植物生态学报 ›› 2022, Vol. 46 ›› Issue (12): 1508-1522.DOI: 10.17521/cjpe.2022.0099
所属专题: 全球变化与生态系统; 生态系统碳水能量通量
• 中国典型生态脆弱区碳水通量过程研究专题论文 • 上一篇 下一篇
王俐爽1, 同小娟1,*(), 孟平2, 张劲松2, 刘沛荣1, 李俊3, 张静茹1, 周宇2
收稿日期:
2022-03-18
接受日期:
2022-06-15
出版日期:
2022-12-20
发布日期:
2023-01-13
通讯作者:
*同小娟(基金资助:
WANG Li-Shuang1, TONG Xiao-Juan1,*(), MENG Ping2, ZHANG Jin-Song2, LIU Pei-Rong1, LI Jun3, ZHANG Jing-Ru1, ZHOU Yu2
Received:
2022-03-18
Accepted:
2022-06-15
Online:
2022-12-20
Published:
2023-01-13
Contact:
*TONG Xiao-Juan(Supported by:
摘要:
在气候变暖背景下, 半干旱地区林水矛盾日益突出。了解该区人工林的能量通量和蒸散(ET)变化, 可为今后造林树种的选择提供参考。该研究采用涡度相关法分别对辽西半干旱地区油松(Pinus tabuliformis)、樟子松(Pinus sylvestris var. mongolica)人工林的水热通量进行了一年(2019年10月至2020年10月)的连续观测, 利用界限温度结合归一化植被指数(NDVI)的变化特征确定了生长季长度(4月11日至10月10日), 分析了潜热通量(LE)、感热通量(H)、净辐射(Rn)、土壤热通量(G)及ET的季节动态, 利用回归分析和通径分析探讨了气温(Ta)、Rn、空气水汽压亏缺(VPD)、土壤含水量(SWC)、NDVI对ET的影响。结果表明: 油松、樟子松人工林的Rn、G、H都呈单峰形季节变化趋势, LE的波动更剧烈。全年来看, 能量消耗以H为主, 其次是LE, G消耗的能量较少。波文比生长季均值分别为1.82和2.23, 小于年平均值(3.43和4.44)。生长季ET分别为302.79和247.54 mm, 占全年ET的82.89%和84.20%; 年ET分别为365.29和293.99 mm, 为同期降水量的87.81%和72.23%。Priestley-Taylor系数(α)和退耦因子(Ω)可以用来说明SWC和冠层导度(gc)对ET的影响。油松、樟子松人工林的α年平均值分别为0.30和0.24, Ω分别为0.12和0.07。全年来看, SWC是影响该区两种人工林ET的主导因子, 其次为Rn。在不受水分胁迫下, Rn对ET影响更大; Ta和VPD对ET的综合影响较小, 多为间接作用。NDVI和gc是影响两种人工林的ET的重要生物因子, 对ET的控制作用在生长季更为明显。该研究说明辽西半干旱地区的油松和樟子松人工林都采取保守的耗水策略, 维持了生态系统的水量平衡, 是该地区适宜的造林树种。
王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征. 植物生态学报, 2022, 46(12): 1508-1522. DOI: 10.17521/cjpe.2022.0099
WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China. Chinese Journal of Plant Ecology, 2022, 46(12): 1508-1522. DOI: 10.17521/cjpe.2022.0099
树种 Tree species | 林龄 Stand age (a) | 树高 Tree height (m) | 胸径 Diameters at breast height (cm) | 林分密度 Stand density (plant·hm-2) | 土壤类型 Soil type |
---|---|---|---|---|---|
油松 P. tabuliformis | 44 | 8 | 13.4 | 1 150 | 褐土 Brown soil |
樟子松 P. sylvestris var. mongolica | 36 | 10 | 15.9 | 1?044 | 褐土 Brown soil |
表1 辽西半干旱地区油松、樟子松人工林样地基本情况
Table 1 Information of Pinus tabuliformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning
树种 Tree species | 林龄 Stand age (a) | 树高 Tree height (m) | 胸径 Diameters at breast height (cm) | 林分密度 Stand density (plant·hm-2) | 土壤类型 Soil type |
---|---|---|---|---|---|
油松 P. tabuliformis | 44 | 8 | 13.4 | 1 150 | 褐土 Brown soil |
樟子松 P. sylvestris var. mongolica | 36 | 10 | 15.9 | 1?044 | 褐土 Brown soil |
观测要素 Observation element | 仪器 Instrument | 型号 Product type | 生产商 Manufacturer | 距地面高度 Height |
---|---|---|---|---|
净辐射 Net radiation | 净辐射表 Net radiometer | CNR-1 | Kipp & Zonen, Delft, Netherlands | 19 m |
土壤热通量 Soil heat flux | 热通量板 Soil heat flux plate | HFT-3 | Campbell Scientific, Logan, USA | -5 cm |
空气温湿度 Air temperature and moisture | 空气温/湿度传感器 Air temperature/moisture sensor | HMP45C | Vaisala, Helsinki, Finland | 19 m |
降水量 Precipitation | 雨量筒 Rain gauge | TE525MM | Texas Electronics, Dallas, USA | 18 m |
土壤含水量 Soil moisture content | 土壤水分传感器 Soil moisture sensor | CS650 | Campbell Scientific, Logan, USA | -10, -20, -30 cm |
表2 辽西半干旱地区油松、樟子松人工林微气象观测系统基本信息
Table 2 Basic information of micrometeorological observation system for Pinus tabuliformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning
观测要素 Observation element | 仪器 Instrument | 型号 Product type | 生产商 Manufacturer | 距地面高度 Height |
---|---|---|---|---|
净辐射 Net radiation | 净辐射表 Net radiometer | CNR-1 | Kipp & Zonen, Delft, Netherlands | 19 m |
土壤热通量 Soil heat flux | 热通量板 Soil heat flux plate | HFT-3 | Campbell Scientific, Logan, USA | -5 cm |
空气温湿度 Air temperature and moisture | 空气温/湿度传感器 Air temperature/moisture sensor | HMP45C | Vaisala, Helsinki, Finland | 19 m |
降水量 Precipitation | 雨量筒 Rain gauge | TE525MM | Texas Electronics, Dallas, USA | 18 m |
土壤含水量 Soil moisture content | 土壤水分传感器 Soil moisture sensor | CS650 | Campbell Scientific, Logan, USA | -10, -20, -30 cm |
图1 辽西半干旱地区油松(A-C)和樟子松人工林(D-F)环境和生物因子的动态特征。gc, 冠层导度; NDVI, 归一化植被指数; P, 降水量; SWC, 土壤含水量; SWC10、SWC20、SWC30分别表示10、20、30 cm土壤含水量; Ta, 气温; VPD, 空气水汽压亏缺。gc、NDVI、SWC、Ta、VPD均是日均值, P为日总量。阴影部分为生长季。
Fig. 1 Dynamics of environmental and biological factors in Pinus tabuliformis (A-C) and P. sylvestris var. mongolica (D-F) plantations in semi-arid area of western Liaoning. gc, canopy conductance; NDVI, normalized differential vegetation index; P, precipitation; SWC, soil water content; SWC10, SWC20 and SWC30 represent soil water content of 10, 20 and 30 cm, respectively; Ta, air temperature; VPD, vapor pressure deficit. gc, NDVI, SWC, Ta, VPD are daily averages, P is the daily total value. The shaded part is the growing season.
图2 辽西半干旱地区油松和樟子松人工林能量闭合分析(2019年10月至2020年10月)。LE + H, 湍流通量; Rn - G - S, 有效能量。
Fig. 2 Energy closure of Pinus tabulaeformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning from October 2019 to October 2020. LE + H, turbulent heat fluxes; Rn - G - S, available energy.
图3 辽西半干旱地区油松(A-C)和樟子松人工林(D-F)能量通量的季节变化。G, 土壤热通量; H, 感热通量; LE, 潜热通量; Rn, 净辐射。阴影部分为生长季。
Fig. 3 Seasonal variation of energy fluxes of Pinus tabulaeformis (A-C) and P. sylvestris var. mongolica plantations (D-F) in semi-arid area of western Liaoning. G, soil heat flux; H, sensible heat flux; LE, latent heat flux; Rn, net radiation. The shaded part is the growing season.
林分 Forest stand | 变量 Variable | 生长季 Growing season | 年平均值 Mean annual value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
4月 April | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September | 10月 October | 平均值 Mean value | |||
油松人工林 P. tabuliformis plantation | LE/Rn | 0.10 | 0.18 | 0.30 | 0.43 | 0.47 | 0.61 | 0.45 | 0.37 | 0.28 |
H/Rn | 0.57 | 0.63 | 0.53 | 0.45 | 0.42 | 0.27 | 0.47 | 0.47 | 0.67 | |
G/Rn | 0.05 | 0.07 | 0.06 | 0.05 | 0.03 | -0.05 | -0.03 | 0.03 | -0.05 | |
β | 5.51 | 3.61 | 1.77 | 1.03 | 0.85 | 0.44 | 1.03 | 1.82 | 3.43 | |
樟子松人工林 P. sylvestris var. mongolica plantation | LE/Rn | 0.18 | 0.15 | 0.35 | 0.20 | 0.32 | 0.47 | 0.49 | 0.30 | 0.22 |
H/Rn | 0.51 | 0.61 | 0.47 | 0.60 | 0.45 | 0.35 | 0.43 | 0.49 | 0.57 | |
G/Rn | 0.06 | 0.09 | 0.05 | 0.06 | 0.03 | -0.04 | -0.05 | 0.04 | -0.05 | |
β | 2.79 | 4.43 | 1.40 | 3.07 | 1.60 | 0.76 | 0.95 | 2.23 | 4.44 |
表3 辽西半干旱地区油松和樟子松人工林能量分配(LE/Rn、H/Rn、G/Rn)和波文比(β)的月均值(4-10月)、生长季平均值和年平均值
Table 3 Monthly mean (April to October), mean value of growing season and annual daily mean of energy partitioning (LE/Rn, H/Rn, G/Rn) and Bowen ratio (β) of Pinus tabulaeformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning
林分 Forest stand | 变量 Variable | 生长季 Growing season | 年平均值 Mean annual value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
4月 April | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September | 10月 October | 平均值 Mean value | |||
油松人工林 P. tabuliformis plantation | LE/Rn | 0.10 | 0.18 | 0.30 | 0.43 | 0.47 | 0.61 | 0.45 | 0.37 | 0.28 |
H/Rn | 0.57 | 0.63 | 0.53 | 0.45 | 0.42 | 0.27 | 0.47 | 0.47 | 0.67 | |
G/Rn | 0.05 | 0.07 | 0.06 | 0.05 | 0.03 | -0.05 | -0.03 | 0.03 | -0.05 | |
β | 5.51 | 3.61 | 1.77 | 1.03 | 0.85 | 0.44 | 1.03 | 1.82 | 3.43 | |
樟子松人工林 P. sylvestris var. mongolica plantation | LE/Rn | 0.18 | 0.15 | 0.35 | 0.20 | 0.32 | 0.47 | 0.49 | 0.30 | 0.22 |
H/Rn | 0.51 | 0.61 | 0.47 | 0.60 | 0.45 | 0.35 | 0.43 | 0.49 | 0.57 | |
G/Rn | 0.06 | 0.09 | 0.05 | 0.06 | 0.03 | -0.04 | -0.05 | 0.04 | -0.05 | |
β | 2.79 | 4.43 | 1.40 | 3.07 | 1.60 | 0.76 | 0.95 | 2.23 | 4.44 |
图4 辽西半干旱地区油松和樟子松人工林蒸散(ET)的季节变化。阴影部分为生长季。
Fig. 4 Seasonal variation of evapotranspiration (ET) of Pinus tabuliformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning. The shaded part is the growing season.
图5 辽西半干旱地区油松和樟子松人工林的累积蒸散量(ETcum)、累积降水量(Pcum)和两者之间的差值(ETcum - Pcum)的季节动态。
Fig. 5 Seasonal patterns of annual cumulative evapotranspiration (ETcum), precipitation (Pcum) and the difference between ETcum and Pcum of Pinus tabuliformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning.
图6 辽西半干旱地区油松和樟子松人工林蒸散(ET)与环境因子的关系(平均值±标准差)。Rn, 净辐射; SWC, 土壤含水量; Ta, 气温; VPD, 空气水汽压亏缺。
Fig. 6 Relationship between evapotranspiration (ET) and environmental factors of Pinus tabuliformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning (mean ± SD). Rn, net radiation; SWC, soil water content; Ta, air temperature; VPD, vapor pressure deficit.
图7 辽西半干旱地区油松和樟子松人工林蒸散(ET)与归一化植被指数(NDVI)的关系(平均值±标准差)。
Fig. 7 Relationship between evapotranspiration (ET) and normalized differential vegetation index (NDVI) of Pinus tabuliformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning (mean ± SD).
图8 辽西半干旱地区油松和樟子松人工林Priestly-Taylor系数(α)(A, C)和退耦因子(Ω)(B, D)的季节变化。
Fig. 8 Seasonal variations of the Priestley-Taylor coefficient (α)(A, C) and the decoupling factor (Ω)(B, D) of Pinus tabuliformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning.
图9 辽西半干旱地区油松和樟子松人工林日均Priestly-Taylor系数(α)与冠层导度(gc)的关系。
Fig. 9 Relationship between the daily average Priestley-Taylor coefficient (α) and canopy conductance (gc) of Pinus tabuliformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning.
林分 Stand | 时期 Period | 因子 Factor | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总和 Total | Ta | Rn | VPD | SWC | NDVI | ||||||
油松人工林 P. tabuliformis plantation | 生长季 Growing season | Ta | 0.40** | -0.04 | 0.44 | 0.19 | -0.11 | 0.03 | 0.33 | ||
Rn | 0.25** | 0.41 | -0.16 | -0.02 | -0.12 | -0.13 | 0.11 | ||||
VPD | -0.05 | -0.19 | 0.14 | -0.02 | 0.28 | -0.16 | 0.04 | ||||
SWC | 0.64** | 0.57 | 0.07 | 0.00 | -0.10 | 0.06 | 0.11 | ||||
NDVI | 0.64** | 0.43 | 0.21 | -0.03 | 0.11 | -0.02 | 0.15 | ||||
非生长季 Non-growing season | Ta | 0.71** | 0.15 | 0.56 | 0.11 | 0.04 | 0.41 | 0.00 | |||
Rn | 0.49** | 0.24 | 0.25 | 0.07 | 0.02 | 0.16 | 0.00 | ||||
VPD | 0.66** | 0.05 | 0.61 | 0.13 | 0.11 | 0.36 | 0.00 | ||||
SWC | 0.75** | 0.52 | 0.23 | 0.12 | 0.07 | 0.03 | 0.01 | ||||
NDVI | 0.55** | 0.01 | 0.54 | 0.09 | 0.03 | 0.02 | 0.40 | ||||
樟子松人工林 P. sylvestris var. mongolica plantation | 生长季 Growing season | Ta | 0.17* | -0.08 | 0.25 | 0.15 | 0.03 | -0.08 | 0.15 | ||
Rn | 0.18** | 0.34 | -0.16 | -0.04 | 0.04 | -0.16 | 0.00 | ||||
VPD | 0.02 | 0.05 | -0.03 | -0.05 | 0.22 | -0.17 | -0.03 | ||||
SWC | 0.52** | 0.50 | 0.02 | 0.01 | -0.11 | -0.02 | 0.14 | ||||
NDVI | 0.50** | 0.34 | 0.16 | -0.04 | 0.00 | -0.01 | 0.21 | ||||
非生长季 Non-growing season | Ta | 0.65** | 0.28 | 0.37 | 0.12 | 0.05 | 0.16 | 0.04 | |||
Rn | 0.60** | 0.37 | 0.23 | 0.09 | 0.02 | 0.10 | 0.02 | ||||
VPD | 0.65** | 0.06 | 0.59 | 0.23 | 0.16 | 0.16 | 0.04 | ||||
SWC | 0.68** | 0.22 | 0.46 | 0.20 | 0.16 | 0.04 | 0.06 | ||||
NDVI | 0.47** | 0.09 | 0.38 | 0.13 | 0.07 | 0.03 | 0.15 |
表4 辽西半干旱地区油松和樟子松人工林蒸散与生物环境因子的通径分析
Table 4 Path analysis between evapotranspiration and bioenvironmental factors of Pinus tabuliformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning
林分 Stand | 时期 Period | 因子 Factor | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总和 Total | Ta | Rn | VPD | SWC | NDVI | ||||||
油松人工林 P. tabuliformis plantation | 生长季 Growing season | Ta | 0.40** | -0.04 | 0.44 | 0.19 | -0.11 | 0.03 | 0.33 | ||
Rn | 0.25** | 0.41 | -0.16 | -0.02 | -0.12 | -0.13 | 0.11 | ||||
VPD | -0.05 | -0.19 | 0.14 | -0.02 | 0.28 | -0.16 | 0.04 | ||||
SWC | 0.64** | 0.57 | 0.07 | 0.00 | -0.10 | 0.06 | 0.11 | ||||
NDVI | 0.64** | 0.43 | 0.21 | -0.03 | 0.11 | -0.02 | 0.15 | ||||
非生长季 Non-growing season | Ta | 0.71** | 0.15 | 0.56 | 0.11 | 0.04 | 0.41 | 0.00 | |||
Rn | 0.49** | 0.24 | 0.25 | 0.07 | 0.02 | 0.16 | 0.00 | ||||
VPD | 0.66** | 0.05 | 0.61 | 0.13 | 0.11 | 0.36 | 0.00 | ||||
SWC | 0.75** | 0.52 | 0.23 | 0.12 | 0.07 | 0.03 | 0.01 | ||||
NDVI | 0.55** | 0.01 | 0.54 | 0.09 | 0.03 | 0.02 | 0.40 | ||||
樟子松人工林 P. sylvestris var. mongolica plantation | 生长季 Growing season | Ta | 0.17* | -0.08 | 0.25 | 0.15 | 0.03 | -0.08 | 0.15 | ||
Rn | 0.18** | 0.34 | -0.16 | -0.04 | 0.04 | -0.16 | 0.00 | ||||
VPD | 0.02 | 0.05 | -0.03 | -0.05 | 0.22 | -0.17 | -0.03 | ||||
SWC | 0.52** | 0.50 | 0.02 | 0.01 | -0.11 | -0.02 | 0.14 | ||||
NDVI | 0.50** | 0.34 | 0.16 | -0.04 | 0.00 | -0.01 | 0.21 | ||||
非生长季 Non-growing season | Ta | 0.65** | 0.28 | 0.37 | 0.12 | 0.05 | 0.16 | 0.04 | |||
Rn | 0.60** | 0.37 | 0.23 | 0.09 | 0.02 | 0.10 | 0.02 | ||||
VPD | 0.65** | 0.06 | 0.59 | 0.23 | 0.16 | 0.16 | 0.04 | ||||
SWC | 0.68** | 0.22 | 0.46 | 0.20 | 0.16 | 0.04 | 0.06 | ||||
NDVI | 0.47** | 0.09 | 0.38 | 0.13 | 0.07 | 0.03 | 0.15 |
油松人工林 P. tabuliformis plantation | 樟子松人工林 P. sylvestris var. mongolica plantation | |||||
---|---|---|---|---|---|---|
Ta | VPD | SWC | Ta | VPD | SWC | |
Ta ≤ 20 ℃ | 0.49** | -0.22** | 0.81** | 0.53** | 0.19** | 0.74** |
Ta > 20 ℃ | -0.54** | -0.81** | 0.73** | -0.57** | -0.62** | 0.74** |
VPD ≤ 1.8 kPa | 0.28** | -0.14** | 0.62** | 0.45** | 0.11* | 0.74** |
VPD > 1.8 kPa | 0.14 | -0.17 | 0.76** | -0.20 | 0.06 | 0.73** |
表5 辽西半干旱地区油松和樟子松人工林在不同条件下冠层导度与环境因子的相关分析
Table 5 Correlation analysis between canopy conductance and environmental factors of Pinus tabuliformis and P. sylvestris var. mongolica plantations in semi-arid area of western Liaoning under different conditions
油松人工林 P. tabuliformis plantation | 樟子松人工林 P. sylvestris var. mongolica plantation | |||||
---|---|---|---|---|---|---|
Ta | VPD | SWC | Ta | VPD | SWC | |
Ta ≤ 20 ℃ | 0.49** | -0.22** | 0.81** | 0.53** | 0.19** | 0.74** |
Ta > 20 ℃ | -0.54** | -0.81** | 0.73** | -0.57** | -0.62** | 0.74** |
VPD ≤ 1.8 kPa | 0.28** | -0.14** | 0.62** | 0.45** | 0.11* | 0.74** |
VPD > 1.8 kPa | 0.14 | -0.17 | 0.76** | -0.20 | 0.06 | 0.73** |
[1] |
Aires LM, Pio CA, Pereira JS (2008). The effect of drought on energy and water vapour exchange above a mediterranean C3/C4 grassland in Southern Portugal. Agricultural and Forest Meteorology, 148, 565-579.
DOI URL |
[2] | Allan RP, Barlow M, Byrne MP, Cherchi A, Douville H, Fowler HJ, Gan TY, Pendergrass AG, Rosenfeld D, Swann ALS, Wilcox LJ, Zolina O (2020). Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 1472, 49-75. |
[3] |
Anderegg WRL, Trugman AT, Badgley G, Konings AG, Shaw J (2020). Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 10, 1091-1095.
DOI |
[4] |
Bowen IS (1926). The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27, 779.
DOI URL |
[5] |
Chen YM, Xue YJ, Hu YM (2018). How multiple factors control evapotranspiration in North America evergreen needleleaf forests. Science of the Total Environment, 622-623, 1217-1224.
DOI URL |
[6] | Cui WJ, Hou W, Yang RZ, Zhao YJ (2021). Seasonal dynamics of energy distribution in urban forest ecosystem of Beijing. Journal of Beijing Forestry University, 43(1), 27-36. |
[ 崔万晶, 侯巍, 杨睿智, 赵云杰 (2021). 北京城市森林生态系统能量分配的季节动态研究. 北京林业大学学报, 43(1), 27-36.] | |
[7] |
Dang HZ, Zhang XL, Han H, Chen S, Li MY (2021). Water use by chinese pine is less conservative but more closely regulated than in Mongolian Scots pine in a plantation forest, on sandy soil, in a semi-arid climate. Frontiers in Plant Science, 12, 635022. DOI: 10.3389/fpls.2021.635022.
DOI URL |
[8] |
Dang HZ, Zhang XL, Han H, Shi CC, Ge YX, Ma QL, Chen S, Liu CY (2022). Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices. Chinese Journal of Plant Ecology, 46, 971-983.
DOI URL |
[ 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖 (2022). 樟子松固沙林林水关系研究进展及对营林实践的指导. 植物生态学报, 46, 971-983.]
DOI |
|
[9] | Davies WJ, Zhang J(1991). Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Biology, 42, 55-76. |
[10] |
Deng JF, Yao JQ, Zheng X, Gao GL (2021). Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, Northern China. Agricultural Water Management, 249, 106806. DOI: 10.1016/j.agwat.2021.106806.
DOI URL |
[11] |
Fang SM, Zhao CY, Jian SQ (2016). Canopy transpiration of Pinus tabulaeformis plantation forest in the Loess Plateau region of China. Environmental Earth Sciences, 75, 376. DOI: 10.1007/s12665-016-5291-4.
DOI URL |
[12] |
Gao X, Du ZY, Yang QS, Zhang JS, Li YT, Wang XJ, Gu FX, Hao WP, Yang ZK, Liu DX, Chu JM (2022). Energy partitioning and evapotranspiration in a black locust plantation on the Yellow River Delta, China. Journal of Forestry Research, 33, 1219-1232.
DOI |
[13] | Gao X, Zhou Y, Meng P, Pei SY, Zhang JS (2022). Net ecosystem exchange of Pinus sylvestris var. mongolica plantation in the western Liaoning Province, China. Chinese Journal of Applied Ecology, 33, 1183-1190. |
[ 高翔, 周宇, 孟平, 裴松义, 张劲松 (2022). 辽西樟子松人工林净生态系统碳交换. 应用生态学报, 33, 1183-1190.]
DOI |
|
[14] | Geng SW, Wu ZX, Yang C (2021). Water vapor flux exchange of rubber forest stand in Hainan Danzhou and its response to environmental factors. Journal of Northwest Forestry University, 36(1), 77-85. |
[ 耿思文, 吴志祥, 杨川 (2021). 海南儋州地区橡胶林生态系统水汽通量变化特征及其对环境因子的响应. 西北林学院学报, 36(1), 77-85.] | |
[15] |
Granier A, Loustau D, Bréda N (2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Annals of Forest Science, 57, 755-765.
DOI URL |
[16] |
Han B, Lü SH, Li RQ, Wang X, Zhao L, Zhao CL, Wang DY, Meng XH (2017). Global land surface climate analysis based on the calculation of a modified Bowen ratio. Advances in Atmospheric Sciences, 34, 663-678.
DOI URL |
[17] | IPCC Intergovernmental Panel on Climate Change(2021). Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[18] | Jarvis PG, McNaughton KG (1986). Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research, 15, 1-49. |
[19] |
Ji XB, Zhao WZ, Jin BW, Liu J, Xu FN, Zhou H (2021). Seasonal variations in energy exchange and evapotranspiration of an oasis-desert ecotone in an arid region. Hydrological Processes, 35, e14364. DOI: 10.1002/hyp.14364.
DOI |
[20] |
Jia X, Zha TS, Gong JN, Wu B, Zhang YQ, Qin SG, Chen GP, Feng W, Kellomäki S, Peltola H (2016). Energy partitioning over a semi-arid shrubland in northern China. Hydrological Processes, 30, 972-985.
DOI URL |
[21] |
Jiao L, Lu N, Fu BJ, Wang J, Li ZS, Fang WW, Liu JB, Wang C, Zhang LW (2018). Evapotranspiration partitioning and its implications for plant water use strategy: evidence from a black locust plantation in the semi-arid Loess Plateau, China. Forest Ecology and Management, 424, 428-438.
DOI URL |
[22] |
Kuricheva OA, Avilov VK, Dinh DB, Sandlersky RB, Kuznetsov AN, Kurbatova JA (2021). Seasonality of energy and water fluxes in a tropical moist forest in Vietnam. Agricultural and Forest Meteorology, 298-299, 108268. DOI: 10.1016/j.agrformet.2020.108268.
DOI URL |
[23] | Li GJ (2017). Density-regulated technology of Pinus sylvestris var. mongolica plantation in hilly mountains in western Liaoning Province. Protection Forest Science and Technology, (2), 33-35. |
[ 李国军 (2017). 辽西丘陵山地樟子松人工林密度调控技术. 防护林科技, (2), 33-35.] | |
[24] |
Li XH, Tian WD, Li RD, Jin C, Jiang Y, Hao SR, Jia X, Tian Y, Zha TS (2021). Responses of water vapor and heat fluxes to environmental factors in a deciduous broad- leaved forest ecosystem in Beijing. Chinese Journal of Plant Ecology, 45, 1191-1202.
DOI URL |
[ 李鑫豪, 田文东, 李润东, 靳川, 蒋燕, 郝少荣, 贾昕, 田赟, 查天山 (2021). 北京松山落叶阔叶林生态系统水热通量对环境因子的响应. 植物生态学报, 45, 1191-1202.]
DOI |
|
[25] |
Liu CF, Zhang ZQ, Sun G, Zha TG, Zhu JZ, Shen LH, Chen J, Fang XR, Chen JQ (2009). Quantifying evapotranspiration and biophysical regulations of a poplar plantation assessed by eddy covariance and sap-flow methods. Chinese Journal of Plant Ecology, 33, 706-718.
DOI |
[ 刘晨峰, 张志强, 孙阁, 查同刚, 朱金兆, 申李华, 陈军, 方显瑞, 陈吉泉 (2009). 基于涡度相关法和树干液流法评价杨树人工林生态系统蒸发散及其环境响应. 植物生态学报, 33, 706-718.]
DOI |
|
[26] | Liu YL, Jiang H, Zhou GM, Chen YF, Sun C, Yang S (2014). Water vapor flux variation characteristic and the relationship with its environment factors in Phyllostachys edulis forest in Anji. Acta Ecologica Sinica, 34, 4900-4909. |
[ 刘玉莉, 江洪, 周国模, 陈云飞, 孙成, 杨爽 (2014). 安吉毛竹林水汽通量变化特征及其与环境因子的关系. 生态学报, 34, 4900-4909.] | |
[27] |
Ma JY, Zha TS, Jia X, Tian Y, Bourque CPA, Liu P, Bai YJ, Wu YJ, Ren C, Yu HQ, Zhang F, Zhou CX, Chen WJ (2018). Energy and water vapor exchange over a young plantation in northern China. Agricultural and Forest Meteorology, 263, 334-345.
DOI URL |
[28] |
Ma N, Zhang YS, Guo YH, Gao HF, Zhang HB, Wang YF (2015). Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe. Journal of Hydrology, 529, 980-992.
DOI URL |
[29] | Ma XH, Feng Q (2020). Energy partitioning and evapotranspiration of Populus euphratica forests in desert riparian area. Acta Ecologica Sinica, 40, 8683-8693. |
[ 马小红, 冯起 (2020). 荒漠河岸胡杨林生态系统能量分配及蒸散发. 生态学报, 40, 8683-8693.] | |
[30] |
Matsumoto K, Ohta T, Nakai T, Kuwada T, Daikoku K, Iida S, Yabuki H, Kononov AV, van der Molen MK, Kodama Y, Maximov TC, Dolman AJ, Hattori S (2008). Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agricultural and Forest Meteorology, 148, 1978-1989.
DOI URL |
[31] | Monteith JL, Unsworth MH (1990). Principles of Environmental Physics. 2nd ed. Chapman and Hall, New York. |
[32] | National Forestry and Grassland Administration (2019). Report on Forest Resources in China (2014-2018). China Forestry Publishing House, Beijing. |
[国家林业和草原局(2019). 中国森林资源报告(2014-2018). 中国林业出版社, 北京.] | |
[33] |
Nicholls EM, Carey SK (2021). Evapotranspiration and energy partitioning across a forest-shrub vegetation gradient in a subarctic, alpine catchment. Journal of Hydrology, 602, 126790. DOI: 10.1016/j.jhydrol.2021.126790.
DOI URL |
[34] |
Pascolini-Campbell M, Reager JT, Chandanpurkar HA, Rodell M (2022). Retraction note: a 10 percent increase in global land evapotranspiration from 2003 to 2019. Nature, 604, 202.
DOI |
[35] |
Priestley CHB, Taylor RJ (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92.
DOI URL |
[36] |
Song LN, Zhu JJ, Zheng X, Wang K, Lü LY, Zhang XL, Hao GY (2020). Transpiration and canopy conductance dynamics of Pinus sylvestris var. mongolica in its natural range and in an introduced region in the sandy plains of Northern China. Agricultural and Forest Meteorology, 281, 107830. DOI: 10.1016/j.agrformet.2019.107830.
DOI URL |
[37] |
Song LN, Zhu JJ, Zheng X, Wang K, Zhang JX, Hao GY, Wang GC, Liu JH (2022). Comparison of canopy transpiration between Pinus sylvestris var. mongolica and Pinus tabuliformis plantations in a semiarid sandy region of Northeast China. Agricultural and Forest Meteorology, 314, 108784. DOI: 10.1016/j.agrformet.2021.108784.
DOI URL |
[38] |
Tang YK, Wen XF, Sun XM, Wang HM (2014). Interannual variation of the Bowen ratio in a subtropical coniferous plantation in southeast China, 2003-2012. PLOS ONE, 9, e88267. DOI: 10.1371/journal.pone.0088267.
DOI URL |
[39] |
Thom AS (1972). Momentum, mass and heat exchange of vegetation. Quarterly Journal of the Royal Meteorological Society, 98, 124-134.
DOI URL |
[40] |
Tong XJ, Meng P, Zhang JS, Li J, Zheng N, Huang H (2012). Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the North China. Atmospheric Environment, 49, 257-267.
DOI URL |
[41] |
Tong XJ, Zhang JS, Meng P, Li J, Zheng N (2017). Environmental controls of evapotranspiration in a mixed plantation in North China. International Journal of Biometeorology, 61, 227-238.
DOI PMID |
[42] |
Wang L, Liu ZB, Guo JB, Wang YH, Ma J, Yu SP, Yu PT, Xu LH (2021). Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture. Forest Ecology and Management, 481, 118749. DOI: 10.1016/j.foreco.2020.118749.
DOI URL |
[43] | Wang YR, Wang YH, Yu PT, Xiong W, Du AP, Li ZH, Liu ZB, Ren L, Xu LH, Zuo HJ (2016). Simulated responses of evapotranspiration and runoff to changes in the leaf area index of a Larix principis-rupprechtii plantation. Acta Ecologica Sinica, 36, 6928-6938. |
[ 王亚蕊, 王彦辉, 于澎涛, 熊伟, 杜阿朋, 李振华, 刘泽彬, 任璐, 徐丽宏, 左海军 (2016). 华北落叶松人工林蒸散及产流对叶面积指数变化的响应. 生态学报, 36, 6928-6938.] | |
[44] |
Wever LA, Flanagan LB, Carlson PJ (2002). Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agricultural and Forest Meteorology, 112, 31-49.
DOI URL |
[45] |
Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, et al. (2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243.
DOI URL |
[46] |
Wu CY, Gonsamo A, Chen JM, Kurz WA, Price DT, Lafleur PM, Jassal RS, Dragoni D, Bohrer G, Gough CM, Verma SB, Suyker AE, Munger JW (2012). Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: a north America flux data synthesis. Global and Planetary Change, 92-93, 179-190.
DOI URL |
[47] | Wu JB, Guan DX, Zhao XS, Han SJ, Jin CJ, Yu GR (2005). Characteristic of the energy balance in broad-leaved Korean pine forest of northeastern China. Acta Ecologica Sinica, 25, 2520-2526. |
[ 吴家兵, 关德新, 赵晓松, 韩士杰, 金昌杰, 于贵瑞 (2005). 东北阔叶红松林能量平衡特征. 生态学报, 25, 2520-2526.] | |
[48] | Yan TW, You WZ, Zhang HD, Wei WJ, Wang RZ, Zhao G (2015). Energy balance and evapotranspiration in a natural secondary forest in Eastern Liaoning Province, China. Acta Ecologica Sinica, 35, 172-179. |
[ 颜廷武, 尤文忠, 张慧东, 魏文俊, 王睿照, 赵刚 (2015). 辽东山区天然次生林能量平衡和蒸散. 生态学报, 35, 172-179.] | |
[49] |
Yue P, Zhang Q, Zhang L, Li HY, Yang Y, Zeng J, Wang S (2019). Long-term variations in energy partitioning and evapotranspiration in a semiarid grassland in the Loess Plateau of China. Agricultural and Forest Meteorology, 278, 107671. DOI: 10.1016/j.agrformet.2019.107671.
DOI URL |
[50] | Zhang LF, Zhang JQ, Zhang X, Liu XQ, Zhao L, Li Q, Chen DD, Gu S (2017). Characteristics of evapotranspiration of degraded alpine meadow in the Three-River Source Region. Acta Agrestia Sinica, 25, 273-281. |
[ 张立锋, 张继群, 张翔, 刘晓琴, 赵亮, 李奇, 陈懂懂, 古松 (2017). 三江源区退化高寒草甸蒸散的变化特征. 草地学报, 25, 273-281.]
DOI |
|
[51] |
Zhang XL, Zhang GD, Hu CH, Ping JH, Jian SQ (2020). Response of soil moisture to landscape restoration in the hilly and gully region of the Loess Plateau, China. Biologia, 75, 827-839.
DOI |
[52] |
Zhang XY, Chu JM, Meng P, Zheng N, Yao ZW, Wang HS, Jiang SX (2016). Effects of environmental factors on evapotranspiration characteristics of Haloxylon ammodendron plantation in the Minqin oasis-desert ectone, Northwest China. Chinese Journal of Applied Ecology, 27, 2390-2400.
DOI |
[ 张晓艳, 褚建民, 孟平, 郑宁, 姚增旺, 王鹤松, 姜生秀 (2016). 环境因子对民勤绿洲荒漠过渡带梭梭人工林蒸散的影响. 应用生态学报, 27, 2390-2400.]
DOI |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[3] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[4] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[5] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[6] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[7] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[8] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[9] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[10] | 冯印成, 王云琦, 王玉杰, 王凯, 王松年, 王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子[J]. 植物生态学报, 2022, 46(8): 890-903. |
[11] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[12] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[13] | 李鑫豪, 田文东, 李润东, 靳川, 蒋燕, 郝少荣, 贾昕, 田赟, 查天山. 北京松山落叶阔叶林生态系统水热通量对环境因子的响应[J]. 植物生态学报, 2021, 45(11): 1191-1202. |
[14] | 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征[J]. 植物生态学报, 2020, 44(12): 1285-1295. |
[15] | 吕中诚, 康文星, 黄志宏, 赵仲辉, 邓湘雯. 不同林龄杉木组织迁移养分的再利用[J]. 植物生态学报, 2019, 43(5): 458-470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19