植物生态学报 ›› 2021, Vol. 45 ›› Issue (1): 85-95.DOI: 10.17521/cjpe.2020.0153
所属专题: 全球变化与生态系统
徐小惠1,2, 刁华杰1,3, 覃楚仪4, 郝杰3, 申颜1, 董宽虎3, 王常慧1,3,*()
收稿日期:
2020-05-15
接受日期:
2020-07-17
出版日期:
2021-01-20
发布日期:
2020-09-03
通讯作者:
王常慧
作者简介:
*(wangch@ibcas.ac.cn)基金资助:
XU Xiao-Hui1,2, DIAO Hua-Jie1,3, QIN Chu-Yi4, HAO Jie3, SHEN Yan1, DONG Kuan-Hu3, WANG Chang-Hui1,3,*()
Received:
2020-05-15
Accepted:
2020-07-17
Online:
2021-01-20
Published:
2020-09-03
Contact:
WANG Chang-Hui
Supported by:
摘要:
对于养分贫瘠的盐渍化草地生态系统, 大气氮沉降如何影响土壤氮循环过程是一个目前尚未解决的问题。该研究在位于华北地区山西省右玉县境内的盐渍化草地建立了一个模拟氮沉降的试验平台, 设置8个氮添加水平, 分别为0、1、2、4、8、16、24、32 g·m-2·a-1 (N0、N1、N2、N4、N8、N16、N24、N32), 生长季5-9月, 每月月初以喷施的方式等量添加NH4NO3。从2017年5月到2019年10月, 运用顶盖PVC管法每月一次进行净氮矿化速率的测定同时计算了净氮矿化速率对不同水平氮添加的敏感性。主要结果表明: (1)高水平氮添加(N16、N24、N32)显著增加土壤无机氮库; (2)该盐渍化草地土壤氮矿化以硝化作用为主, 经过3年氮添加以后, 高氮添加(N24、N32)显著促进了土壤净硝化速率, 并且不同氮添加水平在不同的月份和年份中表现出差异性响应; (3)不同氮添加水平对土壤净氮矿化敏感性的影响在不同降水年份差异显著, 短期低水平氮添加提高了土壤净氮矿化的敏感性, 而高水平氮添加降低土壤净氮矿化敏感性; (4)盐渍化草地土壤净氮矿化速率与土壤温度和水分呈正相关关系, 与土壤pH呈负相关关系。因此, 在当前氮沉降增加的背景下, 北方盐渍化草地土壤氮矿化速率对低氮添加的敏感性较高, 结合氮沉降的特点, 未来模型预测应该同时考虑氮沉降对盐渍化草地的可能影响。
徐小惠, 刁华杰, 覃楚仪, 郝杰, 申颜, 董宽虎, 王常慧. 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应. 植物生态学报, 2021, 45(1): 85-95. DOI: 10.17521/cjpe.2020.0153
XU Xiao-Hui, DIAO Hua-Jie, QIN Chu-Yi, HAO Jie, SHEN Yan, DONG Kuan-Hu, WANG Chang-Hui. Response of soil net nitrogen mineralization to different levels of nitrogen addition in a saline-alkaline grassland of northern China. Chinese Journal of Plant Ecology, 2021, 45(1): 85-95. DOI: 10.17521/cjpe.2020.0153
土壤特性 Soil property | 2017年本底值 Original value of 2017 |
---|---|
pH | 9.82 ± 0.11 |
土壤全碳含量 TC (g·kg-1) | 7.01 ± 1.02 |
土壤全氮含量 TN (g·kg-1) | 0.61 ± 0.04 |
土壤全碳与全氮含量的比 TC:TN | 11.57 ± 1.93 |
表1 华北盐渍化草地样地土壤基本理化性质(平均值±标准误)
Table 1 Basic soil properties in the experiment sites in a saline-alkaline grassland sample plot of northern China (mean ± SE)
土壤特性 Soil property | 2017年本底值 Original value of 2017 |
---|---|
pH | 9.82 ± 0.11 |
土壤全碳含量 TC (g·kg-1) | 7.01 ± 1.02 |
土壤全氮含量 TN (g·kg-1) | 0.61 ± 0.04 |
土壤全碳与全氮含量的比 TC:TN | 11.57 ± 1.93 |
图2 华北盐渍化草地试验地示意图。N0、N1、N2、N4、N8、N16、N24、N32分别表示氮添加水平分别为0、1、2、4、8、16、24、32 g·m-2。
Fig. 2 Schematic diagram of experimental design in a saline-alkaline grassland of northern China. N0, N1, N2, N4, N8, N16, N24 and N32 indicated that the nitrogen addition levels were 0, 1, 2, 4, 8, 16, 24 and 32 g·m-2, respectively.
图3 2017-2019年华北盐渍化草地不同氮添加水平铵态氮、硝态氮和无机态氮含量变化(平均值+标准误)。不同小写字母表示差异显著(p < 0.05)。*表示施肥和对照的差异性在0.05水平上显著; **表示施肥和对照差异性在0.01水平上显著。小图中不同颜色对应柱状图的不同氮添加水平。
Fig. 3 Changes of soil NH4+-N, NO3--N and inorganic nitrogen concentration under different levels of nitrogen addition in 2017-2019 of a saline-alkaline grassland of northern China (mean + SE). Different lowercase letters indicate significant differences (p < 0.05). * means the difference is significant at the level of p < 0.05, and ** means the difference is significant at the level of p < 0.01. Different colors in the small picture correspond to different nitrogen addition levels in the histogram.
因素 Factor | 铵化速率 Ammonification rate | 硝化速率 Nitrification rate | 净氮矿化速率 Net nitrogen mineralization rate | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
年份 Year (Y) | 6.167 | <0.05 | 35.338 | <0.001 | 5.275 | <0.05 |
氮添加 Nitrogen addition (N) | 7.879 | <0.001 | 12.592 | <0.001 | 9.455 | <0.001 |
年份×氮添加 (Y × N) | 3.664 | <0.05 | 14.516 | <0.001 | 2.315 | <0.05 |
表2 不同氮添加水平和处理时间对华北盐渍化草地土壤铵化速率、硝化速率、净氮矿化速率影响的双因素方差分析
Table 2 Two-way ANOVA on the effects of nitrogen addition and year on soil net ammonification, nitrification and net nitrogen mineralization rates of the salinized grassland of northern China
因素 Factor | 铵化速率 Ammonification rate | 硝化速率 Nitrification rate | 净氮矿化速率 Net nitrogen mineralization rate | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
年份 Year (Y) | 6.167 | <0.05 | 35.338 | <0.001 | 5.275 | <0.05 |
氮添加 Nitrogen addition (N) | 7.879 | <0.001 | 12.592 | <0.001 | 9.455 | <0.001 |
年份×氮添加 (Y × N) | 3.664 | <0.05 | 14.516 | <0.001 | 2.315 | <0.05 |
图4 华北盐渍化草地不同氮添加水平土壤净氮矿化速率的季节动态(平均值±标准误)。**表示差异性在0.01水平上显著。N0、N1、N2、N4、N8、N16、N24、N32分别表示氮添加水平分别为0、1、2、4、8、16、24、32 g·m-2。
Fig. 4 Seasonal dynamics of soil net N mineralization rates under different levels of nitrogen addition in a saline-alkaline grassland of northern China (mean ± SE). ** means the difference is significant at the level of 0.01. N0, N1, N2, N4, N8, N16, N24 and N32 indicated that the nitrogen addition levels were 0, 1, 2, 4, 8, 16, 24 and 32 g·m -2, respectively.
图5 华北盐渍化草地不同氮添加水平土壤净氮矿化速率和净硝化速率(平均值+标准误)。不同小写字母表示差异显著(p < 0.05)。
Fig. 5 Changes in soil net nitrogen (N) mineralization and net nitrification rates under different levels of N addition in a saline-alkaline grassland of northern China (mean + SE). Different lowercase letters indicate significant differences (p < 0.05).
图6 华北盐渍化草地不同氮添加水平土壤净氮矿化速率的敏感性(平均值+标准误)。不同小写字母表示差异显著(p < 0.05), 显著性均是以绝对值计算标注。
Fig. 6 Sensitivity of soil net nitrogen (N) mineralization rate under different levels of N addition in a saline-alkaline grassland of northern China (mean + SE). Different lowercase letters indicate significant differences (p < 0.05) in the absolute value among different treatments.
图7 华北盐渍化草地不同水平氮添加净氮矿化速率与土壤温度、湿度、土壤pH以及地下生物量的相关性。p > 0.05表示净氮矿化速率与土壤指标呈显著相关关系, p < 0.05表示净氮矿化速率与土壤指标无显著相关关系。N0、N1、N2、N4、N8、N16、N24、N32分别表示氮添加水平分别为0、1、2、4、8、16、24、32 g·m -2。
Fig. 7 Correlation between net nitrogen (N) mineralization rates and soil temperature (ST), soil moisture (SM), pH and below- ground biomass (BGB) under different levels of N addition in a saline-alkaline grassland of northern China. p > 0.05 indicated that there was a significant correlation between the net N mineralization rate and soil indicators; p < 0.05 indicated that there was no significant correlation between the net nitrogen mineralization rate and soil indicators. N0, N1, N2, N4, N8, N16, N24 and N32 indicated that the nitrogen addition levels were 0, 1, 2, 4, 8, 16, 24 and 32 g·m -2, respectively.
[1] |
Aber JD, Magill AH (2004). Chronic nitrogen additions at the Harvard Forest (USA): the first 15 years of a nitrogen saturation experiment. Forest Ecology and Management, 196,1-5.
DOI URL |
[2] | Bai JB, Xu XL, Fu G, Song MH, He YT, Jiang J (2011). Effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on Tibetan Plateau. Agricultural Science & Technology, 12,1909-1912. |
[3] | Bao SD (2000). Analysis of Soil Agrochemical. 3rd ed. China Agriculture Press, Beijing. |
[ 鲍士旦 (2000). 土壤农化分析.3版. 中国农业出版社, 北京.] | |
[4] |
Chen D, Xing W, Lan Z, Saleem M, Wu Y, Hu S, Bai Y (2019). Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. Functional Ecology, 33,175-187.
DOI URL |
[5] |
Eviner VT, Chapin III FS, Vaughn CE (2006). Seasonal variations in plant species effects on soil N and P dynamics. Ecology, 87,974-986.
DOI URL |
[6] | Fu MH, Xu XC, Tabatabai MA (1987). Effect of pH on nitrogen mineralization in crop-residue-treated soils. Biology and Fertility of Soils, 5,115-119. |
[7] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320,889-892.
DOI URL |
[8] | Guo CY, Kang JS, Wang HS (2013). Suitable Plants in Coastal Saline Alkali Land. China Construction Industry Press, Beijing. |
[ 郭成源, 康俊水, 王海生 (2013). 滨海盐碱地适生植物. 中国建筑工业出版社, 北京.] | |
[9] |
Hsu JS, Powell J, Adler PB (2012). Sensitivity of mean annual primary production to precipitation. Global Change Biology, 18,2246-2255.
DOI URL |
[10] |
Jia YL, Yu GR, He NP, Zhan XY, Fang HJ, Sheng WP, Zuo Y, Zhang DY, Wang QF (2014). Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 4,3763. DOI: 10.1038/srep03763.
DOI URL |
[11] |
Li Y, Xu XH, Sun W, Shen Y, Ren TT, Huang JH, Wang CH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 43,174-184.
DOI URL PMID |
[ 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧 (2019). 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43,174-184.]
DOI PMID |
|
[12] | Liu BR, Wang CH, Zhang LH, Dong KH (2015). Effect of nitrogen addition and mowing on soil nitrogen mineralization in abandoned grasslands in Inner Mongolia. Acta Ecologica Sinica, 35,6335-6443. |
[ 刘碧荣, 王常慧, 张丽华, 董宽虎 (2015). 氮素添加和刈割对内蒙古弃耕草地土壤氮矿化的影响. 生态学报, 35,6335-6343.] | |
[13] |
Liu XR, Ren JQ, Li SG, Zhang QW (2015). Effects of simulated nitrogen deposition on soil net nitrogen mineralization in the meadow steppe of Inner Mongolia, China. PLOS ONE, 10,e0134039. DOI: 10.1371/journal.pone.0134039.
DOI URL |
[14] |
Liu YW, Xu Ri, Xu XL, Wei D, Wang YH, Wang YS (2013). Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi-level nitrogen addition. Plant and Soil, 373,515-529.
DOI URL |
[15] |
Luo QP, Gong JR, Xu S, Baoyin T, Wang YH, Zhai ZW, Pan Y, Liu M, Yang LL (2016). Effects of N and P additions on net nitrogen mineralization in temperate typical grasslands in Nei Mongol, China. Chinese Journal of Plant Ecology, 40,480-492.
DOI URL PMID |
[ 罗亲普, 龚吉蕊, 徐沙, 宝音陶格涛, 王忆慧, 翟占伟, 潘琰, 刘敏, 杨丽丽 (2016). 氮磷添加对内蒙古温带典型草原净氮矿化的影响. 植物生态学报, 40,480-492.]
DOI PMID |
|
[16] | Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002). The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry, 57-58,99-136. |
[17] |
Pan QM, Bai YF, Han XG, Yang JC (2005). Effects of nitrogen additions on a Leymus chinensis population in typical steppe of Inner Mongolia. Acta Phytoecologica Sinica, 29,311-317.
PMID |
[ 潘庆民, 白永飞, 韩兴国, 杨景成 (2005). 氮素对内蒙古典型草原羊草种群的影响. 植物生态学报, 29,311-317.]
DOI PMID |
|
[18] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hatley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126,543-562.
DOI PMID |
[19] | Song B (2016). Responses of Alpine Meadow to Nitrogen Addition Gradients Test and Development of Nitrogen Saturation Theory. PhD dissertation, University of Chinese Academy of Sciences, Beijing.66-67. |
[ 宋冰 (2016). 高寒草甸生态系统对外源氮输入梯度的响应——“氮饱和”理论的验证与发展. 博士学位论文, 中国科学院地理科学与资源研究所, 北京.66-67.] | |
[20] |
Steltzer H, Bowman WD (1998). Differential influence of plant species on soil nitrogen transformations within moist meadow alpine tundra. Ecosystems, 1,464-474.
DOI URL |
[21] | Sun JP (2018). Study of Short-term Nitrogen Addition on Greenhouse Gases Emmisions and Its Impact Factors in Semiarid Grassland. Master degree dissertation, Shanxi Agricultural University, Taigu, Shanxi. 10. |
[ 孙建平 (2018). 短期氮添加对半干旱草地温室气体通量及其影响因子的研究. 硕士学位论文, 山西农业大学, 山西太谷. 10.] | |
[22] | Wang CH (2005). Soil Net N Mineralization in the Typical Temperate Grassland in Inner Mongolia. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing.25-31. |
[ 王常慧 (2005). 内蒙古温带典型草原土壤净氮矿化作用. 博士学位论文, 中国科学院植物研究所, 北京.25-31.] | |
[23] |
Wang C, Butterbach-Bahl K, He N, Wang Q, Xing X, Han X (2015). Nitrogen addition and mowing affect microbial nitrogen transformations in a C 4 grassland in northern China . European Journal of Soil Science, 66,485-495.
DOI URL |
[24] |
Wang CH, Wan SQ, Xing XR, Zhang L, Han XG (2006). Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology & Biochemistry, 38,1101-1110.
DOI URL |
[25] | Wang JL, Zhong ZM, Wang ZH, Chen BX, Yu CQ, Hu XX, Shen ZX, Dacizhuoga, Zhang XZ (2014). Soil C/N distribution characteristics of alpine steppe ecosystem in Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 34,6678-6691. |
[ 王建林, 钟志明, 王忠红, 陈宝雄, 余成群, 胡兴祥, 沈振西, 大次卓嘎, 张宪洲 (2014). 青藏高原高寒草原生态系统土壤碳氮比的分布特征. 生态学报, 34,6678-6691.] | |
[26] | Wen J, Yan WD, Liu YJ, Liang XC, Gao C (2015). Effect of nitrogen application on soil nitrogen mineralization of Cinnamomum camphora plantation in subtropical area . Journal of Central South University of Forestry & Technology, 35(5),103-108. |
[ 文汲, 闫文德, 刘益君, 梁小翠, 高超 (2015). 施氮对亚热带樟树人工林土壤氮矿化的影响. 中南林业科技大学学报, 35(5),103-108.] | |
[27] | Yu ZY, Zeng DH, Ai GY, Jiang FQ (2007). Effects of nitrogen addition on soil nitrogen availability in sandy grassland. Chinese Journal of Ecology, 26,1894-1897. |
[ 于占源, 曾德慧, 艾桂艳, 姜凤岐 (2007). 添加氮素对沙质草地土壤氮素有效性的影响. 生态学杂志, 26,1894-1897.] | |
[28] |
Zhang L, Huang JH, Bai YF, Han XG (2009). Effects of nitrogen addition on net nitrogen mineralization in Leymus chinensis grassland, Inner Mongolia, China . Chinese Journal of Plant Ecology, 33,563-569.
PMID |
[ 张璐, 黄建辉, 白永飞, 韩兴国 (2009). 氮素添加对内蒙古羊草草原净氮矿化的影响. 植物生态学报, 33,563-569.]
DOI PMID |
|
[29] |
Zhang NY, Guo R, Song P, Guo JX, Gao YZ (2013). Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe, northeastern China. Soil Biology & Biochemistry, 65,96-104.
DOI URL |
[30] |
Zhang X, Wang Q, Gilliam FS, Bai W, Han X, Li L (2012). Effect of nitrogen fertilization on net nitrogen mineralization in a grassland soil, northern China. Grass and Forage Science, 67,219-230.
DOI URL |
[31] |
Zhu JX, He NP, Wang QF, Yuan GF, Wen D, Yu GR, Jia YL (2015). The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Science of the Total Environment, 511,777-785.
DOI URL |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[3] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[9] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[10] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[11] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[12] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[13] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[14] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[15] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19