植物生态学报 ›› 2019, Vol. 43 ›› Issue (5): 458-470.DOI: 10.17521/cjpe.2018.0212
• 研究论文 • 上一篇
吕中诚1,4,康文星1,2,3,*(),黄志宏1,2,3,赵仲辉1,2,3,邓湘雯1,2,3
出版日期:
2019-05-20
发布日期:
2019-10-28
通讯作者:
康文星
基金资助:
LÜ Zhong-Cheng1,4,KANG Wen-Xing1,2,3,*(),HUANG Zhi-Hong1,2,3,ZHAO Zhong-Hui1,2,3,DENG Xiang-Wen1,2,3
Online:
2019-05-20
Published:
2019-10-28
Contact:
KANG Wen-Xing
Supported by:
摘要:
为了清楚了解不同林龄杉木(Cunninghamia lanceolata)组织迁移养分(氮、磷、钾、钙、镁)再利用特征, 为人工林丰产的经营管理提供科学依据, 该文利用湖南会同杉木林不同林龄段的活的枝叶与枯死枝叶养分浓度及其差异和枝叶枯死量, 估算枝叶枯死前的养分迁移量。用某林龄段开始和结束时的杉木器官的养分浓度差异, 估算那些在某林龄段开始前林分生产的, 在林龄段结束时仍存活的器官(干、皮、枝、叶、根), 即仍存活物质, 在该林龄段的养分迁移量。将枝叶枯死前迁移的养分和这些仍存活物质中转移的养分与从土壤中吸收的养分相结合, 根据森林生产的生物量, 综合分析森林物质生产的养分利用特征。研究表明: 1-7年生林分, 利用枝叶枯死前迁移的养分生产的生物量及占总生产生物量的比例, 分别为217 kg·hm -2·a -1和3.52%; 20-25年生林分则分别上升到2 540 kg·hm -2·a -1和17.50%。枝叶枯死前迁移的养分生产的生物量及占总生产生物量的比例都随林龄增加而增大。林分在12-16、17-20、21-25年林龄段, 由这些仍存活物质中迁移出的养分生产的生物量分别为385、561和450 kg·hm -2·a -1, 分别占总生产生物量的3.40%、3.40%和3.11%。这些仍存活物质中迁移出的养分量随林龄增加呈现先上升后下降的变化, 由这些养分生产的物质量占总生产物质量的比例随林龄增加呈下降趋势。结果显示, 只要有枝叶枯死发生, 就有枝叶枯死前迁移出养分用于物质再生产。林分郁闭后, 才会发生这些仍存活物质中迁移出的养分再利用。杉木体内养分再分配及贮备机制、杉木生长规律和不同生长发育阶段对养分的需求和利用效率等, 共同调节控制着枝叶枯死前迁移的和这些仍存活物质中迁移出的养分再利用的年变化。
吕中诚, 康文星, 黄志宏, 赵仲辉, 邓湘雯. 不同林龄杉木组织迁移养分的再利用. 植物生态学报, 2019, 43(5): 458-470. DOI: 10.17521/cjpe.2018.0212
LÜ Zhong-Cheng, KANG Wen-Xing, HUANG Zhi-Hong, ZHAO Zhong-Hui, DENG Xiang-Wen. Reuse of retranslocated nutrients in tissues of Chinese fir in plantations of different ages. Chinese Journal of Plant Ecology, 2019, 43(5): 458-470. DOI: 10.17521/cjpe.2018.0212
图1 不同林龄段杉木林的生产力。同一林龄时, 不同小写字母表示器官间差异显著(p < 0.05)。
Fig. 1 Productivity of Chinese fir forests in different age classes. In the same age, the different lowercase letters indicate significant differences among organs (p < 0.05).
林龄 Stand age (a) | 养分元素 Nutrient elements (kg·hm-2·a-1) | 合计 Total (kg·hm-2·a-1) | ||||
---|---|---|---|---|---|---|
氮 Nitrogen | 磷 Phosphorus | 钾 Potassium | 钙 Calcium | 镁 Magnesium | ||
8-11 | +3.11aM | +0.37bM | +1.36cM | +1.96dM | +1.03eM | +7.83M |
12-16 | -1.41aN | -0.43bN | -1.27cN | -1.90dM | -0.82eN | -5.83N |
17-20 | -1.66aR | -0.53bR | -1.40cM | -2.26dR | -0.90eR | -6.75R |
21-25 | -1.30aS | -0.40bN | -1.06cS | -1.77dS | -0.65eS | -5.18S |
表1 不同林龄杉木体内的养分元素迁移量
Table 1 Average annual nutrient element transfer within the body of Chinese fir in different ages
林龄 Stand age (a) | 养分元素 Nutrient elements (kg·hm-2·a-1) | 合计 Total (kg·hm-2·a-1) | ||||
---|---|---|---|---|---|---|
氮 Nitrogen | 磷 Phosphorus | 钾 Potassium | 钙 Calcium | 镁 Magnesium | ||
8-11 | +3.11aM | +0.37bM | +1.36cM | +1.96dM | +1.03eM | +7.83M |
12-16 | -1.41aN | -0.43bN | -1.27cN | -1.90dM | -0.82eN | -5.83N |
17-20 | -1.66aR | -0.53bR | -1.40cM | -2.26dR | -0.90eR | -6.75R |
21-25 | -1.30aS | -0.40bN | -1.06cS | -1.77dS | -0.65eS | -5.18S |
林龄 Stand age (a) | 干 Stem wood (kg·hm-2·a-1) | 皮 Stem bark (kg·hm-2·a-1) | 枝 Twig (kg·hm-2·a-1) | 叶 Needle (kg·hm-2·a-1) | 根 Root (kg·hm-2·a-1) | 合计 Total (kg·hm-2·a-1) |
---|---|---|---|---|---|---|
8-11 | +1.01aM | +1.21bM | +2.10cM | +2.92dM | +0.59eM | +7.83M |
12-16 | -1.09aN | -0.64bN | -1.46cN | -1.57dN | -1.07aN | -5.83N |
17-20 | -1.79aR | -0.87bR | -1.63aR | -1.18dR | -1.28dR | -6.75R |
21-25 | -1.65aR | -0.71bS | -1.08cS | -0.86dS | -0.88dS | -5.18S |
表2 不同林龄杉木器官的养分迁移量
Table 2 Average annual nutrient transfer in organs of Chinese fir in different ages
林龄 Stand age (a) | 干 Stem wood (kg·hm-2·a-1) | 皮 Stem bark (kg·hm-2·a-1) | 枝 Twig (kg·hm-2·a-1) | 叶 Needle (kg·hm-2·a-1) | 根 Root (kg·hm-2·a-1) | 合计 Total (kg·hm-2·a-1) |
---|---|---|---|---|---|---|
8-11 | +1.01aM | +1.21bM | +2.10cM | +2.92dM | +0.59eM | +7.83M |
12-16 | -1.09aN | -0.64bN | -1.46cN | -1.57dN | -1.07aN | -5.83N |
17-20 | -1.79aR | -0.87bR | -1.63aR | -1.18dR | -1.28dR | -6.75R |
21-25 | -1.65aR | -0.71bS | -1.08cS | -0.86dS | -0.88dS | -5.18S |
林龄 Stand age (a) | 器官 Organ | 养分元素 Nutrient elements (kg·hm-2·a-1) | 合计 Total (kg·hm-2·a-1) | ||||
---|---|---|---|---|---|---|---|
磷 Phosphorus | 氮 Nitrogen | 钾 Potassium | 钙 Calcium | 镁 Magnesium | |||
1-7 | 枝 Twig | 0.01bA | 0.05aA | 0.11cA | 0.01bA | 0.01bA | 0.19A |
叶 Needle | 0.18bB | 1.25aB | 1.30cB | 0.19bB | 0.12cB | 3.04B | |
合 Total | 0.19bB | 1.30aQ | 1.41cQ | 0.20dB | 0.13eQ | 3.23Q | |
8-11 | 枝 Twig | 0.04bC | 0.24aC | 0.42cC | 0.03dD | 0.03dC | 0.77C |
叶 Needle | 0.62bD | 5.24aD | 4.62cD | 0.86dF | 0.38eD | 11.72D | |
合 Total | 0.66bE | 5.48aE | 5.04cE | 0.89dE | 0.41eE | 12.48E | |
12-16 | 枝 Twig | 0.15bM | 1.04aM | 1.49cM | 0.16dM | 0.09eM | 2.93M |
叶 Needle | 1.03bN | 8.47aN | 6.76cN | 1.44dN | 0.43eN | 18.13N | |
合 Total | 1.18bT | 9.51aT | 8.25cT | 1.60dT | 0.52eT | 21.06T | |
17-20 | 枝 Twig | 0.39bK | 2.87aK | 3.47cK | 0.45dK | 0.18eK | 7.36K |
叶 Needle | 1.52bR | 11.98aR | 8.51cR | 2.11dR | 0.41eR | 24.53R | |
合 Total | 1.91bS | 14.85aS | 11.98cS | 2.56dS | 0.59eS | 31.89S | |
21-25 | 枝 Twig | 0.41bK | 3.57aW | 3.71cW | 0.57dW | 0.14eW | 8.40W |
叶 Needle | 1.34bG | 10.30aG | 6.94cG | 2.02dR | 0.28eG | 20.88G | |
合 Total | 1.75bP | 13.87aP | 10.65cP | 2.59dP | 0.42eP | 29.28P |
表3 杉木枝叶枯死前的养分元素迁移量
Table 3 Average annual nutrient element transferred before death of branches and leaves of Chinese fir
林龄 Stand age (a) | 器官 Organ | 养分元素 Nutrient elements (kg·hm-2·a-1) | 合计 Total (kg·hm-2·a-1) | ||||
---|---|---|---|---|---|---|---|
磷 Phosphorus | 氮 Nitrogen | 钾 Potassium | 钙 Calcium | 镁 Magnesium | |||
1-7 | 枝 Twig | 0.01bA | 0.05aA | 0.11cA | 0.01bA | 0.01bA | 0.19A |
叶 Needle | 0.18bB | 1.25aB | 1.30cB | 0.19bB | 0.12cB | 3.04B | |
合 Total | 0.19bB | 1.30aQ | 1.41cQ | 0.20dB | 0.13eQ | 3.23Q | |
8-11 | 枝 Twig | 0.04bC | 0.24aC | 0.42cC | 0.03dD | 0.03dC | 0.77C |
叶 Needle | 0.62bD | 5.24aD | 4.62cD | 0.86dF | 0.38eD | 11.72D | |
合 Total | 0.66bE | 5.48aE | 5.04cE | 0.89dE | 0.41eE | 12.48E | |
12-16 | 枝 Twig | 0.15bM | 1.04aM | 1.49cM | 0.16dM | 0.09eM | 2.93M |
叶 Needle | 1.03bN | 8.47aN | 6.76cN | 1.44dN | 0.43eN | 18.13N | |
合 Total | 1.18bT | 9.51aT | 8.25cT | 1.60dT | 0.52eT | 21.06T | |
17-20 | 枝 Twig | 0.39bK | 2.87aK | 3.47cK | 0.45dK | 0.18eK | 7.36K |
叶 Needle | 1.52bR | 11.98aR | 8.51cR | 2.11dR | 0.41eR | 24.53R | |
合 Total | 1.91bS | 14.85aS | 11.98cS | 2.56dS | 0.59eS | 31.89S | |
21-25 | 枝 Twig | 0.41bK | 3.57aW | 3.71cW | 0.57dW | 0.14eW | 8.40W |
叶 Needle | 1.34bG | 10.30aG | 6.94cG | 2.02dR | 0.28eG | 20.88G | |
合 Total | 1.75bP | 13.87aP | 10.65cP | 2.59dP | 0.42eP | 29.28P |
林龄 Stand age (a) | 生产力 Prolificacy (t·hm-2·a-1) | 计算公式 Calculation formula | 养分元素 Nutrient elements (kg·hm-2·a-1) | 合计 Total (kg·hm-2·a-1) | ||||
---|---|---|---|---|---|---|---|---|
磷 Phosphorus | 氮 Nitrogen | 钾 Potassium | 钙 Calcium | 镁 Magnesium | ||||
1-7 | 6.17 | ARR | 2.92 | 30.43 | 21.44 | 28.66 | 7.54 | 90.79 |
公式(8) Formula (8) | 2.74 | 29.18 | 20.14 | 28.47 | 7.42 | 87.57 | ||
8-11 | 10.63 | ARR | 5.60 | 57.30 | 36.45 | 50.26 | 14.47 | 164.08 |
公式(8) Formula (8) | 5.31 | 54.93 | 32.77 | 51.33 | 15.09 | 159.43 | ||
12-16 | 11.31 | ARR | 5.79 | 61.09 | 37.79 | 53.10 | 15.35 | 173.10 |
公式(7) Formula (7) | 4.18 | 50.17 | 28.27 | 49.60 | 13.99 | 146.21 | ||
17-20 | 16.51 | ARR | 6.72 | 73.30 | 44.69 | 58.24 | 16.41 | 199.36 |
公式(7) Formula (7) | 4.28 | 56.79 | 31.31 | 53.42 | 14.92 | 160.72 | ||
21-25 | 14.45 | ARR | 5.61 | 60.77 | 38.46 | 48.66 | 13.70 | 167.19 |
公式(7) Formula (7) | 3.45 | 45.60 | 26.75 | 44.30 | 12.63 | 132.73 |
表4 杉木林在不同林龄阶段年吸收的土壤养分
Table 4 Annual nutrients taken up from soils by Chinese fir plantations at different ages
林龄 Stand age (a) | 生产力 Prolificacy (t·hm-2·a-1) | 计算公式 Calculation formula | 养分元素 Nutrient elements (kg·hm-2·a-1) | 合计 Total (kg·hm-2·a-1) | ||||
---|---|---|---|---|---|---|---|---|
磷 Phosphorus | 氮 Nitrogen | 钾 Potassium | 钙 Calcium | 镁 Magnesium | ||||
1-7 | 6.17 | ARR | 2.92 | 30.43 | 21.44 | 28.66 | 7.54 | 90.79 |
公式(8) Formula (8) | 2.74 | 29.18 | 20.14 | 28.47 | 7.42 | 87.57 | ||
8-11 | 10.63 | ARR | 5.60 | 57.30 | 36.45 | 50.26 | 14.47 | 164.08 |
公式(8) Formula (8) | 5.31 | 54.93 | 32.77 | 51.33 | 15.09 | 159.43 | ||
12-16 | 11.31 | ARR | 5.79 | 61.09 | 37.79 | 53.10 | 15.35 | 173.10 |
公式(7) Formula (7) | 4.18 | 50.17 | 28.27 | 49.60 | 13.99 | 146.21 | ||
17-20 | 16.51 | ARR | 6.72 | 73.30 | 44.69 | 58.24 | 16.41 | 199.36 |
公式(7) Formula (7) | 4.28 | 56.79 | 31.31 | 53.42 | 14.92 | 160.72 | ||
21-25 | 14.45 | ARR | 5.61 | 60.77 | 38.46 | 48.66 | 13.70 | 167.19 |
公式(7) Formula (7) | 3.45 | 45.60 | 26.75 | 44.30 | 12.63 | 132.73 |
林龄 Stand age (a) | 养分来源 Source of nutrients | 养分元素 Nutrient elements (kg·hm-2·a-1) | 合计 Total (kg·hm-2·a-1) | ||||
---|---|---|---|---|---|---|---|
磷 Phosphorus | 氮 Nitrogen | 钾 Potassium | 钙 Calcium | 镁 Magnesium | |||
1-7 | 土壤中吸收 Absorbed from the soil | 0.44 | 4.73 | 3.26 | 4.62 | 1.20 | 14.25 |
衰老枝叶回流 Return from senescent branches and leaves | 0.03 | 0.21 | 0.23 | 0.03 | 0.02 | 0.52 | |
TPGM | 0 | 0 | 0 | 0 | 0 | 0 | |
合计 Total | 0.47 | 4.94 | 3.49 | 4.65 | 1.22 | 14.77 | |
8 -11 | ASNAPGM | 0.50 | 5.17 | 3.08 | 4.83 | 1.42 | 15.00 |
衰老枝叶回流 Return from senescent branches and leaves | 0.06 | 0.52 | 0.47 | 0.08 | 0.04 | 1.17 | |
TPGM | 0 | 0 | 0 | 0 | 0 | 0 | |
合计 Total | 0.56 | 5.69 | 3.55 | 4.91 | 1.46 | 16.17 | |
12-16 | 土壤中吸收 Absorbed from the soil | 0.37 | 4.44 | 2.50 | 4.39 | 1.23 | 12.93 |
衰老枝叶回流 Return from senescent branches and leaves | 0.10 | 0.84 | 0.73 | 0.14 | 0.05 | 1.86 | |
TPGM | 0.05 | 0.10 | 0.13 | 0.14 | 0.10 | 0.52 | |
合计 Total | 0.52 | 5.38 | 3.36 | 4.67 | 1.38 | 15.31 | |
17-20 | 土壤中吸收 Absorbed from the soil | 0.26 | 3.44 | 1.90 | 3.23 | 0.90 | 9.73 |
衰老枝叶回流 Return from senescent branches and leaves | 0.12 | 0.89 | 0.72 | 0.16 | 0.04 | 1.93 | |
TPGM | 0.05 | 0.11 | 0.10 | 0.07 | 0.08 | 0.41 | |
合计 Total | 0.43 | 4.44 | 2.72 | 3.46 | 1.02 | 12.07 | |
21-25 | 从土壤中吸收 Absorbed from the soil | 0.24 | 3.16 | 1.85 | 3.06 | 0.87 | 9.18 |
衰老枝叶回流 Return from senescent branches and leaves | 0.12 | 0.96 | 0.74 | 0.18 | 0.03 | 2.03 | |
TPGM | 0.03 | 0.09 | 0.07 | 0.12 | 0.05 | 0.36 | |
合计 Total | 0.39 | 4.21 | 2.66 | 3.36 | 0.95 | 11.57 |
表5 杉木林生产1 t整树干物质所需养分及来源
Table 5 Nutrients and sources needed for producing 1 t dry biomass in Chinese fir plantations
林龄 Stand age (a) | 养分来源 Source of nutrients | 养分元素 Nutrient elements (kg·hm-2·a-1) | 合计 Total (kg·hm-2·a-1) | ||||
---|---|---|---|---|---|---|---|
磷 Phosphorus | 氮 Nitrogen | 钾 Potassium | 钙 Calcium | 镁 Magnesium | |||
1-7 | 土壤中吸收 Absorbed from the soil | 0.44 | 4.73 | 3.26 | 4.62 | 1.20 | 14.25 |
衰老枝叶回流 Return from senescent branches and leaves | 0.03 | 0.21 | 0.23 | 0.03 | 0.02 | 0.52 | |
TPGM | 0 | 0 | 0 | 0 | 0 | 0 | |
合计 Total | 0.47 | 4.94 | 3.49 | 4.65 | 1.22 | 14.77 | |
8 -11 | ASNAPGM | 0.50 | 5.17 | 3.08 | 4.83 | 1.42 | 15.00 |
衰老枝叶回流 Return from senescent branches and leaves | 0.06 | 0.52 | 0.47 | 0.08 | 0.04 | 1.17 | |
TPGM | 0 | 0 | 0 | 0 | 0 | 0 | |
合计 Total | 0.56 | 5.69 | 3.55 | 4.91 | 1.46 | 16.17 | |
12-16 | 土壤中吸收 Absorbed from the soil | 0.37 | 4.44 | 2.50 | 4.39 | 1.23 | 12.93 |
衰老枝叶回流 Return from senescent branches and leaves | 0.10 | 0.84 | 0.73 | 0.14 | 0.05 | 1.86 | |
TPGM | 0.05 | 0.10 | 0.13 | 0.14 | 0.10 | 0.52 | |
合计 Total | 0.52 | 5.38 | 3.36 | 4.67 | 1.38 | 15.31 | |
17-20 | 土壤中吸收 Absorbed from the soil | 0.26 | 3.44 | 1.90 | 3.23 | 0.90 | 9.73 |
衰老枝叶回流 Return from senescent branches and leaves | 0.12 | 0.89 | 0.72 | 0.16 | 0.04 | 1.93 | |
TPGM | 0.05 | 0.11 | 0.10 | 0.07 | 0.08 | 0.41 | |
合计 Total | 0.43 | 4.44 | 2.72 | 3.46 | 1.02 | 12.07 | |
21-25 | 从土壤中吸收 Absorbed from the soil | 0.24 | 3.16 | 1.85 | 3.06 | 0.87 | 9.18 |
衰老枝叶回流 Return from senescent branches and leaves | 0.12 | 0.96 | 0.74 | 0.18 | 0.03 | 2.03 | |
TPGM | 0.03 | 0.09 | 0.07 | 0.12 | 0.05 | 0.36 | |
合计 Total | 0.39 | 4.21 | 2.66 | 3.36 | 0.95 | 11.57 |
16 | Killingbeck KT (1996). Nutrient in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727. |
17 | Kobe RK, Lepcryk CA, Iyer M (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780-2792. |
18 | Li QL, Mo QF, Wang FM, Li YW, Xu X, Zou B, Li XB, Chen Y, Li ZA (2015). Nutrient utilization by Casuarina equisetifolia plantation of different ages in the tropical coastal area of South China. Chinese Journal of Applied and Environmental Biology, 21, 139-146. |
[ 李钦禄, 莫其锋, 王法明, 李应文, 徐馨, 邹碧, 李晓波, 陈瑶, 李志安 (2015). 华南热带沿海不同林龄木麻黄人工林养分利用特征. 应用与环境生物学报, 21, 139-146.] | |
19 | Lim MT, Cousens JF (1986). The internal transfer of nutrients in Scot pine stand 2. The patterns of transfer and the effects of nitrogen availability. Forestry, 59, 17-21. |
20 | Lin BP, He ZM, Lin SZ, Hu HT, Qiu LJ, Liu ZM (2017). Needles macronutrient concentrations and retrains location characteristics in Chinese fir plantations of different ages. Journal of Forest and Environment, 37(1), 34-39. |
[ 林宝平, 何宗明, 林思祖, 胡欢甜, 邱岭军, 刘桌明 (2017). 不同林龄杉木针叶大量元素转移特征. 森林与环境学报, 37(1), 34-39.] | |
21 | Lin DX, Liu KH, Luo SF (2002). Dynamics and cycling analysis of nutrient elements in Eucalyptus urophylla. Chinese Journal of Applied and Environmental Biology, 8, 148-153. |
[ 林德喜, 刘开汉, 罗水发 (2002). 尾叶桉营养元素动态和循环分析. 应用与环境生物学报, 8, 148-153.] | |
22 | Liu AQ, Fan SH, Lin KM, Ma XQ, Sheng WT (2005). Comparison on nutrient cycling in different generation plantations of Chinese fir. Plant Nutrition and Fertilizer Science, 11, 273-278. |
[ 刘爱琴, 范少辉, 林开敏, 马祥庆, 盛炜彤 (2005). 不同栽植代数杉木林养分循环的比较研究. 植物营养与肥料学报, 11, 273-278.] | |
23 | Marschner H, Kirkby EA, Engels C (1997). Importance of cycling and recycling of mineral nutrients within plants for growth and development. Botanica Acta, 110, 265-273. |
24 | Mayor JR, Wright SJ, Turner BL (2013). Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology, 102, 36-44. |
25 | Mei L, Wang ZQ, Cheng YH, Guo DL (2004). A review: Factors influencing fine root longevity in forest ecosystems. Acta Phytoecologica Sinica, 28, 704-710. |
[ 梅莉, 王政权, 程云环, 郭大立 (2004). 林木细根寿命及其影响因子研究进展. 植物生态学报, 28, 704-710.] | |
26 | Meier CE, Grier CC, Cole DW (1985). Below and ground N and P use by Abies amabilis stands. Ecology, 66, 1928-1942. |
27 | Milla R, Castro-Diez P, Maestro-Martinez M (2005). Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants? Plant and Soil, 278, 303-313. |
28 | Miller HG (1984). Dynamics of nutrient cycling in plantation ecosystems. In: Bowen GD, Nambiar EKS eds. Nutrition of Plantation Forests. Academic Press, London. 53-78. |
29 | Miller HG (1986). Carbon × nutrient interaction—The limitations to productivity. Tree Physiology, 2, 373-385. |
30 | Moghaddas EEY, Stephens SL (2007). Thinning burning and thin-burn fuel treatment effects on soil properties in a Sierra Nevada mixed conifer forests. Forest Ecology and Management, 250, 156-166. |
1 | Aerts R (1990). Nutrient use efficiency in evergreen and deciduous species from heath lands. Oecologia, 84, 391-397. |
2 | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: A reevaluation of processes and patterns. Advances in Ecological Research, 37, 1-67. |
31 | Ratnam J, Sankaran M (2008). Hanan in a tropical savanna: Variation N, P nutrient resorption patterns of plant functional groups and functional significance. Oecologia, 157, 141-151. |
32 | Shaver GR, Melillo JM (1984). Nutrient budgets of marsh plants: Efficiency concepts and relation to availability. Ecology, 65, 1491-1510. |
3 | An Z, Niu DC, Wen HY, Yang Y, Zhang HR, Fu H (2011). Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grass lands in the Loess Plateau, China. Chinese Journal of Plant Ecology, 35, 801-807. |
[ 安卓, 牛得草, 文海燕, 杨益, 张洪荣, 傅华 (2011). 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响. 植物生态学报, 35, 801-807.] | |
33 | Tian DL, Shen Y, Kang WX, Xiang WH, Yan WD, Deng XW (2011). Characteristics of nutrient cycling in first and second rotations of Chinese fir plantations. Acta Ecologica Sinica, 31, 5025-5032. |
[ 田大伦, 沈燕, 康文星, 项文化, 闫文德, 邓湘雯 (2011). 连栽第1和第2代杉木人工林养分循环的比较. 生态学报, 31, 5025-5032.] | |
4 | Cao JH, Tao ZL, Jiang JS, Xie GS, Zhao CM (2010). Nutrient use efficiency of clone PR107 at various age. Chinese Journal of Tropical Crops, 31, 2091-097. |
[ 曹建华, 陶忠良, 蒋菊生, 谢贵水, 赵春梅 (2010). 不同年龄橡胶树PR107养分利用效率研究. 热带作物学报, 31, 2091-2097.] | |
34 | Wang RL, Cheng RM, Xiao WF, Feng XH, Liu ZB, Wang XR (2012). Influencing factors of fine root production and turnover in forest ecosystem. World Forestry Research, 21(1), 19-24. |
[ 王瑞丽, 程瑞梅, 肖文发, 封晓辉, 刘泽彬, 王晓荣 (2012). 森林细根生产和周转的影响因素. 世界林业研究, 21(1), 19-24.] | |
35 | Wang XH, Huang JJ, Yan ER (2004). A study on leaf nutrient resorption of some trees in Tiantong National Forest Park. Chinese Journal of Ecology, 33(4), 13-16. |
5 | Chen HYH, Brassard BW (2013). Intrinsic and extrinsic controls of fine root life span. Critical Reviews in Plant Sciences, 32, 151-161. |
6 | Chen RS, Kang WX, Zhou YQ, Tian DL, Xiang WH (2018). Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest. Chinese Journal of Plant Ecology, 42, 173-184. |
35 | [ 王希华, 黄建军, 闫恩荣 (2004). 天童国家森林公园若干树种叶水平上养分利用效率的研究. 生态学杂志, 33(4), 13-16.] |
36 | Williams RF (1955). Redistribution of mineral elements during development. Annual Review of Plant Physiology, 6, 25-42. |
6 | [ 陈日升, 康文星, 周玉泉, 田大伦, 项文化 (2018). 杉木人工林养分循环随林龄变化的特征. 植物生态学报, 42, 173-184.] |
7 | Del Arco JM, Esucdero A, Garrido MV (1991). Effects of site characteristics on nitrogen retrains location from senescing leaves. Ecology, 58, 701-708. |
37 | Wu PF, Ma XQ (2009). Research advances in the mechanisms of high nutrient use efficiency in plants. Acta Ecologica Sinica, 29, 427-437. |
[ 吴鹏飞, 马祥庆 (2009). 植物养分高效利用机制研究进展. 生态学报, 29, 427-437.] | |
8 | Deng HJ, Chen AM, Yan SW, Lin YM, Zhang GS, Du K, Wu CZ, Hong W (2015). Nutrient resorption efficiency and C:N:P stoichiometry in different ages of Leucaena leucocephala. Chinese Journal of Applied and Environmental Biology, 21, 522-527. |
[ 邓浩俊, 陈爱民, 严思维, 林勇明, 张广帅, 杜锟, 吴承祯, 洪伟 (2015). 不同林龄新银合欢重吸收率及其C:N:P化学计量特征. 应用与环境生物学报, 21, 522-527.] | |
38 | Xiang WH, Tian DL (2002). Nutrient cycling in Pinus massoniana stands of different age classes. Acta Phytoecologica Sinica, 26, 89-95. |
[ 项文化, 田大伦 (2002). 不同年龄阶段马尾松人工林养分循环的研究. 植物生态学报, 26, 89-95.] | |
9 | Division of Science and Technology of Ministry of Forestry Compiles (1994). Forest Ecosystem Research Methods. China Science and Technology Press, Beijing. 156-158. |
[ 林业部科技司 (1994). 森林生态系统研究方法. 中国科学技术出版社, 北京. 156-158.] | |
39 | Xiao XC, Li ZH, Tang ZJ, Zeng Q, Wang HF (2013). Effects of stand density on nutrient cycling rate and use efficiency of Pinus elliottii plantation. Chinese Journal of Ecology, 32, 2871-2880. |
[ 肖兴翠, 李志辉, 唐作钧, 曾琴, 王海风 (2013). 林分密度对湿地松人工林养分循环速率和利用效率的影响. 生态学杂志, 32, 2871-2880.] | |
10 | Eckstein RL, Karlsson PS (1977). Above-ground growth and nitrogen use by plant in a subarctic environment: Effects of habitat life-form and species. Oikos, 311-324. |
11 | Harrington RA, Fownes JH, Vitousek PM (2001). Production and resource use efficiencies in N- and P-limited tropical forests: A comparison of responses to long-term fertilization. Ecosystems, 4, 646-657. |
40 | Ye GF (2012). Age-related changes in nutrient resorption patterns and tannin concentration of Casuarina equisetifolia plantations. Journal of Tropical Forest Science, 24, 546-556. |
41 |
Zeng DH, Chen GS, Chen FS, Zhao Q, Ji XY (2005). Foliar nutrients and their resorption efficiencies in four Pinus sylvestris var. mongolica plantations of different ages on sandy soil. Scientia Silvae Sinicae, 41(5), 21-27.
DOI |
12 | He B, Qin WM, Yu HG, Liu YH, Qin L, Qin YH (2007). Biological cycling of nutrients in different ages classes of Acacia mangium plantation. Acta Ecologica Sinica, 27, 5158-5167. |
[ 何斌, 秦武明, 余浩光, 刘运华, 覃林, 覃永华 (2007). 不同年龄阶段马占相思(Acacia mangium)人工林营养元素的生物循环. 生态学报, 27, 5158-5167.] | |
41 |
[ 曾德慧, 陈广生, 陈伏生, 赵琼, 冀小燕 (2005). 不同林龄樟子松叶片养分含量及其再吸收效率. 林业科学, 41(5), 21-27.]
DOI |
42 | Zeng Q, Gao GW, Lin YM, Fan HQ (2008). Resorption efficiencies of nitrogen and phosphorus of leaves during senescence for two growth forms of Avicennia marina. Journal of Xiamen University (Natural Science), 47, 181-185. |
13 | Hosseini SM, Rouhi-Moghaddam E, Ebrahimi E (2008). Comparison of growth, nutrition and soil properties of pure stands of Quercus castaneifolia and mixed with Zelkova carpinifolia in the Hyrcanian forests of Iran. Forest Ecology and Management, 255, 1149-1160. |
14 | Huang JJ, Wang XH (2007). Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. Forest Ecology and Management, 239, 150-158. |
42 | [ 曾琦, 高国伟, 林益明, 范航清 (2008). 红树植物白骨壤叶片衰老过程的氮磷内吸收变化研究. 厦门大学学报(自然科学版), 47, 181-185.] |
43 | Zhang LH, Lin YM, Ye GF, Yin L, Zhou HC (2009). Nitrogen and phosphorus concentrations, N:P ratio and resorption efficiency of leaves in different forest types. Journal of Beijing Forestry University, 31(5), 67-72. |
[ 张立华, 林益明, 叶功富, 殷亮, 周海超 (2009). 不同林分类型叶片氮磷含量, 氮磷比及其内吸收率. 北京林业大学学报, 31(5), 67-72.] | |
44 |
Zhao Q, Liu XY, Hu YL, Zeng DH (2010). Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii. Scientia Silvae Sinicae, 46(5), 14-19.
DOI |
[ 赵琼, 刘兴宇, 胡亚林, 曾德慧 (2010). 氮添加对兴安落叶松养分分配和再吸收效率的影响. 林业科学, 46(5), 14-19.]
DOI |
|
45 | Zheng Y, Guo YR, Wang MT, Li M, Fan RR, Sun J, Yang FC, Zhong QL, Cheng DL (2017). Foliar nutrients and their resorption efficiencies of Pinus hwangshanensis along an elevation gradient of Wuyi Mountains in Jiangxi. Journal of Anhui Agricultural University, 44, 415-421. |
[ 郑媛, 郭英荣, 王满堂, 李曼, 范瑞瑞, 孙俊, 杨福春, 钟全林, 程栋梁 (2017). 武夷山不同海拔梯度黄山松叶片养分含量及其再吸收效率. 安徽农业大学学报, 44, 415-421.] | |
46 | Zhou LL (2014). Study on Nutrient Retranslocation and Nutrient Use Efficiency in Different Developmental-Staged Chinese Fir Plantations. PhD dissertation, Fujian Agriculture and Forestry University, Fuzhou. 80-82. |
[ 周丽丽 (2014). 不同发育阶段杉木人工林养分内循环与周转利用效率的研究. 博士学位论文, 福建农林大学, 福州. 80-82.] | |
47 | Zong N, Shi PL, Geng SB, Ma WL (2017). Nitrogen and phosphorus resorption efficiency of forests in North China. Chinese Journal of Eco-Agriculture, 25, 520-529. |
15 | Killingbeck KT (1986). The terminological jungle revisited: Making a case for use of the term resorption. Oikos, 46, 263-264. |
47 | [ 宗宁, 石培礼, 耿守保, 马维玲 (2017). 北方山区主要森林类型树木叶片氮、磷回收效率研究. 中国生态农业学报, 25, 520-529.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[3] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[4] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[5] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[6] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[7] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[8] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[9] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[10] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[11] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[12] | 丁凯, 张毓婷, 张俊红, 柴雄, 周世水, 童再康. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 2021, 45(1): 62-73. |
[13] | 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征[J]. 植物生态学报, 2020, 44(12): 1285-1295. |
[14] | 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民. 亚热带人工林下植被根际土壤酶化学计量特征[J]. 植物生态学报, 2019, 43(3): 258-272. |
[15] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19