植物生态学报 ›› 2021, Vol. 45 ›› Issue (1): 62-73.DOI: 10.17521/cjpe.2020.0158
所属专题: 微生物生态学
丁凯1, 张毓婷1, 张俊红1, 柴雄2, 周世水2, 童再康1,*()
收稿日期:
2020-05-18
接受日期:
2020-12-09
出版日期:
2021-01-20
发布日期:
2021-01-05
通讯作者:
童再康
作者简介:
*(zktong@zjfc.edu.cn)基金资助:
DING Kai1, ZHANG Yu-Ting1, ZHANG Jun-Hong1, CHAI Xiong2, ZHOU Shi-Shui2, TONG Zai-Kang1,*()
Received:
2020-05-18
Accepted:
2020-12-09
Online:
2021-01-20
Published:
2021-01-05
Contact:
TONG Zai-Kang
Supported by:
摘要:
为揭示土壤养分和细菌群落对林下植被调控的响应机制, 调查了浙江开化3种林分密度(高密度(KH)、中密度(KM)和低密度(KL))的17年生杉木人工林林下植被和生物量, 测定土壤理化性质, 并基于16S rDNA高通量测序技术分析细菌群落结构变化。结果表明, 3种密度的杉木林下植被地上部分总生物量为0.10-2.10 t·hm-2, 且优势植物物种差异显著。理化性质测定分析发现, 高密度与低密度林分的土壤pH、有效磷含量差异显著。相关性分析表明, 土壤pH与林下植被中草本、灌木生物量及总生物量均呈显著正相关关系, 土壤有机质含量与灌木植被生物量及林下植被总生物量呈显著正相关关系, 速效钾含量与灌木植被生物量呈显著正相关关系。土壤微生物群落结构分析可知, 3种密度杉木林地土壤中酸杆菌门、变形菌门、放线菌门和绿弯菌门为优势菌群, 总相对丰度占比超过80%。冗余分析(RDA)表明土壤pH、碱解氮、有效磷和速效钾含量是土壤细菌群落结构变化的关键影响因素。酸杆菌门的优势亚群为Gp2、Gp1、Gp3和Gp6, 占酸杆菌群的51.32%-57.38%, 且随林分密度降低, 林下植被增多, Gp1占比增大, Gp2和Gp6占比下降; Gp6相对丰度与pH呈极显著负相关关系。可见, 杉木纯林经营中适度降低林分密度有利于林下植被生长和良好细菌群落结构保持, 有利于维持杉木林地土壤肥力, 实现可持续经营。
丁凯, 张毓婷, 张俊红, 柴雄, 周世水, 童再康. 不同密度杉木林对林下植被和土壤微生物群落结构的影响. 植物生态学报, 2021, 45(1): 62-73. DOI: 10.17521/cjpe.2020.0158
DING Kai, ZHANG Yu-Ting, ZHANG Jun-Hong, CHAI Xiong, ZHOU Shi-Shui, TONG Zai-Kang. Effects of Chinese fir plantations with different densities on understory vegetation and soil microbial community structure. Chinese Journal of Plant Ecology, 2021, 45(1): 62-73. DOI: 10.17521/cjpe.2020.0158
类型 Type | 林分密度 Stand density (plant·hm-2) | 平均胸径 Average DBH (cm) | 平均树高 Average tree height (m) | 郁闭度 Canopy density |
---|---|---|---|---|
KH | 1 783.33 ± 76.38 a | 14.3 ± 2.55 b | 12.8 ± 0.69 c | 0.96 ± 0.02 a |
KM | 1 616.67 ± 52.65 b | 15.6 ± 1.40 b | 14.4 ± 1.36 b | 0.84 ± 0.02 b |
KL | 1 436.25 ± 28.87 c | 17.4 ± 0.95 a | 16.3 ± 0.31 a | 0.78 ± 0.01 c |
表1 不同密度杉木林试验样地的基本概况(平均值±标准差)
Table 1 Basic information of the test plots of Chinese fir plantations with different densities (mean ± SD)
类型 Type | 林分密度 Stand density (plant·hm-2) | 平均胸径 Average DBH (cm) | 平均树高 Average tree height (m) | 郁闭度 Canopy density |
---|---|---|---|---|
KH | 1 783.33 ± 76.38 a | 14.3 ± 2.55 b | 12.8 ± 0.69 c | 0.96 ± 0.02 a |
KM | 1 616.67 ± 52.65 b | 15.6 ± 1.40 b | 14.4 ± 1.36 b | 0.84 ± 0.02 b |
KL | 1 436.25 ± 28.87 c | 17.4 ± 0.95 a | 16.3 ± 0.31 a | 0.78 ± 0.01 c |
类型 Type | 林下植被种类 Understory vegetation type | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KH | 檵木、豆腐柴、短尾越桔、狗脊 Loropetalum chinense, Premna microphylla, Vaccinium carlesii, Woodwardia japonica | ||||||||||||||||
KM | 檵木、五节芒、黄瑞木、菝葜、狗脊、海金沙、三脉紫菀 L. chinense, Miscanthus floridulus, Adinandra millettii, Smilax china, W. japonica, Lygodium japonicum, Aster trinervius subsp.ageratoides | ||||||||||||||||
KL | 檵木、芒萁、狗脊、渐尖毛蕨、淡竹叶、多花黄精、烟管头草、假福王草、大叶白纸扇、大青、寒莓、华紫珠、楤木 Loropetalum chinense, Dicranopteris pedata, W. japonica, Cyclosorus acuminatus, Lophatherum gracile, Polygonatum cyrtonema, Carpesium cernuum, Paraprenanthes sororia, Mussaenda shikokiana, Clerodendrum cyrtophyllum, Rubus buergeri, Callicarpa cathayana, Aralia chinensis |
表2 不同密度杉木人工林林下植被种类
Table 2 Understory vegetation types of Chinese fir plantations with different densities
类型 Type | 林下植被种类 Understory vegetation type | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KH | 檵木、豆腐柴、短尾越桔、狗脊 Loropetalum chinense, Premna microphylla, Vaccinium carlesii, Woodwardia japonica | ||||||||||||||||
KM | 檵木、五节芒、黄瑞木、菝葜、狗脊、海金沙、三脉紫菀 L. chinense, Miscanthus floridulus, Adinandra millettii, Smilax china, W. japonica, Lygodium japonicum, Aster trinervius subsp.ageratoides | ||||||||||||||||
KL | 檵木、芒萁、狗脊、渐尖毛蕨、淡竹叶、多花黄精、烟管头草、假福王草、大叶白纸扇、大青、寒莓、华紫珠、楤木 Loropetalum chinense, Dicranopteris pedata, W. japonica, Cyclosorus acuminatus, Lophatherum gracile, Polygonatum cyrtonema, Carpesium cernuum, Paraprenanthes sororia, Mussaenda shikokiana, Clerodendrum cyrtophyllum, Rubus buergeri, Callicarpa cathayana, Aralia chinensis |
类型 Type | 优势植物种类 Dominate species | 地上部分生物量 Aboveground biomass (t·hm-2) | 总计 Total (t·hm-2) | |||
---|---|---|---|---|---|---|
灌木层 Shrub layer | 草本层 Herb layer | |||||
KH | 檵木 Loropetalum chinense | 0.09 ± 0.15 b | 0.01 ± 0.02 b | 0.10 ± 0.17 b | ||
KM | 檵木、五节芒 L. chinense, Miscanthus floridulus | 0.26 ± 0.02 b | 0.15 ± 0.02 b | 0.40 ± 0.07 b | ||
KL | 檵木、芒萁、狗脊、渐尖毛蕨 L. chinense, Dicranopteris pedata, Woodwardia japonica, Cyclosorus acuminatus | 0.87 ± 0.15 a | 1.23 ± 0.15 a | 2.10 ± 0.57 a |
表3 不同密度杉木人工林林下植被生物量(平均值±标准差)
Table 3 Understory vegetation biomass of Chinese fir plantations with different densities (mean ± SD)
类型 Type | 优势植物种类 Dominate species | 地上部分生物量 Aboveground biomass (t·hm-2) | 总计 Total (t·hm-2) | |||
---|---|---|---|---|---|---|
灌木层 Shrub layer | 草本层 Herb layer | |||||
KH | 檵木 Loropetalum chinense | 0.09 ± 0.15 b | 0.01 ± 0.02 b | 0.10 ± 0.17 b | ||
KM | 檵木、五节芒 L. chinense, Miscanthus floridulus | 0.26 ± 0.02 b | 0.15 ± 0.02 b | 0.40 ± 0.07 b | ||
KL | 檵木、芒萁、狗脊、渐尖毛蕨 L. chinense, Dicranopteris pedata, Woodwardia japonica, Cyclosorus acuminatus | 0.87 ± 0.15 a | 1.23 ± 0.15 a | 2.10 ± 0.57 a |
类型 Type | pH | 束缚水含量(CW) Water content (%) | 碱解氮含量 Alkali-hydrolyzable N content (mg·kg-1) | 有效磷含量 Available P content (mg·kg-1) | 速效钾含量 Available K content (mg·kg-1) | 有机质含量 Organic matter content (g·kg-1) |
---|---|---|---|---|---|---|
KH | 3.44 ± 0.06 b | 3.17 ± 0.44 a | 142.18 ± 9.30 a | 2.51 ± 0.18 b | 54.24 ± 9.24 a | 34.29 ± 4.11 a |
KM | 3.52 ± 0.06 ab | 3.63 ± 0.45 a | 156.88 ± 6.54 a | 3.31 ± 0.45 a | 66.91 ± 11.63 a | 38.58 ± 5.17 a |
KL | 3.62 ± 0.03 a | 3.34 ± 0.55 a | 156.63 ± 1.42 a | 3.40 ± 0.32 a | 74.72 ± 3.90 a | 44.58 ± 1.81 a |
表4 不同密度杉木人工林土壤的理化性质(平均值±标准差)
Table 4 Soil physical and chemical properties of Chinese fir plantation with different densities (mean ± SD)
类型 Type | pH | 束缚水含量(CW) Water content (%) | 碱解氮含量 Alkali-hydrolyzable N content (mg·kg-1) | 有效磷含量 Available P content (mg·kg-1) | 速效钾含量 Available K content (mg·kg-1) | 有机质含量 Organic matter content (g·kg-1) |
---|---|---|---|---|---|---|
KH | 3.44 ± 0.06 b | 3.17 ± 0.44 a | 142.18 ± 9.30 a | 2.51 ± 0.18 b | 54.24 ± 9.24 a | 34.29 ± 4.11 a |
KM | 3.52 ± 0.06 ab | 3.63 ± 0.45 a | 156.88 ± 6.54 a | 3.31 ± 0.45 a | 66.91 ± 11.63 a | 38.58 ± 5.17 a |
KL | 3.62 ± 0.03 a | 3.34 ± 0.55 a | 156.63 ± 1.42 a | 3.40 ± 0.32 a | 74.72 ± 3.90 a | 44.58 ± 1.81 a |
类型 Type | pH | 束缚水含量 Water content | 碱解氮含量 Alkali-hydrolyzable N content | 有效磷含量 Available P content | 速效钾含量 Available K content | 有机质含量 Organic matter content |
---|---|---|---|---|---|---|
草本生物量 Herb biomass | 0.764* | 0.191 | 0.485 | 0.514 | 0.612 | 0.749 |
灌木生物量 Shrub biomass | 0.874* | 0.193 | 0.564 | 0.648 | 0.760* | 0.820* |
总生物量 Total biomass | 0.814* | 0.193 | 0.520 | 0.571 | 0.675 | 0.783* |
表5 不同密度杉木林林下植被地上生物量与土壤理化性质相关性分析
Table 5 Correlation analysis of aboveground biomass of understory vegetation and soil physical and chemical properties of Chinese fir plantations with different densities
类型 Type | pH | 束缚水含量 Water content | 碱解氮含量 Alkali-hydrolyzable N content | 有效磷含量 Available P content | 速效钾含量 Available K content | 有机质含量 Organic matter content |
---|---|---|---|---|---|---|
草本生物量 Herb biomass | 0.764* | 0.191 | 0.485 | 0.514 | 0.612 | 0.749 |
灌木生物量 Shrub biomass | 0.874* | 0.193 | 0.564 | 0.648 | 0.760* | 0.820* |
总生物量 Total biomass | 0.814* | 0.193 | 0.520 | 0.571 | 0.675 | 0.783* |
图1 不同处理可操作分类单元(OTU)数韦恩图。KH, 高密度; KL, 低密度; KM, 中密度。
Fig. 1 Venn diagram of different processing Operational Taxonomy Unit (OTU) numbers. KH, high-density; KL, low-density; KM, medium-density.
类型 Type | 物种数 Observed species | Shannon指数 Shannon index | Chao1指数 Chao1 index | 覆盖率 Coverage (%) |
---|---|---|---|---|
KH | 4 939.80 ± 173.89 a | 10.21 ± 0.04 a | 6 223.62 ± 445.90 a | 0.973 2 ± 0.004 a |
KM | 5 171.25 ± 320.72 a | 10.27 ± 0.25 a | 6 468.85 ± 109.98 a | 0.965 3 ± 0.005 a |
KL | 5 277.67 ± 263.71 a | 10.30 ± 0.14 a | 6 619.39 ± 214.13 a | 0.975 3 ± 0.006 a |
表6 不同密度杉木林土壤细菌群落多样性(平均值±标准差)
Table 6 Diversity of soil bacterial communities in different densities of Chinese fir forests (mean ± SD)
类型 Type | 物种数 Observed species | Shannon指数 Shannon index | Chao1指数 Chao1 index | 覆盖率 Coverage (%) |
---|---|---|---|---|
KH | 4 939.80 ± 173.89 a | 10.21 ± 0.04 a | 6 223.62 ± 445.90 a | 0.973 2 ± 0.004 a |
KM | 5 171.25 ± 320.72 a | 10.27 ± 0.25 a | 6 468.85 ± 109.98 a | 0.965 3 ± 0.005 a |
KL | 5 277.67 ± 263.71 a | 10.30 ± 0.14 a | 6 619.39 ± 214.13 a | 0.975 3 ± 0.006 a |
图2 不同密度杉木林土壤优势细菌门。Acidobacteria, 酸杆菌门; Actinobacteria, 放线菌门; Actinomycetales, 放线菌目; Chloroflexi, 绿弯菌门; Firmicutes, 厚壁菌门; Gammaproteobacteria, γ-变形菌; Planctomycetes, 浮霉菌门; Proteobacteria, 变形菌门; Rhodospirillales, 红螺菌目; Spartobacteria, 斯巴杆菌纲; Verrucomicrobia, 疣微菌门。Gp, 酸杆菌门亚群; unclassified, 未分类细菌。KH, 高密度; KL, 低密度; KM, 中密度。
Fig. 2 Soil dominant bacteria in different densities of Chinese fir forests. Gp, Acidobacteria subgroup. KH, high-density; KL, low-density; KM, medium-density.
计算距离 Calculate distance | F | p |
---|---|---|
未加权的 Unweighted_unifrac | 1.12 | 0.19 |
加权的 Weighted_unifrac | 1.09 | 0.41 |
附录I 不同密度杉木林土壤细菌群落结构差异分析
Supplement I Analysis of differences in soil bacterial community structure of Chinese fir forests with different densities
计算距离 Calculate distance | F | p |
---|---|---|
未加权的 Unweighted_unifrac | 1.12 | 0.19 |
加权的 Weighted_unifrac | 1.09 | 0.41 |
理化指标 Physical and chemical indicator | Mds1 | Mds2 | R2 | p |
---|---|---|---|---|
pH | -0.580 22 | -0.814 46 | 0.159 7 | 0.747 |
束缚水含量 CW | -0.572 27 | -0.820 07 | 0.131 1 | 0.768 |
碱解氮含量 AN | 0.098 13 | -0.995 17 | 0.803 1 | 0.049* |
有效磷含量 AP | 0.128 86 | -0.991 66 | 0.565 5 | 0.140 |
速效钾含量 AK | -0.121 23 | -0.992 62 | 0.724 7 | 0.049* |
有机质含量 OM | -0.564 26 | -0.825 60 | 0.472 8 | 0.267 |
表7 不同密度杉木林下土壤理化性质对细菌群落结构的影响
Table 7 Effects of soil physical and chemical properties on bacterial community structure of Chinese fir plantations with different densities
理化指标 Physical and chemical indicator | Mds1 | Mds2 | R2 | p |
---|---|---|---|---|
pH | -0.580 22 | -0.814 46 | 0.159 7 | 0.747 |
束缚水含量 CW | -0.572 27 | -0.820 07 | 0.131 1 | 0.768 |
碱解氮含量 AN | 0.098 13 | -0.995 17 | 0.803 1 | 0.049* |
有效磷含量 AP | 0.128 86 | -0.991 66 | 0.565 5 | 0.140 |
速效钾含量 AK | -0.121 23 | -0.992 62 | 0.724 7 | 0.049* |
有机质含量 OM | -0.564 26 | -0.825 60 | 0.472 8 | 0.267 |
图3 不同密度杉木林土壤理化性质与细菌门冗余分析(RDA)。AK, 速效钾含量; AN, 碱解氮含量; AP, 有效磷含量; CW, 束缚水含量; OM, 有机质含量。Acidobacteria, 酸杆菌门; Actinobacteria, 放线菌门; Chloroflexi, 绿弯菌门; Firmicutes, 厚壁菌门; Planctomycetes, 浮霉菌门; Proteobacteria, 变形菌门; Verrucomicrobia, 疣微菌门。
Fig. 3 Redundancy analysis (RDA) of soil physical and chemical properties and bacteria of Chinese fir plantations with different densities. AK, available K content; AN, alkali- hydrolyzable N content; AP, available P content; CW, water content; OM, organic matter content.
图4 不同密度杉木林土壤细菌属水平相对丰度。Acidobacteria, 酸杆菌门; Actinobacteria, 放线菌门; Bradyrhizobium, 慢生根瘤菌属; Chloroflexi, 绿弯菌门; Firmicutes, 厚壁菌门; Ktedonobacter, 纤线杆菌属; Planctomycetes, 浮霉菌门; Proteobacteria, 变形菌门; Rhodospirillales, 红螺菌目; Spartobacteria, 斯巴杆菌纲; Verrucomicrobia, 疣微菌门。Gp, 酸杆菌门亚群; other, 其他; unclassified, 未分类细菌。KH, 高密度; KL, 低密度; KM, 中密度。
Fig. 4 Relative abundance of bacteria genera in different densities of Chinese fir forests. Gp, Acidobacteria subgroup. KH, high-density; KL, low-density; KM, medium-density.
图5 不同密度杉木林土壤的酸杆菌门亚群(Gp)相对丰度聚类。KH, 高密度; KL, 低密度; KM, 中密度。
Fig. 5 Clustering of relative abundance of Acidobacteria subgroups (Gp) in different densities of Chinese fir plantations. KH, high-density; KL, low-density; KM, medium-density.
分类 Item | pH | 束缚水含量 Water content | 碱解氮含量 Alkali-hydrolyzable N content | 有效磷含量 Available P content | 速效钾含量 Available K content | 有机质含量 Organic matter content |
---|---|---|---|---|---|---|
Gp1 | 0.257 | -0.043 | 0.118 | 0.455 | 0.228 | -0.075 |
Gp2 | -0.336 | -0.077 | 0.266 | 0.316 | 0.142 | 0.416 |
Gp3 | -0.006 | 0.164 | 0.573 | 0.693 | 0.293 | 0.353 |
Gp6 | -0.890** | 0.178 | -0.222 | 0.479 | -0.642 | -0.475 |
表8 不同密度杉木林酸杆菌优势亚群(Gp)与土壤理化性质的相关性
Table 8 Pearson correlation coefficients between dominant Acidobacteria subgroups (Gp) and soil physicochemical properties of Chinese fir plantations with different densities
分类 Item | pH | 束缚水含量 Water content | 碱解氮含量 Alkali-hydrolyzable N content | 有效磷含量 Available P content | 速效钾含量 Available K content | 有机质含量 Organic matter content |
---|---|---|---|---|---|---|
Gp1 | 0.257 | -0.043 | 0.118 | 0.455 | 0.228 | -0.075 |
Gp2 | -0.336 | -0.077 | 0.266 | 0.316 | 0.142 | 0.416 |
Gp3 | -0.006 | 0.164 | 0.573 | 0.693 | 0.293 | 0.353 |
Gp6 | -0.890** | 0.178 | -0.222 | 0.479 | -0.642 | -0.475 |
类型 Type | 指示物种 Indicator species | p |
---|---|---|
高密度 KH | Latescibacteria | 0.048* |
低密度 KL | Candidatus_saccharibacteria | 0.008** |
附录II 不同密度杉木林的指示物种(门水平)
Supplement II Indicator species of Chinese fir forest with different densities (phylum level)
类型 Type | 指示物种 Indicator species | p |
---|---|---|
高密度 KH | Latescibacteria | 0.048* |
低密度 KL | Candidatus_saccharibacteria | 0.008** |
类型 Type | 指示物种 Indicator species | p |
---|---|---|
高密度 KH | Dehalococcoidaceae | 0.038* |
Phycisphaeraceae | 0.036* | |
Geobacteraceae | 0.027* | |
低密度 KL | Candidatus_Adlerbacteria_unclassified | 0.028* |
Sphingobacteriaceae | 0.048* | |
Saccharibacteria_genera_incertae_sedis | 0.037* | |
Gemmatimonadaceae | 0.033* |
附录III 不同密度杉木林的指示物种(科水平)
Supplement III Indicator species of Chinese fir forest with different densities (family level)
类型 Type | 指示物种 Indicator species | p |
---|---|---|
高密度 KH | Dehalococcoidaceae | 0.038* |
Phycisphaeraceae | 0.036* | |
Geobacteraceae | 0.027* | |
低密度 KL | Candidatus_Adlerbacteria_unclassified | 0.028* |
Sphingobacteriaceae | 0.048* | |
Saccharibacteria_genera_incertae_sedis | 0.037* | |
Gemmatimonadaceae | 0.033* |
[1] | An SS, Li GH, Chen LD (2011). Soil microbial functional diversity between rhizosphere and non-rhizosphere soils of typical plants in the hilly area of southern Ningxia. Acta Ecologica Sinica, 31,5225-5234. |
[ 安韶山, 李国辉, 陈利顶 (2011). 宁南山区典型植物根际与非根际土壤微生物功能多样性. 生态学报, 31,5225-5234.] | |
[2] |
Arivin Rivaie A (2014). The effects of understory vegetation on P availability in Pinus radiata forest stands: a review. Journal of Forestry Research, 25,489-500.
DOI URL |
[3] |
Barns SM, Cain EC, Sommerville L, Kuske CR (2007). Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Applied and Environmental Microbiology, 73,3113-3116.
DOI URL |
[4] |
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10,57-59.
DOI URL |
[5] | Cao M, Pan P, Ouyang XZ, Zang H, Ning JK, Guo LL, Li Y (2018). Relationships between the composition and diversity of understory vegetation and environmental factors in aerially seeded Pinus massoniana plantations. Chinese Journal of Ecology, 37,1-8. |
[ 曹梦, 潘萍, 欧阳勋志, 臧颢, 宁金魁, 郭丽玲, 李杨 (2018). 飞播马尾松林林下植被组成、多样性及其与环境因子的关系. 生态学杂志, 37,1-8.] | |
[6] |
Carr CA, Krueger WC (2011). Understory vegetation and ponderosa pine abundance in eastern Oregon. Rangeland Ecology & Management, 64,533-542.
DOI URL |
[7] | Chen CY, Liao LP, Wang SL (2000). Chinese Fir Plantation Ecology. Science Press, Beijing. |
[ 陈楚莹, 廖丽平, 汪思龙 (2000). 杉木人工林生态学. 科学出版社, 北京.] | |
[8] | Chen LC, Liao LP, Wang SL, Huang ZQ, Xiao FM (2002). Effect of vanillin and P-hydroxybenzoic acid on physiological characteristics of Chinese fir seedlings. Chinese Journal of Applied Ecology, 13,1291-1294. |
[ 陈龙池, 廖利平, 汪思龙, 黄志群, 肖复明 (2002). 香草醛和对羟基苯甲酸对杉木幼苗生理特性的影响. 应用生态学报, 13,1291-1294.] | |
[9] |
Chu HY, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010). Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology, 12,2998-3006.
DOI URL |
[10] |
DeBruyn JM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M (2011). Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied and Environmental Microbiology, 77,6295-6300.
DOI URL |
[11] | Du WC, Yuan X, Qu TB (2011). Research progress of the relationship between soil microbial diversity and above- ground vegetation types. Contemporary Eco-Agriculture, 20,14-18. |
[ 杜玮超, 袁霞, 曲同宝 (2011). 土壤微生物多样性与地上植被类型关系的研究进展. 当代生态农业, 20,14-18.] | |
[12] |
Fazi S, Amalfitano S, Pernthaler J, Puddu A (2005). Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environmental Microbiology, 7,1633-1640.
DOI URL |
[13] |
Felton A, Lindbladh M, Brunet J, Fritz Ö (2010). Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecology and Management, 260,939-947.
DOI URL |
[14] |
Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011). The bacterial biogeography of British soils. Environmental Microbiology, 13,1642-1654.
DOI PMID |
[15] |
Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methe B, DeSantis TZ, Petrosino JF, Knight R, Birren BW, Consortium THM (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454- pyrosequenced PCR amplicons. Genome Research, 21,494-504.
DOI URL |
[16] | He YJ, Wang QK, Wang SL, Yu XJ (2006). Characteristics of soil microbial biomass carbon and nitrogen and their relationships with soil nutrients in Cunninghamia lanceolata plantations. Chinese Journal of Applied Ecology, 17,2292-2296. |
[ 何友军, 王清奎, 汪思龙, 于小军 (2006). 杉木人工林土壤微生物生物量碳氮特征及其与土壤养分的关系. 应用生态学报, 17,2292-2296.] | |
[17] |
Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 3,442-453.
DOI URL |
[18] | Kang B, Liu SR, Cai DX, Lu LH (2009). Effects of Pinus massoniana plantation stand density on understory vegetation and soil properties. Chinese Journal of Applied Ecology, 20,2323-2331. |
[ 康冰, 刘世荣, 蔡道雄, 卢立华 (2009). 马尾松人工林林分密度对林下植被及土壤性质的影响. 应用生态学报, 20,2323-2331.] | |
[19] |
Lauber CL, Hamady M, Knight R, Fierer N (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75,5111-5120.
DOI URL |
[20] | Lei B, Liu B, Luo CD, Zhang J, Xue YJ, Liu L (2014). Catabatic effect from artificial mixed plantation of Cunninghamia lanceolata on soil aluminum toxicity. Acta Ecologica Sinica, 34,2884-2891. |
[ 雷波, 刘彬, 罗承德, 张健, 薛元杰, 刘丽 (2014). 杉木人工混交林对土壤铝毒害的缓解作用. 生态学报, 34,2884-2891.] | |
[21] | Li GL, Liu Y, Yu HQ, Lü RH, Li RS (2009). Response of understory vegetation development of Pinus tabulaeformis plantation to growth rhythm of Pinus tabulaeformis. Acta Ecologica Sinica, 29,1264-1275. |
[ 李国雷, 刘勇, 于海群, 吕瑞恒, 李瑞生 (2009). 油松(Pinus tabulaeformis)人工林林下植被发育对油松生长节律的响应. 生态学报, 29,1264-1275.] | |
[22] | Li TT (2011). Construction of Theoretical Merchantable Volume Tables of Cunninghamia lanceolata in Kaihua Forest Farm. Master degree dissertation, Beijing Forestry University, Beijing. |
[ 李婷婷 (2011). 浙江开化县林场杉木理论出材率表编制方法研究. 硕士学位论文, 北京林业大学, 北京.] | |
[23] |
Li X, Sun ML, Zhang HH, Xu N, Sun GY (2016). Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community. Microbial Biotechnology, 9,293-304.
DOI URL |
[24] | Li YJ, Cao GM, Long RJ, Yao T (2016). Effects of land use patterns on grassland biomass and soil properties in three-river headwater area. Acta Agrestia Sinica, 24,524-529. |
[ 李亚娟, 曹广民, 龙瑞军, 姚拓 (2016). 三江源区土地利用方式对草地植物生物量及土壤特性的影响. 草地学报, 24,524-529.] | |
[25] |
Lin YT, Hu HW, Whitman WB, Coleman DC, Chiu CY (2014). Comparison of soil bacterial communities in a natural hardwood forest and coniferous plantations in perhumid subtropical low mountains. Botanical Studies, 55, 50. DOI: 10.1186/ s40529-014-0050-x.
DOI |
[26] |
Lin YT, Whitman WB, Coleman DC, Chiu CY (2018). Effects of reforestation on the structure and diversity of bacterial communities in subtropical low mountain forest soils. Frontiers in Microbiology, 9, 1968. DOI: 10.3389/fmicb.2018.01968.
DOI |
[27] | Liu CL, Zuo WY, Zhao ZY, Qiu LH (2012). Bacterial diversity of different successional stage forest soils in Dinghushan. Acta Microbiologica Sinica, 52,1489-1496. |
[ 柳春林, 左伟英, 赵增阳, 邱礼鸿 (2012). 鼎湖山不同演替阶段森林土壤细菌多样性. 微生物学报, 52,1489-1496.] | |
[28] | Liu YC, Liu QJ, Wang HQ, Ma ZQ, Xu WJ (2008). Characteristics of biomass allocation of Dicranopteris Dichotoma. Chinese Journal of Ecology, 27,705-711. |
[ 刘迎春, 刘琪璟, 汪宏清, 马泽清, 徐雯佳 (2008). 芒萁生物量分布特征. 生态学杂志, 27,705-711.] | |
[29] |
Liu ZF, Fu BJ, Zheng XX, Liu GH (2010). Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: a regional scale study. Soil Biology & Biochemistry, 42,445-450.
DOI URL |
[30] |
Logue JB, Lindström ES (2010). Species sorting affects bacterioplankton community composition as determined by 16S rDNA and 16S rRNA fingerprints. The ISME Journal, 4,729-738.
DOI URL |
[31] | Lu RK (2000). Soil Argrochemistry Analysis Protocoes. China Agriculture Science Press, Beijing. |
[ 鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[32] |
Massenssini AM, Bonduki VHA, Melo CAD, Tótola MR, Ferreira FA, Costa MD (2015). Relative importance of soil physico-chemical characteristics and plant species identity to the determination of soil microbial community structure. Applied Soil Ecology, 91,8-15.
DOI URL |
[33] |
McCaig AE, Glover LA, Prosser JI (1999). Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology, 65,1721-1730.
DOI URL |
[34] |
Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S, Hemp A, Kalko EKV, Linsenmair KE, Pfeiffer S, et al. (2012). Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils. Applied and Environmental Microbiology, 78,7398-7406.
PMID |
[35] |
Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen A, Tsai SM (2013). Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiology Ecology, 83,607-621.
DOI PMID |
[36] | Qin HL, Yuan HZ, Zhang H, Zhu YJ, Wu MN, Wei WX (2011). Soil bacteria community structure in upland red soil in relation to land use pattern. Acta Pedologica Sinica, 48,594-602. |
[ 秦红灵, 袁红朝, 张慧, 朱亦君, 吴敏娜, 魏文学 (2011). 红壤坡地利用方式对土壤细菌群落结构的影响. 土壤学报, 48,594-602. ] | |
[37] | Sui X, Zhang RT, Zhong HX, Xu N, Wang JF, Liu YZ, Yuan HF, Ni HW (2015). Study on bacterial diversity of Deyeuxia angustifolia wetland by application of high- throughput sequencing technology in Sanjiang plain. Soils, 47,919-925. |
[ 隋心, 张荣涛, 钟海秀, 许楠, 王继丰, 刘应竹, 袁海峰, 倪红伟 (2015). 利用高通量测序对三江平原小叶章湿地土壤细菌多样性的研究. 土壤, 47,919-925.] | |
[38] |
Turlapati SA, Minocha R, Bhiravarasa PS, Tisa LS, Thomas WK, Minocha SC (2013). Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiology Ecology, 83,478-493.
DOI PMID |
[39] | Wang CX, Tian BY, Lü RR, Lin WL, Xu Y, Huang QG, Huang JZ (2010). Distribution and diversity of Acidobacteria in tropical rain forest soil of Xishuangbanna. Microbiology China, 37,24-29. |
[ 王春香, 田宝玉, 吕睿瑞, 林伟铃, 徐燕, 黄钦耿, 黄建忠 (2010). 西双版纳地区热带雨林土壤酸杆菌(Acidobacteria)群体结构和多样性分析. 微生物学通报, 37,24-29.] | |
[40] | Wang GH, Liu JJ, Yu ZH, Wang XZ, Jin J, Liu XB (2016). Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 32,14-20. |
[ 王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰 (2016). 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 32,14-20.] | |
[41] |
Wang NN, Chen Y, Ying JY, Gao YS, Bai YF (2014). Effects of typical plant on soil microbial communities in an Inner Mongolia grassland. Chinese Journal of Plant Ecology, 38,201-208.
DOI URL PMID |
[ 王纳纳, 陈颖, 应娇妍, 高勇生, 白永飞 (2014). 内蒙古草原典型植物对土壤微生物群落的影响. 植物生态学报, 38,201-208.]
DOI PMID |
|
[42] |
Wang Q, Wang S, Fan B, Yu X (2007). Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant and Soil, 297,201-211.
DOI URL |
[43] |
Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, et al. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied and Environmental Microbiology, 75,2046-2056.
DOI URL |
[44] | Xia BC, Zhou JZ, James MT (1998). Effect of vegetation on structure of soil microbial community. Chinese Journal of Applied Ecology, 9,296-300. |
[ 夏北成, Zhou JZ, James MT (1998). 植被对土壤微生物群落结构的影响. 应用生态学报, 9,296-300.] | |
[45] | Yang JL, Fu XL, Ma ZQ, Di YB, Liu QJ, Wang HM (2015). Characteristics of soil microbial community in five forest types in mid-subtropical China. Research of Environmental Sciences, 28,720-727. |
[ 杨君珑, 付晓莉, 马泽清, 邸月宝, 刘琪璟, 王辉民 (2015). 中亚热带5种类型森林土壤微生物群落特征. 环境科学研究, 28,720-727.] | |
[46] |
Zhang YG, Cong J, Lu H, Li GL, Qu YY, Su XJ, Zhou JZ, Li DQ (2014). Community structure and elevational diversity patterns of soil Acidobacteria. Journal of Environmental Sciences, 26,1717-1724.
DOI URL |
[47] | Zhang YQ, Li ZC, Hou LY, Song LG, Yang HG, Sun QW (2019). Effects of stand density on species diversity and soil nutrients of Chinese fir plantations. Acta Pedologica Sinica, 57,239-250. |
[ 张勇强, 李智超, 厚凌宇, 宋立国, 杨洪国, 孙启武 (2019). 林分密度对杉木人工林下物种多样性和土壤养分的影响. 土壤学报, 57,239-250.] | |
[48] |
Zhao L, Hu YL, Lin GG, Gao YC, Fang YT, Zeng DH (2013). Mixing effects of understory plant litter on decomposition and nutrient release of tree litter in two plantations in Northeast China. PLOS ONE, 8,e76334. DOI: 10.1371/journal.pone.0076334.
DOI URL |
[49] | Zhao X, Zhong YM, Yang JP, Lü YM, Wang XP (2017). The response of soil nutrients (carbon and nitrogen) and extracellular enzyme activities to drought in various cultivation ages from tea orchards. Acta Ecologica Sinica, 37,387-394. |
[ 赵杏, 钟一铭, 杨京平, 吕亚敏, 王小鹏 (2017). 不同植茶年限土壤碳氮养分及胞外酶对干旱胁迫的响应. 生态学报, 37,387-394.] | |
[50] | Zhu X, He ZB, Du J, Yang JJ, Chen LF (2014). Function and composition of understory vegetation: recent advances and trends. World Forestry Research, 27,24-30. |
[ 朱喜, 何志斌, 杜军, 杨军军, 陈龙飞 (2014). 林下植被组成和功能研究进展. 世界林业研究, 27,24-30.] |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[9] | 张仲富, 王四海, 杨卫, 陈剑. 蒜头果根际细菌群落结构与功能特征对其健康状态的响应[J]. 植物生态学报, 2023, 47(7): 1020-1031. |
[10] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[11] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[12] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[13] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[14] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[15] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19