植物生态学报 ›› 2021, Vol. 45 ›› Issue (1): 74-84.DOI: 10.17521/cjpe.2020.0316
裴广廷1,2, 孙建飞1,2, 贺同鑫1,2,*(), 胡宝清1,2
收稿日期:
2020-09-21
接受日期:
2020-11-24
出版日期:
2021-01-20
发布日期:
2021-01-07
通讯作者:
贺同鑫
作者简介:
*(htx@nnnu.edu.cn)基金资助:
PEI Guang-Ting1,2, SUN Jian-Fei1,2, HE Tong-Xin1,2,*(), HU Bao-Qing1,2
Received:
2020-09-21
Accepted:
2020-11-24
Online:
2021-01-20
Published:
2021-01-07
Contact:
HE Tong-Xin
Supported by:
摘要:
人为干扰是喀斯特草地正向演替的主要障碍因素, 从土壤微生物角度探讨草地对干扰的响应可为喀斯特生态恢复与科学利用提供依据。该研究依托中国科学院环江喀斯特生态系统观测站长期干扰监测样地, 通过高通量测序测定3个干扰模式(火烧、刈割、刈割除根)和1个对照(封育)处理的土壤细菌、真菌α多样性和群落结构, 并分析它们与环境因子(坡位、土壤理化性质)的关系, 揭示人为干扰对桂西北喀斯特草地土壤微生物的影响及机制。结果显示: 1)对于α多样性, 在中坡和下坡, 火烧均显著降低了真菌Chao1指数, 刈割均显著降低了细菌的香农指数和谱系多样性指数; 刈割除根在中、下坡分别显著降低了真菌Chao1指数和细菌香农指数。2)对于群落结构, 火烧、刈割和刈割除根在中、下坡均显著降低了酸杆菌门细菌相对丰度, 火烧在下坡使子囊菌门真菌相对丰度从74.49%显著降低至34.72%。3)冗余分析显示, 微生物生物量碳含量解释细菌和真菌α多样性变化的29.8%和26.8%以及细菌群落结构变化的31.7%; 细根生物量解释细菌α多样性和真菌群落结构变化的13.9%和10.3%。可见, 长期人为干扰对土壤微生物α多样性产生负面影响, 并显著改变微生物群落结构, 影响程度因干扰方式、微生物种类不同而异, 且受坡位调控。土壤微生物生物量碳含量和细根生物量的减少是人为干扰影响土壤微生物多样性和群落结构的重要因素。α多样性及子囊菌的减少将不利于土壤生态系统稳定性的维持, 酸杆菌的减少将不利于土壤有机质降解和铁循环。因此, 长期火烧、刈割等人为干扰将导致喀斯特草地生态系统功能发生退化。
裴广廷, 孙建飞, 贺同鑫, 胡宝清. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响. 植物生态学报, 2021, 45(1): 74-84. DOI: 10.17521/cjpe.2020.0316
PEI Guang-Ting, SUN Jian-Fei, HE Tong-Xin, HU Bao-Qing. Effects of long-term human disturbances on soil microbial diversity and community structure in a karst grassland ecosystem of northwestern Guangxi, China. Chinese Journal of Plant Ecology, 2021, 45(1): 74-84. DOI: 10.17521/cjpe.2020.0316
干扰模式 Disturbance type | 坡向 Slope aspect | 平均坡度 Mean slope angle (°) | 处理方法 Treatment process | 植被现状 Vegetation status |
---|---|---|---|---|
封育 Enclosure | SE | 33.0 | 保留原始植被, 作为对照 Control plot with native vegetation | 以灌木为主, 并伴有大量草本分布 (由于自然恢复多年, 植被类型已由草本逐渐转变为灌木), 主要植被为黄荆、楤木、火棘、紫穗槐、小花梾木等。 The vegetation are dominated by shrubs and accompanied by numberous herbs (due to many years after natural recovery, the vegetation type has gradually changed from herbs to shrubs), and the dominant species are Vitex negundo, Aralia chinensis, Pyracantha fortuneana, Amorpha fruticosa,and Swida parviflora,etc. |
火烧 Burning | SE | 33.7 | 每年一月火烧一次 Burning in January of each year | 中坡位以草本为主, 下坡位以草灌为主, 主要植被为白茅、蔓生莠竹、毛桐苗、紫穗槐苗等。 The middle slope position are dominated by herbs and the lower slope position are dominated by herb-shrub plants. The dominant species are Imperata cylindrical, Microstegium vagans, Mallotus barbatus,and Amorpha fruticosa, etc. |
刈割 Mowing | SE | 34.5 | 每年一月砍伐地上植被, 搬移出样地, 不去除植物根系 Cutting aboveground plants without root removal in January of each year | 中坡位以草本为主, 下坡位以草灌为主, 主要植被为白茅、蔓生莠竹、紫穗槐苗等。 The middle slope position are dominated by herbs and the lower slope position are dominated by herb-shrub plants. The dominant species are Imperata cylindrical, Microstegium vagans, Amorpha fruticosa,etc. |
刈割除根 Mowing plus root removal | SE | 33.5 | 每年一月砍伐地上植被, 搬移出样地, 且去除植物根系 Cutting aboveground plants and removing roots in January of each year | 以草本为主, 主要植被为白茅、蔓生莠竹等。 The vegetation are dominated by herbs, and the dominant species are Imperata cylindrical, Microstegium vagans,etc. |
表1 桂西北喀斯特草地生态系统样地基本特征
Table 1 Characteristics of studied plots in a karst grassland ecosystem of northwestern Guangxi, China
干扰模式 Disturbance type | 坡向 Slope aspect | 平均坡度 Mean slope angle (°) | 处理方法 Treatment process | 植被现状 Vegetation status |
---|---|---|---|---|
封育 Enclosure | SE | 33.0 | 保留原始植被, 作为对照 Control plot with native vegetation | 以灌木为主, 并伴有大量草本分布 (由于自然恢复多年, 植被类型已由草本逐渐转变为灌木), 主要植被为黄荆、楤木、火棘、紫穗槐、小花梾木等。 The vegetation are dominated by shrubs and accompanied by numberous herbs (due to many years after natural recovery, the vegetation type has gradually changed from herbs to shrubs), and the dominant species are Vitex negundo, Aralia chinensis, Pyracantha fortuneana, Amorpha fruticosa,and Swida parviflora,etc. |
火烧 Burning | SE | 33.7 | 每年一月火烧一次 Burning in January of each year | 中坡位以草本为主, 下坡位以草灌为主, 主要植被为白茅、蔓生莠竹、毛桐苗、紫穗槐苗等。 The middle slope position are dominated by herbs and the lower slope position are dominated by herb-shrub plants. The dominant species are Imperata cylindrical, Microstegium vagans, Mallotus barbatus,and Amorpha fruticosa, etc. |
刈割 Mowing | SE | 34.5 | 每年一月砍伐地上植被, 搬移出样地, 不去除植物根系 Cutting aboveground plants without root removal in January of each year | 中坡位以草本为主, 下坡位以草灌为主, 主要植被为白茅、蔓生莠竹、紫穗槐苗等。 The middle slope position are dominated by herbs and the lower slope position are dominated by herb-shrub plants. The dominant species are Imperata cylindrical, Microstegium vagans, Amorpha fruticosa,etc. |
刈割除根 Mowing plus root removal | SE | 33.5 | 每年一月砍伐地上植被, 搬移出样地, 且去除植物根系 Cutting aboveground plants and removing roots in January of each year | 以草本为主, 主要植被为白茅、蔓生莠竹等。 The vegetation are dominated by herbs, and the dominant species are Imperata cylindrical, Microstegium vagans,etc. |
土壤性质 Soil property | 中坡位 Middle slope position | 下坡位 Lower slope position | ||||||
---|---|---|---|---|---|---|---|---|
封育 Enclosure | 火烧 Burning | 刈割 Mowing | 刈割除根 Mowing plus root removal | 封育 Enclosure | 火烧 Burning | 刈割 Mowing | 刈割除根 Mowing plus root removal | |
含水量 Moisture (%) | 40.49 ± 1.71 a | 42.32 ± 0.44 a | 42.99 ± 2.12 a | 38.08 ± 1.28 a | 48.41 ± 1.78 a | 46.10 ± 2.84 a | 44.22 ± 4.98 a | 46.57 ± 2.54 a |
pH | 7.81 ± 0.04 a | 7.88 ± 0.07 a | 7.93 ± 0.05 a | 7.98 ± 0.05 a | 7.69 ± 0.10 a | 7.73 ± 0.04 a | 7.90 ± 0.08 a | 7.82 ± 0.03 a |
有机碳含量 Soil organic carbon content (g·kg-1) | 53.89 ± 3.26 ab | 62.31 ± 3.02 a | 62.67 ± 4.06 a | 50.61 ± 1.34 b | 65.24 ± 4.84 a | 47.11 ± 5.83 a | 61.69 ± 8.92 a | 58.70 ± 4.31 a |
总氮含量 Total nitrogen content (g·kg-1) | 3.78 ± 0.19 b | 4.44 ± 0.31 ab | 4.61 ± 0.17 a | 4.00 ± 0.13 ab | 5.88 ± 0.59 a | 4.80 ± 0.49 a | 4.89 ± 0.89 a | 5.09 ± 0.35 a |
碳氮比 Carbon-nitrogen ratio | 14.29 ± 0.86 a | 14.07 ± 0.35 a | 13.56 ± 0.48 a | 12.68 ± 0.59 a | 11.14 ± 0.34 b | 9.77 ± 0.34 c | 12.78 ± 0.46 a | 11.54 ± 0.34 b |
微生物生物量碳含量 Microbial biomass carbon content (g·kg-1) | 0.87 ± 0.08 a | 0.23 ± 0.02 b | 0.24 ± 0.03 b | 0.44 ± 0.11 b | 1.00 ± 0.04 a | 0.27 ± 0.04 b | 0.48 ± 0.09 b | 0.42 ± 0.14 b |
微生物生物量氮含量 Microbial biomass nitrogen content (g·kg-1) | 0.25 ± 0.02 a | 0.19 ± 0.02 a | 0.18 ± 0.04 a | 0.22 ± 0.03 a | 0.25 ± 0.04 ab | 0.20 ± 0.03 b | 0.34 ± 0.02 a | 0.20 ± 0.07 ab |
细根生物量 Fine root biomass (g·m-2) | 127.82 ± 16.23 a | 102.61 ± 5.59 a | 85.37 ± 22.03 a | 68.14 ± 25.27 a | 132.79 ± 39.01 a | 49.38 ± 12.04 b | 126.51 ± 11.93 a | 77.42 ± 3.75 ab |
表2 不同干扰方式对桂西北喀斯特草地生态系统土壤理化性质的影响(平均值±标准误)
Table 2 Effects of different disturbances on soil properties in a karst grassland ecosystem of northwestern Guangxi, China (mean ± SE)
土壤性质 Soil property | 中坡位 Middle slope position | 下坡位 Lower slope position | ||||||
---|---|---|---|---|---|---|---|---|
封育 Enclosure | 火烧 Burning | 刈割 Mowing | 刈割除根 Mowing plus root removal | 封育 Enclosure | 火烧 Burning | 刈割 Mowing | 刈割除根 Mowing plus root removal | |
含水量 Moisture (%) | 40.49 ± 1.71 a | 42.32 ± 0.44 a | 42.99 ± 2.12 a | 38.08 ± 1.28 a | 48.41 ± 1.78 a | 46.10 ± 2.84 a | 44.22 ± 4.98 a | 46.57 ± 2.54 a |
pH | 7.81 ± 0.04 a | 7.88 ± 0.07 a | 7.93 ± 0.05 a | 7.98 ± 0.05 a | 7.69 ± 0.10 a | 7.73 ± 0.04 a | 7.90 ± 0.08 a | 7.82 ± 0.03 a |
有机碳含量 Soil organic carbon content (g·kg-1) | 53.89 ± 3.26 ab | 62.31 ± 3.02 a | 62.67 ± 4.06 a | 50.61 ± 1.34 b | 65.24 ± 4.84 a | 47.11 ± 5.83 a | 61.69 ± 8.92 a | 58.70 ± 4.31 a |
总氮含量 Total nitrogen content (g·kg-1) | 3.78 ± 0.19 b | 4.44 ± 0.31 ab | 4.61 ± 0.17 a | 4.00 ± 0.13 ab | 5.88 ± 0.59 a | 4.80 ± 0.49 a | 4.89 ± 0.89 a | 5.09 ± 0.35 a |
碳氮比 Carbon-nitrogen ratio | 14.29 ± 0.86 a | 14.07 ± 0.35 a | 13.56 ± 0.48 a | 12.68 ± 0.59 a | 11.14 ± 0.34 b | 9.77 ± 0.34 c | 12.78 ± 0.46 a | 11.54 ± 0.34 b |
微生物生物量碳含量 Microbial biomass carbon content (g·kg-1) | 0.87 ± 0.08 a | 0.23 ± 0.02 b | 0.24 ± 0.03 b | 0.44 ± 0.11 b | 1.00 ± 0.04 a | 0.27 ± 0.04 b | 0.48 ± 0.09 b | 0.42 ± 0.14 b |
微生物生物量氮含量 Microbial biomass nitrogen content (g·kg-1) | 0.25 ± 0.02 a | 0.19 ± 0.02 a | 0.18 ± 0.04 a | 0.22 ± 0.03 a | 0.25 ± 0.04 ab | 0.20 ± 0.03 b | 0.34 ± 0.02 a | 0.20 ± 0.07 ab |
细根生物量 Fine root biomass (g·m-2) | 127.82 ± 16.23 a | 102.61 ± 5.59 a | 85.37 ± 22.03 a | 68.14 ± 25.27 a | 132.79 ± 39.01 a | 49.38 ± 12.04 b | 126.51 ± 11.93 a | 77.42 ± 3.75 ab |
图1 不同干扰方式对桂西北喀斯特草地生态系统土壤微生物多样性的影响(平均值±标准误)。B, 火烧; E, 封育; M, 刈割; MR, 刈割除根。不同小写字母表示不同处理之间差异显著(p < 0.05)。
Fig. 1 Effects of different disturbances on soil microbial diversity in a karst grassland ecosystem of northwestern Guangxi, China (mean ± SE). B, burning; E, enclosure; M, mowing; MR, mowing plus root removal. Different lowercase letters indicate significant differences among different treatments (p < 0.05).
图2 不同干扰方式对桂西北喀斯特草地生态系统土壤微生物群落结构影响的非度量多维尺度分析。A, 细菌群落。B, 真菌群落。S, 坡位; T, 处理。
Fig. 2 Non-metric multidimensional scale analysis for the effects of different disturbances on soil microbial community structures in a karst grassland ecosystem of northwestern Guangxi, China. A, Bacterial community. B, Fungal community. S, slope position; T, treatment.
干扰方式 Disturbance | 细菌 Bacteria | 真菌 Fungi | |||
---|---|---|---|---|---|
F | p | F | p | ||
封育-火烧 Enclosure-Burning | 11.10 | 0.003 | 3.28 | 0.002 | |
封育-刈割 Enclosure-Mowing | 11.10 | 0.004 | 2.00 | 0.002 | |
封育-刈割除根 Enclosure-Mowing plus root removal | 5.82 | 0.004 | 3.19 | 0.003 | |
火烧-刈割 Burning-Mowing | 2.16 | 0.004 | 1.30 | 0.138 | |
火烧-刈割除根 Burning-Mowing | 1.46 | 0.153 | 1.61 | 0.061 | |
刈割-刈割除根 Mowing-Mowing plus root removal | 2.94 | 0.003 | 1.68 | 0.036 | |
中坡位-下坡位 Middle slope position-Lower slope position | 1.90 | 0.070 | 2.17 | 0.003 |
表3 不同干扰方式对土壤微生物群落结构影响的多元方差分析结果
Table 3 Results of Adonis analysis for the effects of different disturbances on microbial community structures
干扰方式 Disturbance | 细菌 Bacteria | 真菌 Fungi | |||
---|---|---|---|---|---|
F | p | F | p | ||
封育-火烧 Enclosure-Burning | 11.10 | 0.003 | 3.28 | 0.002 | |
封育-刈割 Enclosure-Mowing | 11.10 | 0.004 | 2.00 | 0.002 | |
封育-刈割除根 Enclosure-Mowing plus root removal | 5.82 | 0.004 | 3.19 | 0.003 | |
火烧-刈割 Burning-Mowing | 2.16 | 0.004 | 1.30 | 0.138 | |
火烧-刈割除根 Burning-Mowing | 1.46 | 0.153 | 1.61 | 0.061 | |
刈割-刈割除根 Mowing-Mowing plus root removal | 2.94 | 0.003 | 1.68 | 0.036 | |
中坡位-下坡位 Middle slope position-Lower slope position | 1.90 | 0.070 | 2.17 | 0.003 |
图3 不同干扰方式对桂西北喀斯特草地生态系统土壤微生物群落门水平相对丰度的影响。B, 火烧; E, 封育; M, 刈割; MR, 刈割除根。
Fig. 3 Effects of different disturbances on the relative abundance of microbial communities at phylum level in a karst grassland ecosystem of northwestern Guangxi, China. B, burning; E, enclosure; M, mowing; MR, mowing plus root removal.
图4 桂西北喀斯特草地生态系统土壤性质与土壤微生物多样性和群落结构的冗余分析。A, 细菌多样性。B, 细菌群落结构。C, 真菌多样性。D, 真菌群落结构。C:N, 碳氮比; FRB, 细根生物量; M, 含水量; MBC, 微生物生物量碳含量; MBN, 微生物生物量碳含量; SOC, 有机碳含量; TN, 总氮含量。Chao1, Chao1指数; PD, 谱系多样性指数; Shannon, 香农指数。Aci, 酸杆菌门; Act, 放线菌门; Asc, 子囊菌门; Bac, 拟杆菌门; Bas, 担子菌门; Chl, 绿弯菌门; Chy, 壶菌门; Fir, 后壁菌门; Gem, 牙单胞菌门; Glo, 球囊菌门; Nit, 硝化螺旋菌门; Pla, 浮霉菌门; Pro, 变形菌门; Tec, 护微菌门; Zyg, 接合菌门。
Fig. 4 RDA analysis for the relationship between soil properties and microbial diversity and community in a karst grassland ecosystem of northwestern Guangxi, China. A, bacterial diversity. B, bacterial community structure. C, fungal diversity. D, fungal community structure. C:N, carbon-nitrogen ratio; FRB, Fine root biomass; M, moisture; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SOC, soil organic carbon content; TN, total nitrogen content. Chao1, Chao1 index; PD, Pedigree diversity index; Shannon, Shannon index. Aci, Acidobacteria; Act, Actinobacteria; Asc, Ascomycota; Bac, Bacteroidetes; Bas, Basidiomycota; Chl, Chloroflexi; Chy, Chytridiomycota; Fir, Firmicutes; Gem, Gemmatimonadetes; Glo, Glomeromycota; Nit, Nitrospirae; Pla, Planctomycetes; Pro, Proteobacteria; Tec, Tectomicrobia; Zyg, Zygomycota.
土壤性质 Soil property | α多样性 α diversity | 群落结构 Community structure | ||||||
---|---|---|---|---|---|---|---|---|
细菌 Bacteria | 真菌 Fungi | 细菌 Bacteria | 真菌 Fungi | |||||
E (%) | p | E (%) | p | E (%) | p | E (%) | p | |
含水量 Moisture (%) | 1.90 | 0.408 | 0.40 | 0.832 | 4.50 | 0.202 | 7.00 | 0.17 |
pH | 4.50 | 0.188 | 0.30 | 0.852 | 2.60 | 0.37 | 0.60 | 0.868 |
有机碳含量 Soil organic carbon content (g·kg-1) | 0.20 | 0.82 | 5.10 | 0.188 | 2.50 | 0.402 | 0.10 | 0.972 |
总氮含量 Total nitrogen content (g·kg-1) | 0.80 | 0.572 | 1.40 | 0.536 | 1.00 | 0.728 | 4.10 | 0.46 |
碳氮比 Carbon-nitrogen ratio | 5.30 | 0.166 | 10.90 | 0.072 | 0.50 | 0.854 | 1.00 | 0.784 |
微生物生物量碳含量 Microbial biomass carbon content (g·kg-1) | 29.80 | 0.012 | 26.80 | 0.008 | 31.70 | 0.002 | 1.60 | 0.744 |
微生物生物量氮含量 Microbial biomass nitrogen content (g·kg-1) | 0.20 | 0.792 | 6.30 | 0.176 | 3.10 | 0.322 | 6.10 | 0.23 |
细根生物量 Fine root biomass (g·m-2) | 13.90 | 0.038 | 1.80 | 0.474 | 3.40 | 0.292 | 10.30 | 0.088 |
表4 冗余分析中土壤性质对微生物多样性和群落结构变化的解释率
Table 4 Explain rates for the contribution of soil properties on variations in microbial α diversity and community structure in Redundancy analysis (RDA)
土壤性质 Soil property | α多样性 α diversity | 群落结构 Community structure | ||||||
---|---|---|---|---|---|---|---|---|
细菌 Bacteria | 真菌 Fungi | 细菌 Bacteria | 真菌 Fungi | |||||
E (%) | p | E (%) | p | E (%) | p | E (%) | p | |
含水量 Moisture (%) | 1.90 | 0.408 | 0.40 | 0.832 | 4.50 | 0.202 | 7.00 | 0.17 |
pH | 4.50 | 0.188 | 0.30 | 0.852 | 2.60 | 0.37 | 0.60 | 0.868 |
有机碳含量 Soil organic carbon content (g·kg-1) | 0.20 | 0.82 | 5.10 | 0.188 | 2.50 | 0.402 | 0.10 | 0.972 |
总氮含量 Total nitrogen content (g·kg-1) | 0.80 | 0.572 | 1.40 | 0.536 | 1.00 | 0.728 | 4.10 | 0.46 |
碳氮比 Carbon-nitrogen ratio | 5.30 | 0.166 | 10.90 | 0.072 | 0.50 | 0.854 | 1.00 | 0.784 |
微生物生物量碳含量 Microbial biomass carbon content (g·kg-1) | 29.80 | 0.012 | 26.80 | 0.008 | 31.70 | 0.002 | 1.60 | 0.744 |
微生物生物量氮含量 Microbial biomass nitrogen content (g·kg-1) | 0.20 | 0.792 | 6.30 | 0.176 | 3.10 | 0.322 | 6.10 | 0.23 |
细根生物量 Fine root biomass (g·m-2) | 13.90 | 0.038 | 1.80 | 0.474 | 3.40 | 0.292 | 10.30 | 0.088 |
[1] |
Abril A, Barttfeld P, Bucher EH (2005). The effect of fire and overgrazing, disturbes on soil carbon balance in the dry Chaco forest. Forest Ecology and Management, 206,399-405.
DOI URL |
[2] |
Bárcenas-Moreno G, Bååth E (2009). Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biology & Biochemistry, 41,2517-2526.
DOI URL |
[3] |
Bastida F, Torres IF, Moreno JL, Baldrian P, Ondoño S, Ruiz-Navarro A, Hernández T, Richnow HH, Starke R, García C, Jehmlich N (2016). The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Molecular Ecology, 25,4660-4673.
DOI PMID |
[4] |
Bollen GJ (1969). The selective effect of heat treatment on the microflora of a greenhouse soil. Netherlands Journal of Plant Pathology, 75,157-163.
DOI URL |
[5] |
Brookes PC, Kragt JF, Powlson DS, Jenkinson DS (1985). Chloroform fumigation and the release of soil nitrogen: the effects of fumigation time and temperature. Soil Biology & Biochemistry, 17,831-835.
DOI URL |
[6] |
Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011). The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology, 22,394-400.
DOI URL |
[7] |
Challacombe JF, Hesse CN, Bramer LM, McCue LA, Lipton M, Purvine S, Nicora C, Gallegos-Graves LV, Porras-Alfaro A, Kuske CR (2019). Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics, 20,976. DOI: 10.1186/s12864-019-6358-x.
DOI PMID |
[8] | Chen HS, Yang J, Fu W, He F, Wang KL (2012). Characteristics of slope runoff and sediment yield on karst hill-slope with different land-use types in northwest Guangxi. Transactions of the Chinese Society of Agricultural Engineering, 28,121-126. |
[ 陈洪松, 杨静, 傅伟, 何菲, 王克林 (2012). 桂西北喀斯特峰丛不同土地利用方式坡面产流产沙特征. 农业工程学报, 28,121-126.] | |
[9] | Chen XB, Su YR, He XY, Qin WG, Wei YW, Liang YM, Wu JS (2012). Effect of human disturbance on composition of the dominant bacterial group Proteobacteria in karst soil ecosystems . Acta Pedologica Sinica, 49,354-363. |
[ 陈香碧, 苏以荣, 何寻阳, 覃文更, 魏亚伟, 梁月明, 吴金水 (2012). 不同干扰方式对喀斯特生态系统土壤细菌优势类群——变形菌群落的影响. 土壤学报, 49,354-363.] | |
[10] |
Choromanska U, DeLuca TH (2002). Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biology & Biochemistry, 34,263-271.
DOI URL |
[11] |
Coates JD, Ellis DJ, Gaw CV, Lovley DR (1999). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer . International Journal of Systematic and Evolutionary Microbiology, 49,1615-1622.
DOI URL |
[12] |
D’Ascoli R, Rutigliano FA, de Pascale RA, Gentile A, de Santo AV (2005). Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires. International Journal of Wildland Fire, 14,355-363.
DOI URL |
[13] |
Finlay BJ, Maberly SC, Cooper JI (1997). Microbial diversity and ecosystem function. Oikos, 80,209-213.
DOI URL |
[14] |
Fontúrbel MT, Barreiro A, Vega JA, Martín A, Jiménez E, Carballas T, Fernández C, Díaz-Raviña M (2012). Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma, 191,51-60.
DOI URL |
[15] | Grayston SJ (2000). Rhizodeposition and its impact on microbial community structure and function in trees. Phyton- Annales Rei Botanicae, 40,27-36. |
[16] | Han CC, Yang Y, Liu BR, Xie YZ (2014). Influencing factors of soil microbial diversity in grassland. Pratacultural Science, 31,2242-2250. |
[ 韩丛丛, 杨阳, 刘秉儒, 谢应忠 (2014). 草地土壤微生物多样性影响因子. 草业科学, 31,2242-2250.] | |
[17] |
Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI (2005). Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management, 220,166-184.
DOI URL |
[18] |
He TX, Hu BQ, Zhang JB, Zhang SM, Pang Y, Pei GT, Hu G, Zhang W, Sun JF (2020). Fine root effects on the retention and availability of soil carbon and nitrogen after ten years of vegetation restoration in a karst slope ecosystem. Acta Ecologica Sinica, 40. DOI: 10.5846/stxb202006231627.
DOI |
[ 贺同鑫, 胡宝清, 张建兵, 张诗萌, 庞榆, 裴广廷, 胡刚, 张伟, 孙建飞 (2020). 植被恢复十年喀斯特坡地细根对土壤碳氮存留与可利用性的影响. 生态学报, 40. DOI: 10.5846/stxb202006231627.]
DOI |
|
[19] |
Högberg P, Read DJ (2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology & Evolution, 21,548-554.
DOI URL |
[20] | Huang YF, Shu YG, Xiao SY, Chen MJ (2020). Quantification of soil nutrient levels and enzyme activities in different grassland categories in karst mountains. Acta Prataculturae Sinica, 29,93-104. |
[ 黄玙璠, 舒英格, 肖盛杨, 陈梦军 (2020). 喀斯特山区不同草地土壤养分与酶活性特征. 草业学报, 29,93-104.] | |
[21] |
Huffman MS, Madritch MD (2018). Soil microbial response following wildfires in thermic oak-pine forests. Biology and Fertility of Soils, 54,985-997.
DOI URL |
[22] | Li N, Zhang LM, Zhang XP (2012). The discussion of affecting factors on soil microbial community structure. Natural Science Journal of Harbin Normal University, 28,70-74. |
[ 李娜, 张利敏, 张雪萍 (2012). 土壤微生物群落结构影响因素的探讨. 哈尔滨师范大学自然科学学报, 28,70-74.] | |
[23] | Li WF, Ye YC, Zhu AF, Rao L, Sun K, Yuan J, Guo X (2017). Spatio-temporal variation of pH in cropland of Jiangxi Province in the past 30 years and its relationship with acid rain and fertilizer application. Journal of Natural Resources, 32,1942-1953. |
[ 李伟峰, 叶英聪, 朱安繁, 饶磊, 孙凯, 袁颉, 郭熙 (2017). 近30 a江西省农田土壤pH时空变化及其与酸雨和施肥量间关系. 自然资源学报, 32,1942-1953.] | |
[24] |
Li Y, Xu XH, Sun W, Shen Y, Ren TT, Huang JH, Wang CH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 43,174-184.
DOI URL PMID |
[ 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧 (2019). 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43,174-184.]
DOI PMID |
|
[25] | Liu Y, Song TQ, Cai DS, Zeng FP, Peng WX, Du H (2014). Soil fertility characteristics under different land use patterns in depressions between karst hills. Chinese Journal of Applied Ecology, 25,1561-1568. |
[ 刘艳, 宋同清, 蔡德所, 曾馥平, 彭晚霞, 杜虎 (2014). 喀斯特峰丛洼地不同土地利用方式土壤肥力特征. 应用生态学报, 25,1561-1568.] | |
[26] |
Lu SP, Gischkat S, Reiche M, Akob DM, Hallberg KB, Küsel K (2010). Ecophysiology of Fe-cycling bacteria in acidic sediments. Applied and Environmental Microbiology, 76,8174-8183.
DOI URL |
[27] |
Maron PA, Sarr A, Kaisermann A, Lévêque J, Mathieu O, Guigue J, Karimi B, Bernard L, Dequiedt S, Terrat S, Chabbi A, Ranjard L (2018). High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology, 84, e02738-17. DOI: 10.1128/aem.02738-17.
DOI |
[28] |
Morris A, Meyer K, Bohannan B (2020). Linking microbial communities to ecosystem functions: What we can learn from genotype-phenotype mapping in organisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 375,20190244. DOI: 10.1098/rstb.2019.0244.
DOI URL |
[29] |
Naeem S, Hahn DR, Schuurman G (2000). Producer-decomposer co-dependency influences biodiversity effects. Nature, 403,762-764.
PMID |
[30] |
Ohtonen R, Väre H (1998). Vegetation composition determines microbial activities in a boreal forest soil. Microbial Ecology, 36,328-335.
PMID |
[31] |
Pankratov TA, Kirsanova LA, Kaparullina EN, Kevbrin VV, Dedysh SN (2012). Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. International Journal of Systematic and Evolutionary Microbiology, 62,430-437.
DOI PMID |
[32] |
Pankratov TA, Serkebaeva YM, Kulichevskaya IS, Liesack W, Dedysh SN (2008). Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. The ISME Journal, 2,551-560.
DOI URL |
[33] |
Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron PA (2013). Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 7,1609-1619.
DOI URL |
[34] | Sergentani AG, Gonou-Zagou Z, Kapsanaki-Gotsi E, Hatzinikolaou DG (2016). Lignocellulose degradation potential of Basidiomycota from Thrace (NE Greece). International Biodeterioration & Biodegradation, 114,268-277. |
[35] | Song TQ, Peng WX, Du H, Wang KL, Zeng FP (2014). Occurrence, spatial-temporal dynamics and regulation strategies of karst rocky desertification in southwest China. Acta Ecologica Sinica, 34,5328-5341. |
[ 宋同清, 彭晚霞, 杜虎, 王克林, 曾馥平 (2014). 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策. 生态学报, 34,5328-5341.] | |
[36] | Tan HY (2015). Study on Impact of Grazing and Mowing on Soil’s Microbial Properties and Aboveground Vegetation. Master degree dissertation, Chinese Academy of Agricultural Sciences, Beijing.8-34. |
[ 谭红妍 (2015). 放牧与刈割对草甸草原土壤微生物性状及植被特征的影响. 硕士学位论文, 中国农业科学院, 北京.8-34.] | |
[37] | Tao YZ, Di XY (2013). Fire interference on forest soil microbial communities and the mechanism: a review. Scientia Silvae Sinicae, 49(11),146-157. |
[ 陶玉柱, 邸雪颖 (2013). 火对森林土壤微生物群落的干扰作用及其机制研究进展. 林业科学, 49(11),146-157.] | |
[38] | Teng QM, Shen YY, Xu GP, Zhang ZF, Zhang DN, Zhou LW, Huang KC, Sun YJ, He W (2020). Characteristics of soil carbon pool management indices under different vegetation types in karst mountainous areas of North Guangxi. Chinese Journal of Ecology, 39,422-433. |
[ 滕秋梅, 沈育伊, 徐广平, 张中峰, 张德楠, 周龙武, 黄科朝, 孙英杰, 何文 (2020). 桂北喀斯特山区不同植被类型土壤碳库管理指数的变化特征. 生态学杂志, 39,422-433.] | |
[39] |
Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19,703-707.
DOI URL |
[40] |
Vázquez FJ, Acea MJ, Carballas T (1993). Soil microbial populations after wildfire. FEMS Microbiology Ecology, 13,93-103.
DOI URL |
[41] |
Wang C, Wang X, Pei GT, Xia ZW, Peng B, Sun LF, Wang J, Gao DC, Chen SD, Liu DW, Dai WW, Jiang P, Fang YT, Liang C, Wu NP, Bai E (2020). Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biology & Biochemistry, 141,107687. DOI: 10.1016/j.soilbio.2019.107687.
DOI URL |
[42] | Wang GH, Liu JJ, Yu ZH, Wang XZ, Jin J, Liu XB (2016). Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 32,14-20. |
[ 王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰 (2016). 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 32,14-20.] | |
[43] | Xiang KX (2019). Effects of Fire on Shrub Forest in Central Karst Desertification Area of Guizhou Province, China. Master degree dissertation, Guizhou University, Guiyang.8-44. |
[ 向凯旋 (2019). 火烧对喀斯特灌丛林的影响. 硕士论文, 贵州大学, 贵阳.8-44.] | |
[44] |
Xu LK, Baldocchi DD, Tang JW (2004). How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochemical Cycles, 18,GB4002. DOI: 10.1029/2004gb002281.
DOI |
[45] | Xu LL, Yu YZ, Wang KL, Chen HS, Yue YM (2008). Effects by different human disturbances on hassock community soil seed bank in northwest Guangxi karst region. Carsologica Sinica, 27,309-315. |
[ 徐丽丽, 于一尊, 王克林, 陈洪松, 岳跃民 (2008). 不同人为干扰方式对桂西北喀斯特草丛群落土壤种子库组成与分布的影响. 中国岩溶, 27,309-315.] | |
[46] | Xu LX, Xiong KN, Zhang JH, Chi YK, Chen Y, Liu CM (2015). The problems and resolutions of grassland ecosystem in karst of southwest China. Pratacultural Science, 32,828-836. |
[ 许留兴, 熊康宁, 张锦华, 池永宽, 谌妍, 刘成名 (2015). 西南喀斯特地区草地生态系统面临的问题及对策. 草业科学, 32,828-836.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张仲富, 王四海, 杨卫, 陈剑. 蒜头果根际细菌群落结构与功能特征对其健康状态的响应[J]. 植物生态学报, 2023, 47(7): 1020-1031. |
[3] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[4] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[5] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[6] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[7] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[8] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[9] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[10] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[11] | 孟庆静, 樊卫国. 刺梨的适钙类型及对高钙生境的适应性[J]. 植物生态学报, 2022, 46(12): 1562-1572. |
[12] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[13] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[14] | 秦倩倩, 邱聪, 郑大柽, 刘艳红. 油松人工林火烧迹地早期土壤入渗动态[J]. 植物生态学报, 2021, 45(8): 903-917. |
[15] | 贺忠权, 刘长成, 蔡先立, 郭柯. 黔中高原喀斯特常绿与落叶阔叶混交林类型及群落特征[J]. 植物生态学报, 2021, 45(6): 670-680. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19