植物生态学报 ›› 2023, Vol. 47 ›› Issue (4): 584-596.DOI: 10.17521/cjpe.2022.0072
• 研究论文 • 上一篇
收稿日期:
2022-02-22
接受日期:
2022-07-27
出版日期:
2023-04-20
发布日期:
2022-09-16
通讯作者:
*(heshuanghui@bjfu.edu.cn )
基金资助:
FENG Ke1, LIU Dong-Mei2, ZHANG Qi1, AN Jing3, HE Shuang-Hui1,*()
Received:
2022-02-22
Accepted:
2022-07-27
Online:
2023-04-20
Published:
2022-09-16
Contact:
*(heshuanghui@bjfu.edu.cn )
Supported by:
摘要:
掌握旅游干扰对土壤微生物多样性及群落结构的影响, 有助于旅游区环境资源的恢复和管理。该研究在北京松山国家级自然保护区油松(Pinus tabuliformis)林内设置了不同旅游干扰强度(高干扰、低干扰和无干扰)的样地, 调查样地内微生境状况, 测量土壤理化性质, 利用第二代高通量测序技术测定土壤微生物多样性和群落结构, 以评价不同旅游干扰强度对油松林土壤微生物的影响机制。结果显示: 1)高强度干扰显著降低了土壤真菌α多样性, 低强度干扰显著降低了土壤真菌系统发育多样性。干扰强度越大, 土壤真菌多样性越低, 而土壤细菌多样性越高。2)在土壤真菌群落方面, 3类样地的土壤优势真菌门均为担子菌门(Basidiomycota)和子囊菌门(Ascomycota); 高强度干扰显著降低了子囊菌门相对多度, 对担子菌门相对多度无显著影响, 而低强度干扰均对担子菌门和子囊菌门无显著影响。LEfSe分析表明无干扰区的差异类群为真菌Pseudogymnoascus属和3个真菌物种(Oidiodendron griseum、Acrodontium hydnicola、Metacordyceps chlamydosporia); 低干扰区内未能检测到差异类群; 高干扰区差异类群为真菌Clavariaceae科。3)在土壤细菌群落方面, 3类样地的土壤优势细菌门均为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria); 高强度干扰和低强度干扰对它们的多度无显著影响。LEfSe分析表明无干扰区的差异类群占总差异类群的82.05%, 指示性最强的为细菌Gaiellales和Solirubrobacterales目; 低干扰区未发现差异类群; 高干扰区的差异类群占总差异类群的17.95%, 主要表现为病原指示菌和与人类活动相关的菌群, 指示性最强的为细菌Flavobacteriia纲和疣微菌门(Verrucomicrobia)下一属。4)偏最小二乘法路径模型(PLS-PM)发现干扰强度显著影响微生境指标和土壤真菌多样性; 冗余分析显示, 土壤状况和微生境指标分别解释了不同干扰强度下真菌和细菌群落结构变化的71.35%和74.47%, 乔木胸径、草本盖度和凋落物盖度是不同干扰强度下真菌和细菌群落差异的主要因子。由上可见, 旅游干扰显著降低了油松林土壤微生物α多样性, 并显著影响了其群落结构, 影响效果的不同与干扰强度和微生物种类有关, 并且受到土壤理化性质和微生境状况调控。因此未来应注意旅游区内微生境和土壤状况的修复。
冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响. 植物生态学报, 2023, 47(4): 584-596. DOI: 10.17521/cjpe.2022.0072
FENG Ke, LIU Dong-Mei, ZHANG Qi, AN Jing, HE Shuang-Hui. Effect of tourism disturbance on soil microbial diversity and community structure in a Pinus tabuliformis forest. Chinese Journal of Plant Ecology, 2023, 47(4): 584-596. DOI: 10.17521/cjpe.2022.0072
图1 不同旅游干扰强度样地示意图。 A, 高强度旅游干扰样地。B, 低强度旅游干扰样地。C, 无旅游干扰样地。 △代表供游客使用、休闲和娱乐等建设的基础设施。
Fig. 1 Schematic diagram of plots with different tourism disturbance intensity. A, Plot with high tourism disturbance intensity. B, Plot with low tourism disturbance intensity. C, Plot with no tourism disturbance intensity. △ represents infrastructure for tourist use, leisure and entertainment, etc.
类型 Type | 海拔 Altitude (m) | 坡度 Slope (o) | 树种组成 Tree composition |
---|---|---|---|
无干扰 No disturbance | 1 099 ± 126 | 31.25 ± 6.40 | 油松、北京丁香 Pinus tabuliformis, Syringa reticulata subsp. pekinensis |
低干扰区 Low disturbance | 1 008 ± 100 | 27.25 ± 3.27 | 油松、漆树 Pinus tabuliformis, Toxicodendron verniciflum |
高干扰区 High disturbance | 985 ± 88 | 25.25 ± 10.96 | 油松、山杨、北京丁香、核桃楸 Pinus tabuliformis, Populus davidiana, Syringa reticulata subsp. pekinensis, Juglans mandshurica |
表1 北京松山自然保护区样地信息描述(平均值±标准差)
Table 1 Information for sampling plots in Songshan National Nature Reserve, Beijing (mean ± SD)
类型 Type | 海拔 Altitude (m) | 坡度 Slope (o) | 树种组成 Tree composition |
---|---|---|---|
无干扰 No disturbance | 1 099 ± 126 | 31.25 ± 6.40 | 油松、北京丁香 Pinus tabuliformis, Syringa reticulata subsp. pekinensis |
低干扰区 Low disturbance | 1 008 ± 100 | 27.25 ± 3.27 | 油松、漆树 Pinus tabuliformis, Toxicodendron verniciflum |
高干扰区 High disturbance | 985 ± 88 | 25.25 ± 10.96 | 油松、山杨、北京丁香、核桃楸 Pinus tabuliformis, Populus davidiana, Syringa reticulata subsp. pekinensis, Juglans mandshurica |
变量 Variable | 描述 Description |
---|---|
郁闭度 Canopy | 20 m × 20 m样地中植被总盖度, 目测精度5% Total vegetation coverage in 20 m × 20 m plot, visually measured accuracy 5% |
乔木密度 Tree density | 20 m × 20 m样地中乔木总数 Total number of arbors in 20 m × 20 m plot |
灌木密度 Shrub density | 20 m × 20 m样地中灌木总数 Total number of shrubs in 20 m × 20 m plot |
乔木盖度 Tree cover | 20 m × 20 m样地中乔木覆盖程度, 目测精度5% Coverage of arbors in 20 m × 20 m plot, visually measured accuracy 5% |
草本盖度 Herb cover | 20 m × 20 m样地中草本覆盖程度, 目测精度5% Coverage of herbs in 20 m × 20 m plot, visually measured accuracy 5% |
灌木盖度 Shrub cover | 20 m × 20 m样地中灌木覆盖程度, 目测精度5% Coverage of shrubs in 20 m × 20 m plot, visually measured accuracy 5% |
凋落物盖度 Litter cover | 20 m × 20 m样地中各取样点凋落物覆盖程度, 目测精度5% Coverage of litters at each sampling site in 20 m × 20 m plot, visually measured accuracy 5% |
乔木胸径 Tree diameter at breast height (DBH) | 距20 m × 20 m样地中心点最近的8株乔木平均胸径 Average DBH of eight trees closest to the centre point of 20 m × 20 m plot |
灌木胸径 Shrub DBH | 距20 m × 20 m样地中心点最近的8株灌木平均胸径 Average DBH of eight shrubs closest to the centre point of 20 m × 20 m plot |
表2 北京松山自然保护区样地内微生境变量
Table 2 Description of microhabitat variables in sampling plots of Beijing Songshan Nature Reserve
变量 Variable | 描述 Description |
---|---|
郁闭度 Canopy | 20 m × 20 m样地中植被总盖度, 目测精度5% Total vegetation coverage in 20 m × 20 m plot, visually measured accuracy 5% |
乔木密度 Tree density | 20 m × 20 m样地中乔木总数 Total number of arbors in 20 m × 20 m plot |
灌木密度 Shrub density | 20 m × 20 m样地中灌木总数 Total number of shrubs in 20 m × 20 m plot |
乔木盖度 Tree cover | 20 m × 20 m样地中乔木覆盖程度, 目测精度5% Coverage of arbors in 20 m × 20 m plot, visually measured accuracy 5% |
草本盖度 Herb cover | 20 m × 20 m样地中草本覆盖程度, 目测精度5% Coverage of herbs in 20 m × 20 m plot, visually measured accuracy 5% |
灌木盖度 Shrub cover | 20 m × 20 m样地中灌木覆盖程度, 目测精度5% Coverage of shrubs in 20 m × 20 m plot, visually measured accuracy 5% |
凋落物盖度 Litter cover | 20 m × 20 m样地中各取样点凋落物覆盖程度, 目测精度5% Coverage of litters at each sampling site in 20 m × 20 m plot, visually measured accuracy 5% |
乔木胸径 Tree diameter at breast height (DBH) | 距20 m × 20 m样地中心点最近的8株乔木平均胸径 Average DBH of eight trees closest to the centre point of 20 m × 20 m plot |
灌木胸径 Shrub DBH | 距20 m × 20 m样地中心点最近的8株灌木平均胸径 Average DBH of eight shrubs closest to the centre point of 20 m × 20 m plot |
类别 Category | 组 Group | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | 种 Species |
---|---|---|---|---|---|---|---|
真菌 Fungi | 高干扰区 HD | 11 | 57 | 135 | 336 | 626 | 963 |
低干扰区 LD | 12 | 60 | 153 | 384 | 586 | 873 | |
无干扰区 ND | 14 | 54 | 136 | 343 | 683 | 1 053 | |
细菌 Bacteria | 高干扰区 HD | 45 | 131 | 183 | 222 | 347 | 418 |
低干扰区 LD | 44 | 135 | 177 | 207 | 318 | 386 | |
无干扰区 ND | 46 | 129 | 171 | 206 | 312 | 374 |
表3 不同干扰强度下的松山油松林土壤真菌和细菌物种组成
Table 3 Soil bacterial and fungal species compositions in Songshan Pinus tabuliformis forest under different disturbance intensity groups
类别 Category | 组 Group | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | 种 Species |
---|---|---|---|---|---|---|---|
真菌 Fungi | 高干扰区 HD | 11 | 57 | 135 | 336 | 626 | 963 |
低干扰区 LD | 12 | 60 | 153 | 384 | 586 | 873 | |
无干扰区 ND | 14 | 54 | 136 | 343 | 683 | 1 053 | |
细菌 Bacteria | 高干扰区 HD | 45 | 131 | 183 | 222 | 347 | 418 |
低干扰区 LD | 44 | 135 | 177 | 207 | 318 | 386 | |
无干扰区 ND | 46 | 129 | 171 | 206 | 312 | 374 |
类别 Category | 指数 Index | 无干扰-高干扰 ND-HD | 低干扰-无干扰 LD-ND | 低干扰-高干扰 LD-HD |
---|---|---|---|---|
真菌 Fungi | Faith系统发育多样性指数 Faith phylogenetic diversity index | 39.06 (0.00*) | -29.73 (0.00*) | 9.33 (0.59) |
香农-维纳多样性指数 Shannon-Wiener diversity index | 1.66 (0.00*) | 1.12 (0.39) | 2.78 (0.00*) | |
直观绝对序列变体 Observed ASV | 177.70 (0.00*) | 570.45 (0.83) | 748.15 (0.01*) | |
Pielou均匀度指数 Pielou evenness index | 0.16 (0.00*) | 0.07 (0.27) | 0.22 (0.00*) | |
细菌 Bacteria | Faith系统发育多样性指数 Faith phylogenetic diversity index | -10.29 (0.08) | -0.63 (0.75) | -10.92 (0.20) |
香农-维纳多样性指数 Shannon-Wiener diversity index | 0.03 (0.75) | -1.87 (0.00*) | -1.84 (0.00*) | |
直观数量统计 Observed ASV | -0.60 (0.87) | -759.25 (0.00*) | -759.85 (0.00*) | |
Pielou均匀度指数 Pielou evenness index | 0.00 (0.59) | -0.13 (0.13) | -0.125 (0.07) |
表4 松山油松林U检验组间土壤细菌和真菌α多样性差异
Table 4 Differences in soil bacterial and fungal alpha diversities between groups by U test in Songshan Pinus tabuliformis forest
类别 Category | 指数 Index | 无干扰-高干扰 ND-HD | 低干扰-无干扰 LD-ND | 低干扰-高干扰 LD-HD |
---|---|---|---|---|
真菌 Fungi | Faith系统发育多样性指数 Faith phylogenetic diversity index | 39.06 (0.00*) | -29.73 (0.00*) | 9.33 (0.59) |
香农-维纳多样性指数 Shannon-Wiener diversity index | 1.66 (0.00*) | 1.12 (0.39) | 2.78 (0.00*) | |
直观绝对序列变体 Observed ASV | 177.70 (0.00*) | 570.45 (0.83) | 748.15 (0.01*) | |
Pielou均匀度指数 Pielou evenness index | 0.16 (0.00*) | 0.07 (0.27) | 0.22 (0.00*) | |
细菌 Bacteria | Faith系统发育多样性指数 Faith phylogenetic diversity index | -10.29 (0.08) | -0.63 (0.75) | -10.92 (0.20) |
香农-维纳多样性指数 Shannon-Wiener diversity index | 0.03 (0.75) | -1.87 (0.00*) | -1.84 (0.00*) | |
直观数量统计 Observed ASV | -0.60 (0.87) | -759.25 (0.00*) | -759.85 (0.00*) | |
Pielou均匀度指数 Pielou evenness index | 0.00 (0.59) | -0.13 (0.13) | -0.125 (0.07) |
图2 北京松山自然保护区不同干扰强度下土壤微生物群落主坐标分析(PCoA)。 A, 土壤真菌。B, 土壤细菌。点越近, 圈越小, 微生物组成越相似。置信区间水平为0.85。LD, 低干扰区; HD, 高干扰区; ND, 无干扰区。
Fig. 2 Principal co-ordinates analysis (PCoA) of soil microbial communities in different disturbance intensity groups in Beijing Songshan Nature Reserve. A, Soil fungi. B, Soil bacteria. Closer distances between dots and smaller circles represent higher similarity in microbial composition. The confidence interval level is 0.85. LD, low disturbance group; HD, high disturbance group; ND, no disturbance group.
图3 北京松山自然保护区不同干扰强度下土壤微生物群落组成(门水平)。 A, 土壤真菌。B, 土壤细菌。LD, 低干扰区; HD, 高干扰区; ND, 无干扰区。图中整体分为上下两部分, 上半部分从左到右依次为低干扰区、高干扰区、无干扰区, 下半部分为各菌群; 上下连接的弦越粗代表菌群的占比越大。刻度数字表示菌群数量。
Fig. 3 Soil microbial community structure in different disturbance intensity groups (phylum level) in Beijing Songshan Nature Reserve. A, Soil fungi. B, Soil bacteria. LD, low disturbance group; HD, high disturbance group; ND, no disturbance group. The whole picture is divided into upper and lower part. The upper part from left to right represents low disturbance group, high disturbance group and no disturbance group, respectively, while the lower part represents different microbial taxa; the thicker the chord, the greater proportion of the corresponding microbial taxa. Scale number represent the number of microorganisms.
图4 北京松山自然保护区不同干扰强度下土壤真菌群落LEfSe分析。 HD, 高干扰区; ND, 无干扰区。线性判别分析(LDA) > 0说明是ND的差异类群, LDA < 0说明是HD的差异类群; 根据LDA结果构建的进化树(门到种水平)。其中绿色节点代表该水平的真菌在ND组含量较高, 红色节点代表该水平的真菌在HD组含量较高, 草绿色节点代表真菌在组间无显著差异。
Fig. 4 LEfSe analysis of fungal communities in different disturbance intensity groups in Beijing Songshan Nature Reserve. HD, high disturbance group; ND, no disturbance group. Linear discriminant analysis (LDA) > 0 indicates biomarkers of ND, LDA < 0 indicates biomarkers of HD; the evolutionary tree (phylum to species level) is constructed according to the LDA results. Among them, the green nodes represent ND hold more abundant fungi than other groups at this level, the red nodes represent HD hold more abundant fungi than other groups at this level, and the green nodes represent that there is no significant difference between groups.
图5 北京松山自然保护区不同干扰强度下土壤细菌群落LEfSe分析。 HD, 高干扰区; ND, 无干扰区。线性判别分析(LDA) > 0说明是ND的差异类群, LDA < 0说明是HD的差异类群; 根据LDA结果构建的进化树(门到种水平)。其中绿色节点代表该水平的细菌在ND组含量较高, 红色节点代表该水平的细菌在HD组含量较高, 草绿色节点代表细菌在组间无显著差异。
Fig. 5 LEfSe analysis of bacterial communities in different disturbance intensity groups in Beijing Songshan Nature Reserve. HD, high disturbance group; ND, no disturbance group. Linear discriminant analysis (LDA) > 0 indicates biomarkers of ND, LDA < 0 indicates biomarkers of HD; the evolutionary tree (phylum to species level) is constructed according to the LDA results. Among them, the green nodes represent ND hold more abundant bacteria than other groups at this level, the red nodes represent HD hold more abundant bacteria than other groups at this level, and the green nodes represent that there is no significant difference between groups.
变量 Variable | 无干扰-高干扰 ND-HD | 无干扰-低干扰 ND-LD | 高干扰-低干扰 HD-LD |
---|---|---|---|
土壤含水量 Soil water content | 0.04 (0.02*) | 0.01 (0.30) | -0.02 (0.30) |
土壤全氮含量 Soil total nitrogen content | 0.02 (0.43) | 0.00 (0.83) | -0.02 (0.77) |
土壤 pH Soil pH | -0.21 (0.12) | -0.10 (0.69) | 0.11 (0.20) |
土壤速效钾含量 Soil available potassium content | 0.08 (0.00*) | 0.03 (0.34) | -0.05 (0.08) |
土壤有机碳含量 Soil organic carbon content | 0.71 (0.06) | 0.54 (0.19) | -0.17 (0.78) |
土壤有效磷含量 Soil available phosphorus content | 0.30 (0.26) | -0.11 (0.46) | -0.41 (0.13) |
郁闭度 Canopy | 8.75 (0.07) | 7.50 (0.13) | -1.25 (0.93) |
乔木密度 Tree density | 0.06 (0.09) | 0.05 (0.18) | -0.01 (0.88) |
灌木密度 Shrub density | 1.76 (0.00*) | 0.70 (0.05*) | -1.06 (0.00*) |
乔木盖度 Tree cover | 15.00 (0.07) | 11.25 (0.19) | -3.75 (0.80) |
草本盖度 Herb cover | 26.25 (0.00*) | 13.75 (0.05*) | -12.50 (0.05*) |
灌木盖度 Shrub cover | 10.00 (0.07) | 6.25 (0.09) | -3.75 (0.61) |
凋落物盖度 Litter cover | 27.50 (0.00*) | 8.75 (0.30) | -18.75 (0.05*) |
乔木胸径 Tree DBH | 28.87 (0.00*) | 11.59 (0.11) | -17.28 (0.05*) |
灌木胸径 Shrub DBH | 0.46 (0.12) | 0.16 (0.72) | -0.30 (0.36) |
表5 单因素方差分析、U检验和多重比较检验松山油松林组间土壤理化性质和微生境差异
Table 5 Differences in microhabitats and soil edaphic factors between groups by one-way ANOVA, U test and multiple comparisons in Songshan Pinus tabuliformis forest
变量 Variable | 无干扰-高干扰 ND-HD | 无干扰-低干扰 ND-LD | 高干扰-低干扰 HD-LD |
---|---|---|---|
土壤含水量 Soil water content | 0.04 (0.02*) | 0.01 (0.30) | -0.02 (0.30) |
土壤全氮含量 Soil total nitrogen content | 0.02 (0.43) | 0.00 (0.83) | -0.02 (0.77) |
土壤 pH Soil pH | -0.21 (0.12) | -0.10 (0.69) | 0.11 (0.20) |
土壤速效钾含量 Soil available potassium content | 0.08 (0.00*) | 0.03 (0.34) | -0.05 (0.08) |
土壤有机碳含量 Soil organic carbon content | 0.71 (0.06) | 0.54 (0.19) | -0.17 (0.78) |
土壤有效磷含量 Soil available phosphorus content | 0.30 (0.26) | -0.11 (0.46) | -0.41 (0.13) |
郁闭度 Canopy | 8.75 (0.07) | 7.50 (0.13) | -1.25 (0.93) |
乔木密度 Tree density | 0.06 (0.09) | 0.05 (0.18) | -0.01 (0.88) |
灌木密度 Shrub density | 1.76 (0.00*) | 0.70 (0.05*) | -1.06 (0.00*) |
乔木盖度 Tree cover | 15.00 (0.07) | 11.25 (0.19) | -3.75 (0.80) |
草本盖度 Herb cover | 26.25 (0.00*) | 13.75 (0.05*) | -12.50 (0.05*) |
灌木盖度 Shrub cover | 10.00 (0.07) | 6.25 (0.09) | -3.75 (0.61) |
凋落物盖度 Litter cover | 27.50 (0.00*) | 8.75 (0.30) | -18.75 (0.05*) |
乔木胸径 Tree DBH | 28.87 (0.00*) | 11.59 (0.11) | -17.28 (0.05*) |
灌木胸径 Shrub DBH | 0.46 (0.12) | 0.16 (0.72) | -0.30 (0.36) |
图6 最小路径模型预测不同干扰强度对松山油松林土壤微生物α多样性的影响。 A, 土壤真菌。B, 土壤细菌。黑色实线代表观察变量的载荷值, 红色箭头实线代表显著负相关, 红(黑)箭头虚线代表无显著相关性。
Fig. 6 PLS-PM predicted the impact of disturbance intensity on soil microbial alpha diversity in Songshan Pinus tabuliformis forest. A, Soil fungi. B, Soil bacteria. The solid black lines represent the loading values of observed variable, the solid red arrow lines represent a significant negative correlation, and the dashed red (black) arrow lines represent no significant correlation.
图7 不同干扰强度下松山油松林土壤微生物群落组成(门水平)与环境因子的冗余分析(RDA)。 A, 土壤真菌。B, 土壤细菌。LD, 低干扰区; HD, 高干扰区; ND, 无干扰区。AK, 速效钾含量; HC, 草本盖度; LC, 凋落物盖度; Tree_DBH, 乔木胸径; SWC, 土壤含水量。黑色箭头实线越长, 影响越大。
Fig. 7 Redundancy analysis (RDA) between soil microbial communities (phylum level) and environmental factor in different disturbance intensity groups in Songshan Pinus tabuliformis forest. A, Soil fungi. B, Soil bacteria. LD, low disturbance group; HD, high disturbance group; ND, no disturbance group. AK, available potassium content; HC, herb cover; LC, litter cover; Tree_DBH, tree diameter at breast height; SWC, soil water content. The longer the solid black arrow line, the greater the influence.
[1] |
Antonsen H, Olsson PA (2005). Relative importance of burnng, mowing and species translocation in the restoration of a former boreal hayfield: responses of plant diversity and the microbial community. Journal of Applied Ecology, 42, 337-347.
DOI URL |
[2] | Bauhus J, Khanna PK (1999). The significance of microbial biomass in forest soils//Rastin N, Bauhus J. Going Underground—Ecological Studies in Forest Soils. Research Signpost, Trivandrum, India. 77-110. |
[3] |
Carey CJ, Beman JM, Eviner VT, Malmstrom CM, Hart SC (2015). Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Frontiers in Microbiology, 6, 466. DOI: 10.3389/fmicb.2015.00466.
DOI PMID |
[4] |
Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010). Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology, 76, 999-1007.
DOI PMID |
[5] |
Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009). Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE, 4, e6669. DOI: 10.1371/journal.pone.0006669.
DOI |
[6] |
Clegg CD (2006). Impact of Cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Applied Soil Ecology, 31, 73-82.
DOI URL |
[7] |
Collins HP, Cavigelli MA (2003). Soil microbial community characteristics along an elevation gradient in the Laguna Mountains of Southern California. Soil Biology & Biochemistry, 35, 1027-1037.
DOI URL |
[8] | Duan GL, Zhu YJ (2019). Review on the effects of tourism disturbance on soil ecosystem. Acta Ecologica Sinica, 39, 8338-8345. |
[段桂兰, 朱寅健 (2019). 旅游干扰对土壤生态系统的影响研究进展. 生态学报, 39, 8338-8345.] | |
[9] | Faithfull N (2002). Methods in Agricultural Chemical Analysis: A Practical Handbook. CABI, Wallingford, UK. |
[10] | Fan YQ, An J, Liang C (2021). Soil microbial structure characteristics of typical vegetation communities in Beijing City Songshan National Nature Reserve. Northern Horticulture, (1), 81-86. |
[范雅倩, 安菁, 梁晨 (2021). 北京市松山国家级自然保护区典型植被群落的土壤微生物群落结构特征. 北方园艺, (1), 81-86.] | |
[11] | Gong J, Lu L, Jin XL, Nan W, Liu F (2009). Impacts of tourist disturbance on plant communities and soil properties in Huangshan Mountain scenic area. Acta Ecologica Sinica, 29, 2239-2251. |
[巩劼, 陆林, 晋秀龙, 南伟, 刘飞 (2009). 黄山风景区旅游干扰对植物群落及其土壤性质的影响. 生态学报, 29, 2239-2251.] | |
[12] | Guan DS, Ding J, Wang L (2000). The impact of tourism and environmental pollution on plants and soil of forests in urban parks of Guangzhou. China Environmental Science, 20, 277-280. |
[管东生, 丁键, 王林 (2000). 旅游和环境污染对广州城市公园森林植物和土壤的影响. 中国环境科学, 20, 277-280.] | |
[13] | Han CC, Yang Y, Liu BR, Xie YZ (2014). Influencing factors of soil microbial diversity in grassland. Pratacultural Science, 31, 2242-2250. |
[韩丛丛, 杨阳, 刘秉儒, 谢应忠 (2014). 草地土壤微生物多样性影响因子. 草业科学, 31, 2242-2250.] | |
[14] | Hu GP, Cao HM, Shi XP, Ye C, Wang F, Wang YW, Hu LC, Wang JW (2021). Effects of Cd stress on bacterial community composition and diversity in mulberry rhizosphere soil. Acta Sericologica Sinica, 47, 510-517. |
[胡桂萍, 曹红妹, 石旭平, 叶川, 王丰, 王亚威, 胡丽春, 王军文 (2021). 镉胁迫对桑树根际细菌群落及其多样性的影响. 蚕业科学, 47, 510-517.] | |
[15] | Huang P, Liu YH (2018). Effects of stand structure and terrain factors on seedling regeneration of Pinus tabuliformis forest in the Songshan National Nature Reserve, Beijing. Chinese Journal of Ecology, 37, 1003-1009. |
[黄萍, 刘艳红 (2018). 北京松山油松林林分结构和地形对幼苗更新的影响. 生态学杂志, 37, 1003-1009.] | |
[16] |
Ingram LJ, Stahl PD, Schuman GE, Buyer JS, Vance GF, Ganjegunte GK, Welker JM, Derner JD (2008). Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Science Society of America Journal, 72, 939-948.
DOI URL |
[17] |
Jiang X, Niu KC (2021). Effects of grass mixed-sowing on soil microbial diversity on the Qingzang (Tibetan) Plateau. Chinese Journal of Plant Ecology, 45, 539-551.
DOI URL |
[姜鑫, 牛克昌 (2021). 青藏高原禾草混播对土壤微生物多样性的影响. 植物生态学报, 45, 539-551.] | |
[18] | Jiang XW, Ma DL, Zang SY, Zhang DY, Sun HZ (2021). Characteristics of soil bacterial and fungal community of typical forest in the Greater Khingan Mountains based on high-throughput sequencing. Microbiology China, 48, 1093-1105. |
[姜雪薇, 马大龙, 臧淑英, 张冬有, 孙弘哲 (2021). 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征. 微生物学通报, 48, 1093-1105.] | |
[19] |
Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6, 6707. DOI:10.1038/ncomms7707.
DOI PMID |
[20] | Li L, Liang YL, Jiang HH, Huang LY, Zhou Y, Yu JN (2012). Impacts of tourist disturbance on soil heavy metal pollution and properties in Wuyishan Scenery District. Guangdong Agricultural Sciences, 39(19), 171-174. |
[李灵, 梁彦兰, 江慧华, 黄丽燕, 周艳, 俞建安 (2012). 旅游干扰对武夷山风景区土壤重金属污染和土壤性质的影响. 广东农业科学, 39(19), 171-174.] | |
[21] | Li N, Zhang LM, Zhang XP (2012). The discussion of affecting factors on soil microbial community structure. Natural Science Journal of Harbin Normal University, 28(6), 70-74. |
[李娜, 张利敏, 张雪萍 (2012). 土壤微生物群落结构影响因素的探讨. 哈尔滨师范大学自然科学学报, 28(6), 70-74.] | |
[22] |
Li NQ, Wu JG, Jiang WJ, Mu XY, Cheng J (2013). Biodiversity and conservation of orchids in Songshan National Nature Reserve, Beijing. Plant Science Journal, 31, 510-516.
DOI URL |
[李南岍, 吴记贵, 蒋万杰, 沐先运, 程瑾 (2013). 北京松山国家级自然保护区兰科植物多样性及其保护评价. 植物科学学报, 31, 510-516.] | |
[23] | Li SS, Ma DL, Zang SY, Wang LL, Sun HZ (2018). Structural and functional characteristics of soil microbial community in the Songjiang wetland under different interferences. Acta Ecologica Sinica, 38, 7979-7989. |
[李森森, 马大龙, 臧淑英, 王璐璐, 孙弘哲 (2018). 不同干扰方式下松江湿地土壤微生物群落结构和功能特征. 生态学报, 38, 7979-7989.] | |
[24] | Li WF, Ye YC, Zhu AF, Rao L, Sun K, Yuan J, Guo X (2017). Spatio-temporal variation of pH in cropland of Jiangxi Province in the past 30 years and its relationship with acid rain and fertilizer application. Journal of Natural Resources, 32, 1942-1953. |
[李伟峰, 叶英聪, 朱安繁, 饶磊, 孙凯, 袁颉, 郭熙 (2017). 近30a江西省农田土壤pH时空变化及其与酸雨和施肥量间关系. 自然资源学报, 32, 1942-1953.]
DOI |
|
[25] | Liu J, Xu ZJR, Peng PH, Pan X (2016). Effects of tourism trampling on soil microbial quantity and enzyme activity in Jiguanshan Forest Park. Jiangsu Agricultural Sciences, 44, 398-402. |
[刘静, 徐峥静茹, 彭培好, 潘欣 (2016). 旅游踩踏对鸡冠山森林公园土壤微生物数量及酶活性的影响. 江苏农业科学, 44, 398-402.] | |
[26] | Ma J, Liu XD, He XL, Jin M, Niu Y, Jing WM, Zhao WJ, Wang RX (2016). Effects of tourism disturbance on soil properties of Qilian Mountains scenery district. Soils, 48, 924-930. |
[马剑, 刘贤德, 何晓玲, 金铭, 牛赟, 敬文茂, 赵维俊, 王荣新 (2016). 旅游干扰对祁连山风景区土壤性质的影响. 土壤, 48, 924-930.] | |
[27] | Ma JH, Zhu YT (2009). Impacts of tourist activities on soil components and properties in the Songshan scenic area. Acta Pedologica Sinica, 46, 164-168. |
[马建华, 朱玉涛 (2009). 嵩山景区旅游活动对土壤组成和性质的影响. 土壤学报, 46, 164-168.] | |
[28] | Man BY, Xiang X, Luo Y, Mao XT, Zhang C, Sun BH, Wang X (2021). Characteristics and influencing factors of soil fungal community of typical vegetation types in Mount Huangshan, East China. Mycosystema, 40, 2735-2751. |
[满百膺, 向兴, 罗洋, 毛小涛, 张超, 孙丙华, 王希 (2021). 黄山典型植被类型土壤真菌群落特征及其影响因素. 菌物学报, 40, 2735-2751.] | |
[29] | Ni SS, Peng L, Gao Y (2016). Impacts of tourist disturbance on soil properties and plant communities in Emeishan Mountain scenic region. Chinese Journal of Agricultural Resources and Regional Planning, 37(3), 93-96. |
[倪珊珊, 彭琳, 高越 (2016). 旅游干扰对峨眉山风景区土壤及植被的影响. 中国农业资源与区划, 37(3), 93-96.] | |
[30] | Niu LL, Yu XX, Yue YJ (2008). Spatial patterns of different age-class individuals in Pinus tabuliformis forest in Songshan Nature Reserve of Beijing, China. Chinese Journal of Applied Ecology, 19, 1414-1418. |
[牛丽丽, 余新晓, 岳永杰 (2008). 北京松山自然保护区天然油松林不同龄级立木的空间点格局. 应用生态学报, 19, 1414-1418.] | |
[31] |
Pei GT, Sun JF, He TX, Hu BQ (2021). Effects of long-term human disturbances on soil microbial diversity and community structure in a karst grassland ecosystem of northwestern Guangxi, China. Chinese Journal of Plant Ecology, 45, 74-84.
DOI URL |
[裴广廷, 孙建飞, 贺同鑫, 胡宝清 (2021). 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响. 植物生态学报, 45, 74-84.] | |
[32] |
Plassart P, Akpa Vinceslas M, Gangneux C, Mercier A, Barray S, Laval K (2008). Molecular and functional responses of soil microbial communities under grassland restoration. Agriculture Ecosystems & Environment, 127, 286-293.
DOI URL |
[33] | Sanchez G (2013). PLS Path Modeling with R Trowchez Editions. [2022-02-20]. http://www.gaston-sanchez.com/ PLS Path Modeling with R.pdf. |
[34] | Shang B (2008). The Wood Rotting Fungi and Soil Fungi of the Two Dominate Forest Types in Songshan. Master degree dissertation, Beijing Forest University, Beijing. |
[尚蓓 (2008). 松山林区木腐菌与两类主要林型土壤真菌的研究. 硕士学位论文, 北京林业大学, 北京.] | |
[35] |
Sherman C, Unc A, Doniger T, Ehrlich R, Steinberger Y (2019). The effect of human trampling activity on a soil microbial community at the Oulanka Natural Reserve, Finland. Applied Soil Ecology, 135, 104-112.
DOI |
[36] | Song XJ, Zhao TR (1997). Ecological evaluation of Songshan Nature Reserve. Chinese Journal of Enviromental Science, 18(4), 76-78. |
[宋秀杰, 赵彤润 (1997). 松山自然保护区的生态评价. 环境科学, 18(4), 76-78.] | |
[37] |
Strickland MS, Lauber C, Fierer N, Bradford MA (2009). Testing the functional significance of microbial community composition. Ecology, 90, 441-451.
DOI PMID |
[38] |
Talbot JM, Allison SD, Treseder KK (2008). Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22, 955-963.
DOI URL |
[39] | Tan ZJ, Xiao QM, Zu ZB (2007). Effect of recreation activities on soil microflora and activities in Zhangjiajie National Forest Park. Acta Pedologica Sinica, 44, 184-187. |
[谭周进, 肖启明, 祖智波 (2007). 旅游踩踏对张家界国家森林公园土壤微生物区系及活性的影响. 土壤学报, 44, 184-187.] | |
[40] |
Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC (2008). Simultaneous assessment of soil microbial community structure and function through analysis of the meta- transcriptome. PLoS ONE, 3, e2527. DOI: 10.1371/ journal.pone.0002527.
DOI |
[41] |
Wang S, Sheng XL, Zhang L, Han JC, Luo YZ, Xie DT (2017). Effects of agricultural tourism on soil microbial community structure in hilly area of east Sichuan. Chinese Journal of Soil Science, 48, 101-109.
DOI URL |
[王帅, 盛晓磊, 张雷, 韩霁昌, 骆云中, 谢德体 (2017). 川东低山丘陵区农业旅游活动对土壤微生物群落结构的影响. 土壤通报, 48, 101-109.] | |
[42] | Wen YX, Zhong QL, Xia JL, Xiao HY, Zhang XF (2009). The effects of tourist activity on plant species diversity and root system biomass of shrubs in scenic spots of Wuyi Mountain. Progress in Geography, 28, 147-152. |
[文雅香, 钟全林, 夏金林, 肖海燕, 张晓芳 (2009). 旅游对武夷山景区灌木林物种多样性及其根系生物量的影响. 地理科学进展, 28, 147-152.]
DOI |
|
[43] | White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics//Innis MA, Gelfand DH, Sninsky JJ, White TJ. PCR Protocols—A Guide to Methods and Applications. Elsevier, Amsterdam. 315-322. |
[44] |
Yin CT, Jones KL, Peterson DE, Garrett KA, Hulbert SH, Paulitz TC (2010). Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biology & Biochemistry, 42, 2111-2118.
DOI URL |
[45] |
Young IM, Ritz K (2000). Tillage, habitat space and function of soil microbes. Soil and Tillage Research, 53, 201-213.
DOI URL |
[46] | Yu PT, Liu HY, Chen S (2002). Influences of human disturbances on vegetation of Songshan national level nature reserve. Scientia Silvae Sinicae, 38(4), 162-166. |
[于澎涛, 刘鸿雁, 陈杉 (2002). 人为干扰对松山自然保护区植被的影响. 林业科学, 38(4), 162-166.] | |
[47] | Yu S, Wang JK, Li SY (2008). Effect of long-term fertilization on soil microbial community structure in corn field with the method of PLFA. Acta Ecologica Sinica, 28, 4221-4227. |
[于树, 汪景宽, 李双异 (2008). 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响. 生态学报, 28, 4221-4227.] | |
[48] |
Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003). Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology, 84, 2042-2050.
DOI URL |
[49] | Zhang SH, Zhao MW, Zhang XP (2011). Effects of tourism disturbance on soil and vegetation in Erlong Mountain scenic region. Chinese Journal of Soil Science, 42, 523-527. |
[张淑花, 赵美微, 张雪萍 (2011). 旅游干扰对二龙山风景区土壤和植被的影响. 土壤通报, 42, 523-527.] | |
[50] |
Zhang Y, Cao CY, Peng M, Xu XJ, Zhang P, Yu QJ, Sun T (2014). Diversity of nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria in biological soil crusts of a revegetation area in Horqin Sandy Land, Northeast China. Ecological Engineering, 71, 71-79.
DOI URL |
[51] | Zhao JC (2015). Impacts of tourism disturbance on biological diversity and soil properties of typical steppe in Helan mountain scenic area. Bulletin of Soil and Water Conservation, 35(3), 293-298. |
[赵建昌 (2015). 旅游干扰对贺兰山典型草原生物多样性及土壤性质的影响. 水土保持通报, 35(3), 293-298.] | |
[52] | Zhao N, Lu SW, Li SN, Wu JG, Fan YQ (2018). Study on plant diversity of typical plant communities in Songshan Nature Reserve, Beijing. Acta Botanica Boreali-Occidentalia Sinica, 38, 2120-2128. |
[赵娜, 鲁绍伟, 李少宁, 吴记贵, 范雅倩 (2018). 北京松山自然保护区典型植物群落物种多样性研究. 西北植物学报, 38, 2120-2128.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[3] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[4] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[5] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[6] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[7] | 夏体泽, 李露双, 杨汉奇. 屏边空竹分布区海拔上下边界的土壤真菌群落特征[J]. 植物生态学报, 2022, 46(7): 823-833. |
[8] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[9] | 周亮, 杨君珑, 杨虎, 窦建德, 黄维, 李小伟. 宁夏蒙古扁桃群落特征与分类[J]. 植物生态学报, 2022, 46(2): 243-248. |
[10] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[11] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[12] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[13] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[14] | 贺忠权, 刘长成, 蔡先立, 郭柯. 黔中高原喀斯特常绿与落叶阔叶混交林类型及群落特征[J]. 植物生态学报, 2021, 45(6): 670-680. |
[15] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19