . Chinese Journal of Applied Ecology, 28, 3217-3226. |
[ 刘文娜, 贾剑波, 余新晓, 贾国栋, 侯贵荣 ( 2017). 华北山区侧柏冠层气孔导度特征及其对环境因子的响应. 应用生态学报, 28, 3217-3226.] | |
[24] | Ma CM, Ma YJ, Cheng YM ( 2017). Characteristics and the driving forces of sap flow in stems of Populus beijingensis in Bashang area of north-west Hebei . Journal of Soil and Water Conservation, 31, 338-344. |
[ 马长明, 马玉洁, 程月明 ( 2017). 冀西北坝上干旱区北京杨树干液流特征及影响因素分析. 水土保持学报, 31, 338-344.] | |
[25] |
McIlroy IC (1984). Terminology and concepts in natural evaporation. Agricultural Water Management, 8, 77-98.
DOI URL |
[26] |
Nicolás E, Barradas VL, Ortuño MF, Navarro A, Torrecillas A, Alarcón JJ (2008). Environmental and stomatal control of transpiration, canopy conductance and decoupling coefficient in young lemon trees under shading net. Environmental and Experimental Botany, 63, 200-206.
DOI URL |
[27] |
O’Neill MK, Shock CC, Lombard KA, Heyduck RF, Feibert EBG, Smeal D, Arnold RN (2010). Hybrid poplar (Populusssp.) selections for arid and semi-arid intermountain regions of the western United States. Agroforestry Systems, 79, 409-418.
DOI URL |
[28] |
Oishi AC, Hawthorne DA, Oren R (2016). Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX, 5, 139-143.
DOI URL |
[29] |
Oishi AC, Oren R, Stoy PC (2008). Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements. Agricultural and Forest Meteorology, 148, 1719-1732.
DOI URL |
[30] |
Oren R, Pataki DE (2001). Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia, 127, 549-559.
DOI PMID |
[31] | Ou ZY, Pang SL, Tan ZQ, He F, Lu GD, Shen WH ( 2020). Effects of drought stress on photosynthesis and water consumption of main afforestation tree species in the rocky desert area in Southwest Guangxi. Chinese Journal of Ecology, 39, 3237-3246. |
[ 欧芷阳, 庞世龙, 谭长强, 何峰, 陆国导, 申文辉 ( 2020). 干旱胁迫对桂西南石漠化地区主要造林树种光合及耗水特性的影响. 生态学杂志, 39, 3237-3246.] | |
[32] |
Phillips N, Nagchaudhuri A, Oren R, Katul G (1997). Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees, 11, 412-419.
DOI URL |
[33] | Ren ZX, Nie LS, Zhang Q, Xin Y, Song LJ, Luo PP ( 2011). Stem volume current annual growth rhythm of four Populus tomentosa clones under water-nitrogen coupling and variety selection . Journal of Central South University of Forestry & Technology, 31(8), 187-193. |
[ 任忠秀, 聂立水, 张强, 辛颖, 宋莲君, 罗盼盼 ( 2011). 水氮耦合下毛白杨无性系材积生长规律及品种选择. 中南林业科技大学学报, 31(8), 187-193.] | |
[34] |
Roberts T, Lazarovitch N, Warrick AW, Thompson TL (2009). Modeling salt accumulation with subsurface drip irrigation using HYDRUS-2D. Soil Science Society of America Journal, 73, 233-240.
DOI URL |
[35] |
Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP (2015). The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia, 179, 641-654.
DOI PMID |
[36] |
Samuelson LJ, Stokes TA, Coleman MD (2007). Influence of irrigation and fertilization on transpiration and hydraulic properties ofPopulus deltoides. Tree Physiology, 27, 765-774.
PMID |
[37] | Sang YQ, Guo F, Zhang JS, Meng P, Gao J ( 2009). Variation in transpiration of Populus bolleana and the influence factors in Maowusu sandy area . Scientia Silvae Sinicae, 45(9), 66-71. |
[ 桑玉强, 郭芳, 张劲松, 孟平, 高峻 ( 2009). 毛乌素沙地新疆杨蒸腾变化规律及其影响因素. 林业科学, 45(9), 66-71.] | |
[38] | Schäfer KVR, Oren R, Tenhunen JD (2000). The effect of tree height on crown level stomatal conductance. Plant, Cell & Environment, 23, 365-375. |
[39] | Shi C, Fan WB, Zhu HK, Wang JL ( 2011). Research on water use of Populus bolleana under different irrigation gradients and irrigation systems . China Rural Water and Hydropower, ( 9), 1-4. |
[ 史册, 范文波, 朱红凯, 王久龙 ( 2011). 不同灌水梯度下新疆杨耗水过程与灌溉制度初步研究. 中国农村水利水电, ( 9), 1-4.] | |
[40] |
Sun D, Guan DX, Yuan FH, Wang AZ, Wu JB ( 2010). Time lag effect between poplar sap flow velocity and microclimate factors in agroforestry system in west Liaoning Province. Chinese Journal of Applied Ecology, 21, 2742-2748.
PMID |
[ 孙迪, 关德新, 袁凤辉, 王安志, 吴家兵 ( 2010). 辽西农林复合系统中杨树液流速率与气象因子的时滞效应. 应用生态学报, 21, 2742-2748.]
PMID |
|
[41] | Sun HZ, Zhou XF, Zhao HX ( 2002). A researches on stem sap flow dynamics of Betula platyphylla . Acta Ecologica Sinica, 22, 1387-1391. |
[ 孙慧珍, 周晓峰, 赵惠勋 ( 2002). 白桦树干液流的动态研究. 生态学报, 22, 1387-1391.] | |
[42] | Sun L, Peng ZD, Wang JX, Lin YF ( 2015). Transpiration water consumption and growth of four energy resources plants of shrubs under different soil contents. Journal of Central South University of Forestry & Technology, 35(10), 54-61. |
[ 孙龙, 彭祚登, 王佳茜, 林玉峰 ( 2015). 不同土壤水分对4个灌木能源树种生长和蒸腾耗水的影响. 中南林业科技大学学报, 35(10), 54-61.] | |
[43] | Sun ZD, Nie LS, Xin Y, Luo PP, Ren ZX, Wei D, Li JY, Shen YB, Zhang ZY ( 2012). Coupling effect of water and nitrogen fertilizer on growth of established triploid Populus tomentosa . Chinese Journal of Soil Science, 43, 896-902. |
[ 孙兆地, 聂立水, 辛颖, 罗盼盼, 任忠秀, 韦丹, 李吉跃, 沈应柏, 张志毅 ( 2012). 水氮耦合效应对三倍体毛白杨林木生长状况的影响. 土壤通报, 43, 896-902.] | |
[44] |
Ungar ED, Rotenberg E, Raz-Yaseef N, Cohen S, Yakir D, Schiller G (2013). Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management. Forest Ecology and Management, 298, 39-51.
DOI URL |
[45] |
Urban J, Ingwers MW, McGuire MA, Teskey RO (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides × nigra. Journal of Experimental Botany, 68, 1757-1767.
DOI URL |
[46] |
Wang H, Ouyang ZY, Zheng H, Wang XK, Ni YM, Ren YF ( 2009). Time lag characteristics of stem sap flow of common tree species during their growth season in Beijing downtown. Chinese Journal of Applied Ecology, 20, 2111-2117.
PMID |
[ 王华, 欧阳志云, 郑华, 王效科, 倪永明, 任玉芬 ( 2009). 北京城区常见树种生长季树干液流的时滞特征. 应用生态学报, 20, 2111-2117.]
PMID |
|
[47] |
Wang H, Zhao P, Cai XA, Ma L, Rao XQ, Zeng XP ( 2008). Time lag effect between stem sap flow and photosynthetically active radiation, vapor pressure deficit of Acacia mangium . Chinese Journal of Applied Ecology, 19, 225-230.
PMID |
[ 王华, 赵平, 蔡锡安, 马玲, 饶兴权, 曾小平 ( 2008). 马占相思树干液流与光合有效辐射和水汽压亏缺间的时滞效应. 应用生态学报, 19, 225-230.]
PMID |
|
[48] | Wang JF ( 2019). Comparative analysis on growth of poplar seedlings under two hard branch cutting methods. Forest Investigation Design, 1, 90-92. |
[ 王剑锋 ( 2019). 两种硬枝扦插方式下的杨树苗生长比较分析. 林业勘查设计, 1, 90-92.] | |
[49] |
Wang S, Fan J, Ge JM, Wang QM, Fu W (2019). Discrepancy in tree transpiration of Salix matsudana, Populus simoniiunder distinct soil, topography conditions in an ecological rehabilitation area on the Northern Loess Plateau. Forest Ecology and Management, 432, 675-685.
DOI URL |
[50] | Wang X, Yu XX, Jia GD, Qiu YX, Shi JM, Zi ED ( 2020). Physiological activities and nitrogen allocation strategies of Platycladus orientalis seedlings under different soil water conditions . Journal of Soil and Water Conservation, 34, 311-317. |
[ 王鑫, 余新晓, 贾国栋, 邱云霄, 史佳美, 孜尔蝶 ( 2020). 不同土壤水分条件下侧柏幼苗的生理活动及氮素分配策略. 水土保持学报, 34, 311-317.] | |
[51] | Xi BY ( 2013). Research on Theories of Irrigation Management and Key Techniques of High Efficient Subsurface Drip Irrigation in Populus tomentosa Plantation . PhD dissertation, Beijing Forestry University,Beijing. |
[ 席本野 ( 2013). 毛白杨人工林灌溉管理理论及高效地下滴灌关键技术研究. 博士学位论文, 北京林业大学, 北京.] | |
[52] |
Xi BY, Bloomberg M, Watt MS, Wang Y, Jia LM (2016). Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain. Agricultural Water Management, 176, 243-254.
DOI URL |
[53] |
Xi BY, Li GD, Bloomberg M, Jia LM (2014). The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosain the North China Plain. Australian Forestry, 77, 159-167.
DOI URL |
[54] | Xin FM, Yan XL, Zhang CY, Jia LM (2019). Characteristics of stem sap flow of two poplar species and their responses to environmental factors in Lhasa river valley of Tibet. Scientia Silvae Sinicae, 55, 22-32. |
[55] | Yan CZ, Zheng WG, Jia JB, Yan WD, Wang ZC, Jia GD ( 2020). Responses of canopy stomatal conductance of Platycladus orientalis to soil water under water control . Chinese Journal of Applied Ecology, 31, 4017-4026. |
[ 颜成正, 郑文革, 贾剑波, 闫文德, 王忠诚, 贾国栋 ( 2020). 控水条件下侧柏冠层气孔导度对土壤水的响应. 应用生态学报, 31, 4017-4026.] | |
[56] |
Yang J, Lyu JL, He QY, Yan MJ, Li GQ, Du S ( 2019). Time lag of stem sap flow and its relationships with transpiration characteristics in Quercus liaotungensis and Robina pseudoacaciain the loess hilly region, China . Chinese Journal of Applied Ecology, 30, 2607-2613.
DOI PMID |
[ 杨洁, 吕金林, 何秋月, 闫美杰, 李国庆, 杜盛 ( 2019). 黄土丘陵区辽东栎和刺槐树干液流时滞效应与蒸腾特征的关联性. 应用生态学报, 30, 2607-2613.]
PMID |
|
[57] |
Zhang HD, Wei W, Chen LD, Wang LX (2017). Effects of terracing on soil water and canopy transpiration of Pinus tabulaeformis in the Loess Plateau of China. Ecological Engineering, 102, 557-564.
DOI URL |
[58] |
Zhang ZZ, Zhao P, Zhao XH, Zhou J, Zhao PQ, Zeng XM, Hu YT, Ouyang L (2018). The tree height-related spatial variances of tree Sap flux density and its scale-up to stand transpiration in a subtropical evergreen broadleaf forest. Ecohydrology, 11, e1979. DOI: 10.1002/eco.1979.
DOI URL |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[3] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[4] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[5] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[6] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[7] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[8] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[9] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[10] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[11] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[12] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
[13] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[14] | 李媛媛, 张芸, 孔昭宸, 杨振京. 新疆阿尔泰红山嘴地区的表土孢粉与现代植被[J]. 植物生态学报, 2021, 45(2): 174-186. |
[15] | 左永令, 杨小波, 李东海, 吴二焕, 杨宁, 李龙, 张培春, 陈琳, 李晨笛. 环境因子对海南岛野生兰科植物物种组成与分布格局的影响[J]. 植物生态学报, 2021, 45(12): 1341-1349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19